Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Mol Biol ; 436(16): 168693, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960133

RESUMEN

Septins are filamentous nucleotide-binding proteins which can associate with membranes in a curvature-dependent manner leading to structural remodelling and barrier formation. Ciona intestinalis, a model for exploring the development and evolution of the chordate lineage, has only four septin-coding genes within its genome. These represent orthologues of the four classical mammalian subgroups, making it a minimalist non-redundant model for studying the modular assembly of septins into linear oligomers and thereby filamentous polymers. Here, we show that C. intestinalis septins present a similar biochemistry to their human orthologues and also provide the cryo-EM structures of an octamer, a hexamer and a tetrameric sub-complex. The octamer, which has the canonical arrangement (2-6-7-9-9-7-6-2) clearly shows an exposed NC-interface at its termini enabling copolymerization with hexamers into mixed filaments. Indeed, only combinations of septins which had CiSEPT2 occupying the terminal position were able to assemble into filaments via NC-interface association. The CiSEPT7-CiSEPT9 tetramer is the smallest septin particle to be solved by Cryo-EM to date and its good resolution (2.7 Å) provides a well-defined view of the central NC-interface. On the other hand, the CiSEPT7-CiSEPT9 G-interface shows signs of fragility permitting toggling between hexamers and octamers, similar to that seen in human septins but not in yeast. The new structures provide insights concerning the molecular mechanism for cross-talk between adjacent interfaces. This indicates that C. intestinalis may represent a valuable tool for future studies, fulfilling the requirements of a complete but simpler system to understand the mechanisms behind the assembly and dynamics of septin filaments.


Asunto(s)
Ciona intestinalis , Microscopía por Crioelectrón , Modelos Moleculares , Multimerización de Proteína , Septinas , Ciona intestinalis/metabolismo , Ciona intestinalis/química , Ciona intestinalis/genética , Septinas/metabolismo , Septinas/química , Septinas/genética , Animales , Humanos , Nucleótidos/metabolismo , Nucleótidos/química , Conformación Proteica , Unión Proteica
2.
Biol Res ; 56(1): 10, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36899423

RESUMEN

BACKGROUND: The biological tube is a basal biology structure distributed in all multicellular animals, from worms to humans, and has diverse biological functions. Formation of tubular system is crucial for embryogenesis and adult metabolism. Ascidian Ciona notochord lumen is an excellent in vivo model for tubulogenesis. Exocytosis has been known to be essential for tubular lumen formation and expansion. The roles of endocytosis in tubular lumen expansion remain largely unclear. RESULTS: In this study, we first identified a dual specificity tyrosine-phosphorylation-regulated kinase 1 (DYRK1), the protein kinase, which was upregulated and required for ascidian notochord extracellular lumen expansion. We demonstrated that DYRK1 interacted with and phosphorylated one of the endocytic components endophilin at Ser263 that was essential for notochord lumen expansion. Moreover, through phosphoproteomic sequencing, we revealed that in addition to endophilin, the phosphorylation of other endocytic components was also regulated by DYRK1. The loss of function of DYRK1 disturbed endocytosis. Then, we demonstrated that clathrin-mediated endocytosis existed and was required for notochord lumen expansion. In the meantime, the results showed that the secretion of notochord cells is vigorous in the apical membrane. CONCLUSIONS: We found the co-existence of endocytosis and exocytosis activities in apical membrane during lumen formation and expansion in Ciona notochord. A novel signaling pathway is revealed that DYRK1 regulates the endocytosis by phosphorylation that is required for lumen expansion. Our finding thus indicates a dynamic balance between endocytosis and exocytosis is crucial to maintain apical membrane homeostasis that is essential for lumen growth and expansion in tubular organogenesis.


Asunto(s)
Ciona intestinalis , Animales , Humanos , Ciona intestinalis/metabolismo , Notocorda/metabolismo , Fosforilación , Desarrollo Embrionario , Morfogénesis
3.
Biol. Res ; 56: 10-10, 2023. ilus
Artículo en Inglés | LILACS | ID: biblio-1429911

RESUMEN

BACKGROUND: The biological tube is a basal biology structure distributed in all multicellular animals, from worms to humans, and has diverse biological functions. Formation of tubular system is crucial for embryogenesis and adult metabolism. Ascidian Ciona notochord lumen is an excellent in vivo model for tubulogenesis. Exocytosis has been known to be essential for tubular lumen formation and expansion. The roles of endocytosis in tubular lumen expansion remain largely unclear. RESULTS: In this study, we first identified a dual specificity tyrosine-phosphorylation-regulated kinase 1 (DYRK1), the protein kinase, which was upregulated and required for ascidian notochord extracellular lumen expansion. We demonstrated that DYRK1 interacted with and phosphorylated one of the endocytic components endophilin at Ser263 that was essential for notochord lumen expansion. Moreover, through phosphoproteomic sequencing, we revealed that in addition to endophilin, the phosphorylation of other endocytic components was also regulated by DYRK1. The loss of function of DYRK1 disturbed endocytosis. Then, we demonstrated that clathrin-mediated endocytosis existed and was required for notochord lumen expansion. In the meantime, the results showed that the secretion of noto-chord cells is vigorous in the apical membrane. CONCLUSIONS: We found the co-existence of endocytosis and exocytosis activities in apical membrane during lumen formation and expansion in Ciona notochord. A novel signaling pathway is revealed that DYRK1 regulates the endocytosis by phosphorylation that is required for lumen expansion. Our finding thus indicates a dynamic balance between endocytosis and exocytosis is crucial to maintain apical membrane homeostasis that is essential for lumen growth and expansion in tubular organogenesis.


Asunto(s)
Humanos , Animales , Ciona intestinalis/metabolismo , Fosforilación , Desarrollo Embrionario , Morfogénesis , Notocorda/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(37): 9240-9245, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30127012

RESUMEN

The voltage-gated proton (Hv1) channel, a voltage sensor and a conductive pore contained in one structural module, plays important roles in many physiological processes. Voltage sensor movements can be directly detected by measuring gating currents, and a detailed characterization of Hv1 charge displacements during channel activation can help to understand the function of this channel. We succeeded in detecting gating currents in the monomeric form of the Ciona-Hv1 channel. To decrease proton currents and better separate gating currents from ion currents, we used the low-conducting Hv1 mutant N264R. Isolated ON-gating currents decayed at increasing rates with increasing membrane depolarization, and the amount of gating charges displaced saturates at high voltages. These are two hallmarks of currents arising from the movement of charged elements within the boundaries of the cell membrane. The kinetic analysis of gating currents revealed a complex time course of the ON-gating current characterized by two peaks and a marked Cole-Moore effect. Both features argue that the voltage sensor undergoes several voltage-dependent conformational changes during activation. However, most of the charge is displaced in a single central transition. Upon voltage sensor activation, the charge is trapped, and only a fast component that carries a small percentage of the total charge is observed in the OFF. We hypothesize that trapping is due to the presence of the arginine side chain in position 264, which acts as a blocking ion. We conclude that the movement of the voltage sensor must proceed through at least five states to account for our experimental data satisfactorily.


Asunto(s)
Ciona intestinalis/química , Ciona intestinalis/metabolismo , Activación del Canal Iónico/fisiología , Canales Iónicos/metabolismo , Sustitución de Aminoácidos , Animales , Ciona intestinalis/genética , Canales Iónicos/genética , Transporte Iónico/fisiología , Cinética , Mutación Missense , Xenopus laevis
5.
Eur J Biochem ; 204(2): 669-77, 1992 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-1311677

RESUMEN

Sulfated polysaccharides occurring in the tunic of different species of ascidians differ markedly in electrophoretic pattern and chemical composition. A purified sulfated alpha-L-galactan from Herdmania monus was studied using methylation analysis and NMR spectroscopy; it is composed mainly of 3-sulfated 4-linked alpha-L-galactopyranoyl units. This is the first description of a homo-polymer of sulfated alpha-L-galactose. In contrast, the sulfated L-galactan from Ciona intestinalis shows marked structural heterogeneity and a low sulfate content. These data indicate unusual structural diversity among sulfated L-galactans from different species of ascidians.


Asunto(s)
Ciona intestinalis/metabolismo , Galactanos/metabolismo , Urocordados/metabolismo , Animales , Conformación de Carbohidratos , Cromatografía DEAE-Celulosa , Electroforesis en Gel de Agar , Electroforesis en Gel de Poliacrilamida , Galactosa Oxidasa/metabolismo , Espectroscopía de Resonancia Magnética , Metilación , Oxidación-Reducción , Ácido Peryódico/metabolismo , Especificidad de la Especie , Ácidos Sulfúricos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA