Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Biomater Sci ; 12(16): 4242-4261, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39011583

RESUMEN

The pathophysiology of chronic wounds related to diabetes mellitus is a result of a series of complications induced by hyperglycemia. The symptoms include impaired growth factor production, decreased keratinocyte proliferation and migration, reduced angiogenesis and cytokine synthesis, lowered matrix metalloproteinase (MMP) production, neuropathy, reduced nitric oxide synthase production, decreased fibroblast synthesis and migration, and impaired inflammatory cell functions. This multifaceted mechanism of diabetic wounds needs a suitable novel topical formulation that can deliver the active constituent by a controlled means, target the various stages of wound healing, absorb the wound exudates, and prevent secondary infections. To meet the above requirements, the Clerodendrum glandulosum (CG) extract reduced silver nanoparticle (AgNP) impregnated chitosan-polyethylene glycol (PEG) hydrogel was synthesized. The findings of the physicochemical characterization studies suggested that the hydrogel exhibited excellent formulation characteristics and showed controlled release for seven days, making it suitable for chronic wound healing studies. In subsequent studies, these formulations showed good antioxidant and antimicrobial properties, and hemocompatibility, with the least cytotoxic properties. The results of the diabetic wound healing studies showed a faster wound closure rate and improved extracellular matrix formation. These antioxidant, antimicrobial, anti-inflammatory and wound-healing properties suggest that the CG-AgNP loaded chitosan-PEG hydrogel is a promising material for novel topical formulation of diabetic wounds.


Asunto(s)
Quitosano , Clerodendrum , Hidrogeles , Nanopartículas del Metal , Extractos Vegetales , Polietilenglicoles , Plata , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Quitosano/administración & dosificación , Polietilenglicoles/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/administración & dosificación , Animales , Hidrogeles/química , Hidrogeles/administración & dosificación , Hidrogeles/farmacología , Plata/química , Plata/farmacología , Plata/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Clerodendrum/química , Aprendizaje Automático , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Masculino , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/administración & dosificación , Ratones
2.
Molecules ; 29(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39064848

RESUMEN

Harlequin glory bower (Clerodendrum trichotomum) is a shrub or small tree belonging to the Lamiaceae family, native to Japan, Korea, and eastern China. It has esthetic value and in Europe, it is cultivated as an ornamental plant. Its sweet-smelling flowers have a white or pink crown. The calyx turns from green to pink-purple over time, providing an especially decorative touch around surrounding the ripe deep-blue fruits that persist until winter. In the areas of its natural occurrence, the leaves and young shoots of C. trichotomum, and sometimes the roots, flowers and fruits, are used in folk medicine due to its anti-inflammatory, analgesic, anticancer, sedative, and hypotensive effects. Products based on Harlequin glory are also used in the treatment of rheumatoid arthritis, joint pain, skin inflammation, or asthma. Preliminary research on the composition of raw material suggests that its health-promoting effect is associated with the presence of numerous secondary metabolites, including phenylpropanoids, flavonoids, lignans, terpenoids, steroids, alkaloids, and anthraquinones. This work reviews the current state of knowledge about the phytochemistry and in vitro and in vivo pharmacological properties of the extracts and main active components isolated from C. trichotomum. It also indicates that before it can be used in modern medicine, further research is necessary regarding the safety and efficacy of the raw material, its mechanisms of action, and dosage.


Asunto(s)
Clerodendrum , Extractos Vegetales , Clerodendrum/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química
3.
PLoS One ; 19(7): e0306766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985716

RESUMEN

BACKGROUND: Wounds significantly affect people's quality of life and the clinical and financial burden of healthcare systems around the world. Many of the current drugs used to treat wounds have problems such as; allergies and drug resistance. Hence, the exploration of new therapeutic agents from natural origin may avert this problem. Clerodendrum myricoides have long been used to treat wounds in Ethiopia. Despite this, nothing has so far been reported about the wound healing and anti-inflammatory activity of C. myricoides. This study aimed to evaluate the wound healing and anti-inflammatory activity of 80% methanol extract and solvent fractions of C. myricoides leaves in mice. METHODS: Leaves of C. myricoides were extracted using the maceration technique. The extract was formulated as 5% and 10% w/w ointments. The wound healing activity of the extract was evaluated using excision, incision, and burn wound models whereas the healing activities of solvent fractions were evaluated using the excision wound model. A carrageenan-induced paw edema model was used for the anti-inflammatory test. RESULTS: In the dermal toxicity test, 2000 mg/kg of 10% extract was found to be safe. In excision and burn wound models, treatment with 10% and 5% extract showed a significant (p<0.001) wound contraction. Solvent fractions of the extract significantly reduced wound contraction. A significant reduction in periods of epithelialization and favorable histopathology changes were shown by extract ointments. In incision wounds, 10% (p<0.001) and 5% (p<0.01) extracts significantly increase skin-breaking strength. After one hour of treatment, 400 mg/kg (p<0.001) and 200 mg/kg (p<0.05) showed significant reduction in paw edema. CONCLUSION: Results of this study indicate that 80% methanol extract and the solvent fraction of the leaves of C. myricoides possess wound-healing and anti-inflammatory activity and support traditional claims.


Asunto(s)
Antiinflamatorios , Clerodendrum , Extractos Vegetales , Hojas de la Planta , Cicatrización de Heridas , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cicatrización de Heridas/efectos de los fármacos , Hojas de la Planta/química , Ratones , Clerodendrum/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Masculino , Solventes/química , Edema/tratamiento farmacológico , Femenino , Carragenina
4.
Curr Microbiol ; 81(8): 238, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907867

RESUMEN

In the current study, thirty bacterial strains isolated from the rhizosphere of Clerodendrum infortunatum L. were evaluated for the properties related to the plant growth promotion and disease resistance. Here, all the selected strains were screened for its antagonistic effect towards the phytopathogen Sclerotium rolfsii and also for the production of bioactive compounds known to promote the plant growth. Among these isolates, CiRb1 and CiRb16 were observed to have a broad range of plant beneficial features and were identified as Bacillus licheniformis and Bacillus velezensis respectively. Both the isolates were also demonstrated to produce the volatile organic compounds (VOCs) responsible for the growth enhancement in Brassica nigra (L.) and growth inhibition of S. rolfsii. Talc based formulations made out of both B. licheniformis and B. velezensis were further demonstrated to augment the plant growth and protection against S. rolfsii in Vigna unguiculata (L.) Walp. By the GC-MS based analysis, undecane could also be detected in the methanolic extracts prepared from both B. licheniformis and B. velezensis. Here, the selected rhizobacterial isolates were found to promote the plant growth and disease resistance through both direct and VOC mediated mechanisms. The results of the study hence reveal both B. licheniformis and B. velezensis have the potential in field application to promote the growth and control of plant diseases.


Asunto(s)
Bacillus , Clerodendrum , Enfermedades de las Plantas , Rizosfera , Compuestos Orgánicos Volátiles , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Bacillus/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Clerodendrum/microbiología , Clerodendrum/crecimiento & desarrollo , Basidiomycota/crecimiento & desarrollo , Basidiomycota/metabolismo , Fabaceae/microbiología , Fabaceae/crecimiento & desarrollo , Microbiología del Suelo , Resistencia a la Enfermedad , Ascomicetos/crecimiento & desarrollo
5.
Asian Pac J Cancer Prev ; 25(3): 1065-1075, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546089

RESUMEN

BACKGROUND: Cervical cancer is a prevalent and deadly malignancy in females, with chemotherapy often proving ineffective due to significant side effects and the development of chemo-resistance. This study investigates the medicinal potential of Clerodendrum infortunatum linn. , a genus with approximately 500 species in the Lamiaceae family. Limited research exists on the species of Clerodendrum infortunatum and its various solvent extracts. OBJECTIVE: The study aims to assess the anti-cancer properties of different solvent extracts from this plant on human cervical cancer cells. METHODS: The study examines the plant's phytochemical components and their potential to inhibit cancer growth. Aerial parts of the plant were extracted using the Soxhlet method, and the presence of Rutin, Quercetin, and Gallic Acid in specific solvent extracts was validated through High-Performance Thin Layer Chromatography (HPTLC). In vitro assays, including MTT, Apoptosis, Cell Cycle analysis, Intracellular Reactive Oxygen Species assessment, and Gene expression PCR, were conducted to investigate the plant's anti-cancer properties further. RESULTS: The outcomes of the phytochemical assessment indicated that Rutin was predominantly present in the water extract, with quercetin being more concentrated in the decoction, and the hydro-alcoholic extract showing elevated levels of gallic acid. Notably, the decoction extract demonstrated the highest cytotoxic activity, primarily through early apoptosis and arrests in the S-phase and G2M phases. Clerodendrum infortunatum exhibited a reduction in Intracellular Reactive Oxygen Species. The gene expression analysis disclosed an impact on the BCL-2 gene. CONCLUSION: Notably, Clerodendrum infortunatum exhibited the ability to initiate early apoptosis, halt the cell cycle at the S and G2M phases, and diminish levels of reactive oxygen species significantly. The gene expression analysis revealed an influence on the BCL-2 gene. To sum up, this research underscores the encouraging cytotoxic and antioxidant attributes of Clerodendrum infortunatum, implying its potential for cervical cancer treatment.


Asunto(s)
Clerodendrum , Neoplasias del Cuello Uterino , Humanos , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Clerodendrum/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Solventes , Quercetina/farmacología , Especies Reactivas de Oxígeno , Fitoquímicos , Ácido Gálico , Rutina
6.
Chem Biodivers ; 21(4): e202302121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385775

RESUMEN

Clerodendrum glandulosum Lindl. is popularly known for its traditional herbal remedies and therapeutic properties among the people of Northeast Indian communities, as well as Chinese traditional medicine. For the myriad pharmacological properties, viz., anti-hypertensive, hypolipidemic, hepatoprotective, anti-inflammatory, and neuroprotective, planting this species in kitchen gardens is a common practice to treat various ailments, especially hypertension, diabetes, and other metabolic complications. Different phytochemicals, representing the diverse classes of secondary metabolites comprising physiological and phytopharmaceutical significance, have been reported from C. glandulosum. Compounds with terpenoids, steroids, and phenolics are in demand in the pharmaceutical industry. An overview of the mechanism of action of the prominent compounds has also been collated for future research on C. glandulosum-based therapeutics. Current information focuses on this important medicinal plant's ethnomedicinal use, phytochemistry, pharmacology, associated mechanisms, and toxicology. This review will help explore this potential medicinal plant, which can pave the path for its application in the pharmaceutical industry.


Asunto(s)
Clerodendrum , Plantas Medicinales , Humanos , Etnofarmacología , Fitoterapia , Medicina Tradicional , Fitoquímicos/química , Extractos Vegetales/farmacología
7.
Ann Bot ; 133(4): 621-642, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38366151

RESUMEN

BACKGROUND AND AIMS: Extrafloral nectaries are nectar-secreting structures present on vegetative parts of plants which provide indirect defences against herbivore attack. Extrafloral nectaries in Clerodendrum chinense are patelliform-shaped specialized trichomatous structures. However, a complete understanding of patelliform extrafloral nectaries in general, and of C. chinense in particular, has not yet been established to provide fundamental insight into the cellular physiological machinery involved in nectar biosynthesis and secretory processes. METHODS: We studied temporal changes in the morphological, anatomical and ultrastructural features in the architectures of extrafloral nectaries. We also compared metabolite profiles of extrafloral nectar, nectary tissue, non-nectary tissue and phloem sap. Further, both in situ histolocalization and normal in vitro activities of enzymes related to sugar metabolism were examined. KEY RESULTS: Four distinct tissue regions in the nectar gland were revealed from histochemical characterization, among which the middle nectariferous tissue was found to be the metabolically active region, while the intermediate layer was found to be lipid-rich. Ultrastructural study showed the presence of a large number of mitochondria along with starch-bearing chloroplasts in the nectariferous region. However, starch depletion was noted with progressive maturation of nectaries. Metabolite analysis revealed compositional differences among nectar, phloem sap, nectary and non-nectary tissue. Invertase activity was higher in secretory stages and localized in nectariferous tissue and adjacent region. CONCLUSIONS: Our study suggests extrafloral nectar secretion in C. chinense to be both eccrine and merocrine in nature. A distinct intermediate lipid-rich layer that separates the epidermis from nectary parenchyma was revealed, which possibly acts as a barrier to water flow in nectar. This study also revealed a distinction between nectar and phloem sap, and starch could act as a nectar precursor, as evidenced from enzymatic and ultrastructural studies. Thus, our findings on changing architecture of extrafloral nectaries with temporal secretion revealed a cell physiological process involved in nectar biosynthesis and secretion.


Asunto(s)
Clerodendrum , Hojas de la Planta , Néctar de las Plantas , Néctar de las Plantas/metabolismo , Clerodendrum/metabolismo , Clerodendrum/ultraestructura , Hojas de la Planta/ultraestructura , Hojas de la Planta/metabolismo , Hojas de la Planta/anatomía & histología
8.
Asian Pac J Cancer Prev ; 25(1): 351-363, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285803

RESUMEN

OBJECTIVE: Clerodendrum infortunatum L. has long been used in traditional medicine in Sri Lanka for tumours, cancer, and certain skin diseases. The present study aimed to assess the anticancer properties of the aqueous extract of C. infortunatum L. root (AECIR) through the activation of the apoptotic pathway on hepatocellular carcinoma (HepG2) and thus give it a scientific validation. Further, the contribution of polyphenols in antioxidant activity and cell cytotoxicity was investigated. METHODS: Powdered plant material was boiled with water (100°C) to obtained AECIR.  The DPPH assay was used to determine the antioxidant potential. The activity of AECIR on HepG2 and normal rat fibroblast (CC1) cell growth was determined using MTT assay. The morphological changes related to apoptotic pathway was examined by Ethidium Bromide/Acridine Orange (EB/AO), Rhodamine 123 (Rh123) and DNA fragmentation assay. RESULTS: The AECIR demonstrated antioxidant potential with an EC50 of 350.2 ± 1.5 ug/mL for DPPH assay. The HO•, H2O2 and •NO free radical scavenging activity was observed with EC50 of 19.7 ± 2.3, 11.7 ± 0.1 and 273.1 ± 0.9 ug/mL, respectively. The antiproliferative effect of AECIR on HepG2 cells was observed in a time and dose dependent manner with an EC50 of 239.1 ± 1.3 µg/mL while CC1 cells showed a nontoxic effect with an EC50 1062.7 ± 3.4 µg/mL after 24hrs treatment. A significant decrease in antioxidant activity (p<0.001) and 90% HepG2 cell viability was observed with polyphenol removed AECIR compared to the polyphenol present AECIR. The EB/AO uptake, depletion of mitochondrial transmembrane potential, and DNA fragmentation assay results revealed that the apoptosis was induced by AECIR. CONCLUSION: The obtained result of the present study demonstrates that the antioxidant potential and antiproliferative activity of AECIR is attributed to the presence of polyphenols. Furthermore, the findings provide the scientific base for anti-cancer potential of AECIR.


Asunto(s)
Carcinoma Hepatocelular , Clerodendrum , Neoplasias Hepáticas , Animales , Ratas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Polifenoles/farmacología , Antioxidantes/farmacología , Células Hep G2 , Peróxido de Hidrógeno , Extractos Vegetales/farmacología , Extractos Vegetales/química , Neoplasias Hepáticas/tratamiento farmacológico , Proliferación Celular , Apoptosis
9.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256052

RESUMEN

Breast cancer stands out as the most widespread form of cancer globally. In this study, the anticancer activities of Clerodendrum chinense (C. chinense) stem ethanolic extract were investigated. High-performance liquid chromatography (HPLC) analysis identified verbascoside and isoverbascoside as the major bioactive compounds in the C. chinense stem extract. Successfully developed nanoparticles exhibited favorable hydrodynamic diameter, polydispersity index, and surface charge, thus ensuring stability after four months of storage. The total phenolic content and total flavonoid contents in the nanoparticles were reported as 88.62% and 95.26%, respectively. The C. chinense stem extract demonstrated a dose-dependent inhibitory effect on MCF-7, HeLa, A549, and SKOV-3 cancer cell lines, with IC50 values of 109.2, 155.6, 206.9, and 423 µg/mL, respectively. C. chinense extract and NPs exhibited dose-dependent cytotoxicity and the highest selectivity index values against MCF-7 cells. A dose-dependent reduction in the colony formation of MCF-7 cells was observed following treatment with the extract and nanoparticles. The extract induced cytotoxicity in MCF-7 cells through apoptosis and necrosis. C. chinense stem extract and nanoparticles decreased mitochondrial membrane potential (MMP) and induced G0/G1 phase arrest in MCF-7 cells. In conclusion, use of C. chinense stem extract and nanoparticles may serve as a potential therapeutic approach for breast cancer, thus warranting further exploration.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Clerodendrum , Humanos , Femenino , Potencial de la Membrana Mitocondrial , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis , Puntos de Control del Ciclo Celular , Células HeLa , Proliferación Celular , Extractos Vegetales/farmacología
10.
Medicina (Kaunas) ; 59(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38003949

RESUMEN

Background and Objectives: The increasing occurrence and prevalence of type-2 diabetes mellitus (T2DM) have led to a growing interest in researching available treatment alternatives. Clerodendrum minahassae, a native plant species of North Sulawesi, has been a focus of ethnopharmacological studies due to its significance contributions to drug development, particularly its potential antidiabetic properties. This study investigated the pharmacological potential of Clerodendrum minahassae (CM) leaf extract for managing type-2 diabetes (T2DM) using a network pharmacology approach. Materials and Methods: Active compounds were extracted from CM leaves, and their interactions with target proteins in T2DM were explored through various in silico analyses. Results: SAR analysis using Way2Drug Pass Online identified 29 bioactive CM leaf extract compounds with promise as T2DM treatments. Additionally, 26 of these met Ro5 criteria for favorable drug-likeness. Most compounds exhibited positive pharmacodynamic and pharmacokinetic profiles, with 22 considered safe, while 7 posed potential toxicity risks when ingested individually. CM leaf extract targeted 60 T2DM-related proteins, potentially affecting T2DM via cytokine regulation, particularly in proteins linked to metabolic processes, cellular response to angiotensin, and the sphingosine-1-phosphate signaling pathway. The network pharmacology analysis identified five genes targeted by CM leaf extract, namely, STAT3, MAPK1, ESR1, PIK3R1, and NFKB1. Among these genes, PIK3R1's interaction with the insulin receptor (INSR) positions it as a crucial candidate gene due to its pivotal role in insulin signal transduction during T2DM development. Conclusions: This research sheds light on the therapeutic potential of CM leaf extract for treating T2DM. This potential is attributed to the diverse array of bioactive compounds present in the extract, which have the capacity to interact with and inhibit proteins participating in the insulin signal transduction pathway crucial for the progression of T2DM. The findings of this study may open up possibilities for future applications of CM leaf extract in the development of novel T2DM treatments.


Asunto(s)
Clerodendrum , Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Humanos , Clerodendrum/metabolismo , Farmacología en Red , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico
11.
J Nat Prod ; 86(12): 2661-2671, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37972998

RESUMEN

Chemical investigation of the antimalarial medicinal plant Clerodendrum polycephalum led to the isolation of five new diterpenoids, including ajugarins VII-X (1-4) and teuvincenone K (5), along with four known compounds, namely, 12,16-epoxy-6,11,14,17-tetrahydroxy-17(15 → 16)-abeo-5,8,11,13,15-abietapentaen-7-one (6), methyl pheophorbide A (7), loliolide (8), and acacetin (9). The chemical structures of the new compounds were elucidated using NMR spectroscopy, mass spectrometry, circular dichroism, as well as density functional theory calculations. All compounds were evaluated for in vitro activity against Plasmodium falciparum 3D7 malaria parasites with methyl pheophorbide A (7) showing the strongest activity (IC50 4.49 µM). Subsequent in vivo testing in a Plasmodium berghei chemosuppression model showed that compound 7 significantly attenuated peripheral blood parasitemia, leading to 79% and 87% chemosuppression following oral doses at 10 and 20 mg/kg, respectively.


Asunto(s)
Antimaláricos , Clerodendrum , Malaria , Parásitos , Animales , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium falciparum , Extractos Vegetales/química , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium berghei
12.
Exp Appl Acarol ; 90(1-2): 83-98, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37285111

RESUMEN

Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.


Asunto(s)
Acaricidas , Clerodendrum , Repelentes de Insectos , Ixodes , Humanos , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Clerodendrum/química , Repelentes de Insectos/farmacología
13.
Sci Rep ; 13(1): 7415, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150767

RESUMEN

Over the past few decades, the green synthesis of nanoparticles has gained importance for their therapeutic efficacy and eco-friendly nature. Integrating green chemistry principles into multidisciplinary nanoscience research has paved the way for developing environmentally benign and sustainable methods for synthesizing gold and silver nanoparticles. In the present study, the flowers obtained from Clerodendrum infortunatum (L.), belonging to the family Verbenaceae, have been used for biosynthesizing silver nanoparticles (AgNPs) to evaluate the anthelmintic potential. UV-Vis spectroscopy, XRD, FTIR, SEM and TEM analyses were performed to ascertain the formation of AgNPs. Clerodendrum-derived AgNP (CLE-AgNP) has significantly affected the normal physiological functions of the poultry parasite Raillietina spp., a menace to the livestock industry. Our study manifests that CLE-AgNPs cause considerable distortion of the surface tegument of this cestode parasite leading to changes in the host-parasite interface. The histochemical localization studies of the tegument-associated enzymes viz. AcPase, AlkPase, ATPase and 5'-Nu, exposed to the drug, showed a substantial activity decline, thus establishing the anthelmintic potential of the CLE-AgNPs.


Asunto(s)
Antihelmínticos , Antiinfecciosos , Clerodendrum , Nanopartículas del Metal , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Antihelmínticos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/química , Tecnología Química Verde/métodos
14.
PLoS One ; 18(2): e0277809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36757949

RESUMEN

BACKGROUND: The plants of the genus Clerodendrum L. have great potential for development as an ornamental and important herbal resource. There is no significant morphological difference among many species of the genus Clerodendrum, which will lead to confusion among the herbs of this genus and ultimately affect the quality of the herbs. The chloroplast genome will contribute to the development of new markers used for the identification and classification of species. METHODS AND RESULTS: Here, we obtained the complete chloroplast genome sequences of Clerodendrum chinense (Osbeck) Mabberley and Clerodendrum thomsoniae Balf.f. using the next generation DNA sequencing technology. The chloroplast genomes of the two species all encode a total of 112 unique genes, including 80 protein-coding, 28 tRNA, and four rRNA genes. A total of 44-42 simple sequence repeats, 19-16 tandem repeats and 44-44 scattered repetitive sequences were identified. Phylogenetic analyses showed that the nine Clerodendrum species were classified into two clades and together formed a monophyletic group. Selective pressure analyses of 77 protein-coding genes showed that there was no gene under positive selection in the Clerodendrum branch. Analyses of sequence divergence found two intergenic regions: trnH-GUG-psbA, nhdD-psaC, exhibiting a high degree of variations. Meanwhile, there was no hypervariable region identified in protein coding genes. However, the sequence identities of these two intergenic spacers (IGSs) are greater than 99% among some species, which will result in the two IGSs not being used to distinguish Clerodendrum species. Analysis of the structure at the LSC (Large single copy) /IR (Inverted repeat) and SSC (Small single copy)/IR boundary regions showed dynamic changes. The above results showed that the complete chloroplast genomes can be used as a super-barcode to identify these Clerodendrum species. The study lay the foundation for the understanding of the evolutionary process of the genus Clerodendrum.


Asunto(s)
Clerodendrum , Genoma del Cloroplasto , Lamiaceae , Clerodendrum/genética , Lamiaceae/genética , Filogenia , Análisis de Secuencia de ADN
15.
J Ethnopharmacol ; 304: 116024, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36549369

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Clerodendrum viscosum is an important medicinal plant in Ayurveda in Bangladesh and its leaves are used as a remedy for various diseases such as anti-inflammatory, antibacterial, hyperglycemic, hepatoprotective effects. AIM OF THE STUDY: The present study aimed to evaluate the protective effect of aqueous extract of C. viscosum leaves against Pb-induced neurobehavioral and biochemical changes in mice. MATERIALS AND METHODS: Swiss albino mice were divided as a) control, b) lead treated (Pb) and c) C. viscosum leaves (Cle) d) Pb plus Cle groups. Pb-acetate (10 mg/kg body weight) was given to Pb and Pb + Cle groups mice, and water extract of leaves (50 mg/kg body weight) was provided as supplementation to Cle and Pb + Cle groups mice for 30 days. Elevated plus maze and Morris water maze tests were used for evaluating anxiety, spatial memory and learning, respectively. Status of cholinesterase, SOD, GSH enzyme activity and neurotoxicity markers such BDNF and Nrf2 levels were analyzed in the brain tissue of experimental mice. RESULTS: Poorer learning, inferior spatial memory, and increased anxiety-like behavior in Pb-exposure mice were noted when compared to control mice in Morris water maze and elevated plus maze test, respectively. In addition, expression of BDNF and Nrf2, cholinesterase activity along with antioxidant activity were significantly reduced compared to control group (p < 0.01). Interestingly, C. viscosum leaves' aqueous extract supplementation in Pb-exposed mice provide a significant improved neurochemical and antioxidant properties through the augmentation of activity of cholinergic enzymes, and upregulation of BDNF and Nrf2 levels in the brain tissue compared to Pb-exposed mice. CONCLUSIONS: This study suggested that C. viscosum leaves restore the cognitive dysfunction and reduce anxiety-like behavior through upregulation of BDNF mediated Akt-Nrf2 pathway in Pb-exposure mice.


Asunto(s)
Clerodendrum , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Regulación hacia Arriba , Plomo/toxicidad , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Memoria Espacial , Colinesterasas , Peso Corporal , Aprendizaje por Laberinto
16.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232298

RESUMEN

One of the key areas of interest in pharmacognosy is that of the diterpenoids; many studies have been performed to identify new sources, their optimal isolation and biological properties. An important source of abietane-, pimarane-, clerodane-type diterpenoids and their derivatives are the members of the genus Clerodendrum, of the Lamiaceae. Due to their diverse chemical nature, and the type of plant material, a range of extraction techniques are needed with various temperatures, solvent types and extraction times, as well as the use of an ultrasound bath. The diterpenoids isolated from Clerodendrum demonstrate a range of cytotoxic, anti-proliferative, antibacterial, anti-parasitic and anti-inflammatory activities. This review describes the various biological activities of the diterpenoids isolated so far from species of Clerodendrum with the indication of the most active ones, as well as those from other plant sources, taking into account their structure in terms of their activity, and summarises the methods for their extraction.


Asunto(s)
Clerodendrum , Diterpenos de Tipo Clerodano , Abietanos/química , Antibacterianos , Clerodendrum/química , Diterpenos de Tipo Clerodano/farmacología , Estructura Molecular , Solventes
17.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142258

RESUMEN

Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.


Asunto(s)
Antipiréticos , Tratamiento Farmacológico de COVID-19 , Clerodendrum , Hesperidina , Petasites , Células A549 , Antiinflamatorios/farmacología , Caspasa 1/metabolismo , Clerodendrum/metabolismo , Citocinas/metabolismo , Flavonoides/farmacología , Hesperidina/farmacología , Humanos , Inflamasomas/metabolismo , Interleucina-18 , Interleucina-6 , Pulmón/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt , SARS-CoV-2 , Solventes , Glicoproteína de la Espiga del Coronavirus , Factor de Transcripción AP-1
18.
Chem Biodivers ; 19(10): e202200617, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36106373

RESUMEN

Clerodendrum glandulosum Lindl., is an ethnopharmacologically important species of the North-eastern region of India. Leaves of this plant are consumed as food and traditionally used as medicine to cure hypertension, diabetes, and other metabolic syndromes. This study was designed to explore the antioxidant potential in the Clerodendrum leaves guided by in-vitro activity, which is responsible for the therapeutic benefits. Leaves were extracted with 95 % methanol and further fractionated with solvents of varying polarities (e. g., petroleum ether, ethyl acetate, and butanol). Total phenolic and total flavonoid content of the crude extract/ fractions were measured by Folin-Ciocalteu and AlCl3 methods, respectively. Crude extract/ fractions were screen for in-vitro antioxidant and cytoprotective activities to determine the most bioactive fraction. Simultaneously, the chemical constituents of these fractions were identified and characterized using UHPLC-ESI-QTOF-MS/MS. Subsequently, major phenolic compounds identified were subjected to in-silico molecular docking with pro-oxidant enzymes to elucidate possible biological functions. Both ethyl acetate and butanol fractions showed the presence of a high concentration of phenolic and flavonoid content along with the best antioxidant and cytoprotective properties compared to all other fractions. Chemical profiling of these active fractions revealed the presence of different phenolic compounds, among which verbascoside was the principal compound. These major phytoconstituents also exhibited strong binding interactions with the crucial amino acid residues of the target proteins, which complemented the in-vitro bioactivities. In conclusion, this study offers structured information on antioxidant phytochemicals present in C. glandulosum leaves, which would be worthwhile for future investigations on the therapeutic properties at the molecular level.


Asunto(s)
Antioxidantes , Clerodendrum , Antioxidantes/farmacología , Antioxidantes/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Metanol , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/química , Solventes , Butanoles , Aminoácidos
19.
Sci Rep ; 12(1): 12630, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879416

RESUMEN

This study evaluates the antioxidant potential and cytoprotective effects of ethanolic crude extract from Clerodendrum cyrtophyllum leaves (ECE) and five derived fractions (namely, petroleum ether fraction (PEF), dichloromethane fraction (DMF), ethyl acetate fraction (EAF), n-butyl alcohol fraction (BAF) and the remaining fraction (RF)), as well as acteoside (Ac, a major phenolic component in EAF) on oxidative damage caused by tert-butyl hydroperoxide (t-BHP) in HepG2 cells. MTT assay results showed that ECE, EAF, BAF, RF and Ac increased the viability of t-BHP-damaged cells in a dose-dependent manner, while EAF significantly promoted cell viability. EAF, BAF, RF, or Ac reduced the levels of lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA), and reactive oxygen species (ROS). Additionally, glutathione (GSH) levels and the activities of superoxide dismutase (SOD) and catalase (CAT) increased. Western blot analysis further indicated that EAF, BAF, RF, or Ac up-regulated pro-caspase-3 and reduced cleaved caspase-3 during t-BHP-induced oxidative stress. Flow cytometry analysis and fluorescence micrographs showed that Ac could inhibit apoptosis.


Asunto(s)
Antioxidantes , Clerodendrum , Antioxidantes/análisis , Antioxidantes/farmacología , Glucósidos , Glutatión/metabolismo , Estrés Oxidativo , Fenoles , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/farmacología , terc-Butilhidroperóxido/toxicidad
20.
J Food Biochem ; 46(10): e14342, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35851712

RESUMEN

The leaves of Clerodendrum polycephalum Baker (Labiatae) are used as a dietary legume supplement and applied ethnomedicinally for the management of epilepsy, convulsion, and spasms. This study is aimed at evaluating the effects of Clerodendrum polycephalum (CP) leaf extract on chemical-induced seizures in mice and the possible mechanisms of action. Swiss albino mice were pretreated with CP (50, 100, or 500 mg/kg, p.o.) prior to intraperitoneal injection of picrotoxin (PTX) or pentylenetetrazole (PTZ). However, the most effective dose was used to elucidate the role of GABAergic and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling mechanisms in mice brains. Accordingly, we evaluated the preventive and reversal effects of CP on kainic acid (KA)-induced temporal lobe epilepsy (TLE), oxidative stress, and neuroinflammatory in mice. The pretreatment of mice with CP delayed the latencies to PTX and PTZ-induced seizures and decrement in the period of tonic-clonic attacks. Interestingly, CP (100 mg/kg) completely prevented PTZ-induced tonic-clonic seizures. Contrastingly, flumazenil (benzodiazepine receptor antagonist), NG -nitro-L-Arginine (L-NNA) (10 mg/kg., neuronal nitric oxide synthase inhibitor), and methylene blue (MB) (2 mg/kg, a soluble guanylyl cyclase inhibitor) but not L-arginine (150 mg/kg., nitric oxide precursor) reversed CP-induced anticonvulsant-like effect in PTZ model. Furthermore, KA-elicited TLE was prevented by CP treatment. CP also attenuated KA-induced oxidative stress, cyooxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) elevated expressions in the hippocampus. The study revealed that the ethanolic leaf extract of CP produced anticonvulsant actions through enhancement of antioxidant defense, GABAergic, and NO-cGMP signaling pathways as well as attenuation of inflammatory processes. PRACTICAL APPLICATIONS: The leaves of Clerodendrum polycephalum Baker (Labiatae) are used as a dietary legume supplement and applied ethnomedicinally for the management of epilepsy, convulsion, and spasms. For this reason, we believe that supplementation of the Clerodendrum polycephalum leaf extract would prevent epileptic-related disorders in mice induced with epileptic conditions using kainic acid and other behavioral phenotypic models. Here, our findings clearly revealed that Clerodendrum polycephalum leaf extract protects against conditions of epileptic-related disorders and thus might be relevant as a dietary supplement in the prevention or delay of the onset of seizures and epileptic behavior.


Asunto(s)
Clerodendrum , Lamiaceae , Animales , Anticonvulsivantes/farmacología , Antioxidantes/uso terapéutico , Arginina , Clerodendrum/metabolismo , Ciclooxigenasa 2/metabolismo , Flumazenil , Guanosina Monofosfato , Ácido Kaínico , Azul de Metileno , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Pentilenotetrazol , Picrotoxina , Extractos Vegetales/farmacología , Receptores de GABA-A/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Guanilil Ciclasa Soluble/metabolismo , Espasmo/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA