Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 906
1.
Braz J Infect Dis ; 28(2): 103745, 2024.
Article En | MEDLINE | ID: mdl-38697216

BACKGROUND: Leprosy is a neglected dermato-neurologic, infectious disease caused by Mycobacterium leprae or M. lepromatosis. Leprosy is treatable and curable by multidrug therapy/MDT, consisting of 12 months rifampicin, dapsone and clofazimine for multibacillary/MB patients and for 6 months for paucibacillary/PB patients. The relapse rate is considered a crucial treatment outcome. A randomized Controlled Clinical Trial (U-MDT/CT-BR) conducted from 2007‒2012 compared clinical outcomes in MB patients after 12 months regular MDT/R-MDT and 6 months uniform MDT/U-MDT in two highly endemic Brazilian areas. OBJECTIVES: To estimate the 10 years relapse rate of MB patients treated with 6 months U-MDT. METHODS: The statistical analyses treated the data as a case-control study, sampled from the cohort generated for the randomized trial. Analyses estimated univariate odds ratio and applied logistic regression for multivariate analysis, controlling the confounding variables. RESULTS: The overall relapse rate was 4.08 %: 4.95 % (16 out of 323) in the U-MDT group and 3.10 % (9 out of 290) in the regular/R-MDT group. The difference in relapse proportion between U-MDT and R-MDT groups was 1.85 %, not statistically significant (Odds Ratio = 1.63, 95 % CI 0.71 to 3.74). However, misdiagnosis of relapses, may have introduced bias, underestimating the force of the association represented by the odds ratio. CONCLUSIONS: The relapse estimate of 10 years follow-up study of the first randomized, controlled study on U-MDT/CT-BR was similar to the R-MDT group, supporting strong evidence that 6 months U-MDT for MB patients is an acceptable option to be adopted by leprosy endemic countries worldwide. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00669643.


Clofazimine , Dapsone , Drug Therapy, Combination , Leprostatic Agents , Recurrence , Rifampin , Humans , Leprostatic Agents/therapeutic use , Leprostatic Agents/administration & dosage , Male , Female , Clofazimine/therapeutic use , Clofazimine/administration & dosage , Dapsone/therapeutic use , Dapsone/administration & dosage , Rifampin/therapeutic use , Rifampin/administration & dosage , Adult , Brazil , Middle Aged , Treatment Outcome , Case-Control Studies , Leprosy/drug therapy , Young Adult , Adolescent , Leprosy, Multibacillary/drug therapy , Time Factors
3.
Antimicrob Agents Chemother ; 68(5): e0158323, 2024 May 02.
Article En | MEDLINE | ID: mdl-38597667

Clofazimine is included in drug regimens to treat rifampicin/drug-resistant tuberculosis (DR-TB), but there is little information about its interaction with other drugs in DR-TB regimens. We evaluated the pharmacokinetic interaction between clofazimine and isoniazid, linezolid, levofloxacin, and cycloserine, dosed as terizidone. Newly diagnosed adults with DR-TB at Klerksdorp/Tshepong Hospital, South Africa, were started on the then-standard treatment with clofazimine temporarily excluded for the initial 2 weeks. Pharmacokinetic sampling was done immediately before and 3 weeks after starting clofazimine, and drug concentrations were determined using validated liquid chromatography-tandem mass spectrometry assays. The data were interpreted with population pharmacokinetics in NONMEM v7.5.1 to explore the impact of clofazimine co-administration and other relevant covariates on the pharmacokinetics of isoniazid, linezolid, levofloxacin, and cycloserine. Clofazimine, isoniazid, linezolid, levofloxacin, and cycloserine data were available for 16, 27, 21, 21, and 6 participants, respectively. The median age and weight for the full cohort were 39 years and 52 kg, respectively. Clofazimine exposures were in the expected range, and its addition to the regimen did not significantly affect the pharmacokinetics of the other drugs except levofloxacin, for which it caused a 15% reduction in clearance. A posteriori power size calculations predicted that our sample sizes had 97%, 90%, and 87% power at P < 0.05 to detect a 30% change in clearance of isoniazid, linezolid, and cycloserine, respectively. Although clofazimine increased the area under the curve of levofloxacin by 19%, this is unlikely to be of great clinical significance, and the lack of interaction with other drugs tested is reassuring.


Antitubercular Agents , Clofazimine , Cycloserine , Drug Interactions , Isoniazid , Levofloxacin , Linezolid , Tuberculosis, Multidrug-Resistant , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Humans , Tuberculosis, Multidrug-Resistant/drug therapy , Adult , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/therapeutic use , Male , Female , Linezolid/pharmacokinetics , Linezolid/therapeutic use , Isoniazid/pharmacokinetics , Isoniazid/therapeutic use , Levofloxacin/pharmacokinetics , Levofloxacin/therapeutic use , Cycloserine/pharmacokinetics , Cycloserine/therapeutic use , Middle Aged , South Africa , Young Adult , Drug Therapy, Combination
4.
Cancer Cell ; 42(5): 738-741, 2024 May 13.
Article En | MEDLINE | ID: mdl-38579723

Combined immune checkpoint blockade (ICB) for cancer exhibits good efficacy in a subset of patients but also associates with immune-related adverse events. Xue et al. use an elegant drug screening strategy to identify the antimicrobial drug clofazimine as an agent that both potentiates ICB efficacy and decreases immune-related adverse events.


Clofazimine , Immunotherapy , Neoplasms , Clofazimine/therapeutic use , Clofazimine/adverse effects , Humans , Immunotherapy/methods , Immunotherapy/adverse effects , Neoplasms/drug therapy , Neoplasms/immunology , Immune Checkpoint Inhibitors/adverse effects , Animals
5.
J Control Release ; 369: 231-250, 2024 May.
Article En | MEDLINE | ID: mdl-38479444

Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 µm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 µm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9-10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.


Antitubercular Agents , Clofazimine , Drug Carriers , Lung , Nanoparticles , Administration, Inhalation , Porosity , Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/therapeutic use , Drug Carriers/chemistry , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Humans , Lung/metabolism , Clofazimine/administration & dosage , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Silicon Dioxide/chemistry , Silicon Dioxide/administration & dosage , Drug Delivery Systems , Animals , Drug Liberation , Particle Size , Tuberculosis/drug therapy , Mycobacterium tuberculosis/drug effects , Mice
6.
Cancer Cell ; 42(5): 780-796.e6, 2024 May 13.
Article En | MEDLINE | ID: mdl-38518774

Emerging as the most potent and durable combinational immunotherapy, dual anti-PD-1 and CTLA-4 immune checkpoint blockade (ICB) therapy notoriously increases grade 3-5 immune-related adverse events (irAEs) in patients. Accordingly, attempts to improve the antitumor potency of anti-PD-1+CTLA-4 ICB by including additional therapeutics have been largely discouraged due to concerns of further increasing fatal toxicity. Here, we screened ∼3,000 Food and Drug Administration (FDA)-approved drugs and identified clofazimine as a potential third agent to optimize anti-PD-1+CTLA-4 ICB. Remarkably, clofazimine outperforms ICB dose reduction or steroid treatment in reversing lethality of irAEs, but unlike the detrimental effect of steroids on antitumor efficacy, clofazimine potentiates curative responses in anti-PD-1+CTLA-4 ICB. Mechanistically, clofazimine promotes E2F1 activation in CD8+ T cells to overcome resistance and counteracts pathogenic Th17 cells to abolish irAEs. Collectively, clofazimine potentiates the antitumor efficacy of anti-PD-1+CTLA-4 ICB, curbs intractable irAEs, and may fill a desperate clinical need to improve patient survival.


CTLA-4 Antigen , Clofazimine , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Clofazimine/pharmacology , Clofazimine/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Animals , Humans , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Female , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Th17 Cells/drug effects , Th17 Cells/immunology
7.
J Antimicrob Chemother ; 79(4): 697-702, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38385505

Current tuberculosis and non-tuberculous mycobacterial disease guidelines recommend the use of clofazimine in a 100 mg once-daily dose. The rationale behind this exact dose is not provided. I performed a literature review to determine the reasoning behind the current dosing regimen. The current 100 mg once-daily dose of clofazimine stems from a deliberate attempt to find the minimum effective daily dose in leprosy treatment, driven by efficacy, economical and toxicity considerations. While this dose is safe, economical and practical, a higher dose with a loading phase may add relevant efficacy and treatment-shortening potential to both tuberculosis and non-tuberculous mycobacterial disease treatment. We need to revisit dose-response and maximum tolerated dose studies to get the best out of this drug, while continuing efforts to generate more active r-iminophenazine molecules that accumulate less in skin and intestinal tissues and have pharmacokinetic properties that do not require loading doses.


Clofazimine , Mycobacterium Infections, Nontuberculous , Tuberculosis , Humans , Clofazimine/therapeutic use , Nontuberculous Mycobacteria , Tuberculosis/drug therapy , Mycobacterium Infections, Nontuberculous/drug therapy
8.
PLoS Negl Trop Dis ; 18(1): e0011901, 2024 Jan.
Article En | MEDLINE | ID: mdl-38271456

BACKGROUND: The occurrence of adverse drug events (ADEs) during dapsone (DDS) treatment in patients with leprosy can constitute a significant barrier to the successful completion of the standardized therapeutic regimen for this disease. Well-known DDS-ADEs are hemolytic anemia, methemoglobinemia, hepatotoxicity, agranulocytosis, and hypersensitivity reactions. Identifying risk factors for ADEs before starting World Health Organization recommended standard multidrug therapy (WHO/MDT) can guide therapeutic planning for the patient. The objective of this study was to develop a predictive model for DDS-ADEs in patients with leprosy receiving standard WHO/MDT. METHODOLOGY: This is a case-control study that involved the review of medical records of adult (≥18 years) patients registered at a Leprosy Reference Center in Rio de Janeiro, Brazil. The cohort included individuals that received standard WHO/MDT between January 2000 to December 2021. A prediction nomogram was developed by means of multivariable logistic regression (LR) using variables. The Hosmer-Lemeshow test was used to determine the model fit. Odds ratios (ORs) and their respective 95% confidence intervals (CIs) were estimated. The predictive ability of the LRM was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS: A total of 329 medical records were assessed, comprising 120 cases and 209 controls. Based on the final LRM analysis, female sex (OR = 3.61; 95% CI: 2.03-6.59), multibacillary classification (OR = 2.5; 95% CI: 1.39-4.66), and higher education level (completed primary education) (OR = 1.97; 95% CI: 1.14-3.47) were considered factors to predict ADEs that caused standard WHO/MDT discontinuation. The prediction model developed had an AUC of 0.7208, that is 72% capable of predicting DDS-ADEs. CONCLUSION: We propose a clinical model that could become a helpful tool for physicians in predicting ADEs in DDS-treated leprosy patients.


Drug-Related Side Effects and Adverse Reactions , Leprosy , Adult , Humans , Female , Dapsone/adverse effects , Leprostatic Agents/adverse effects , Rifampin/therapeutic use , Drug Therapy, Combination , Case-Control Studies , Clofazimine/therapeutic use , Brazil/epidemiology , Leprosy/drug therapy , World Health Organization
9.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38259101

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Rifampin/pharmacology , Rifampin/therapeutic use , Clofazimine/pharmacology , Clofazimine/therapeutic use , Ethambutol/pharmacology , Ethambutol/therapeutic use , Azithromycin/pharmacology , Mycobacterium avium , Mycobacterium avium-intracellulare Infection/drug therapy , Drug Therapy, Combination , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium avium Complex , Lung Diseases/microbiology
10.
CPT Pharmacometrics Syst Pharmacol ; 13(3): 410-423, 2024 03.
Article En | MEDLINE | ID: mdl-38164114

Oral drug absorption kinetics are usually established in populations with a properly functioning gastrointestinal tract. However, many diseases and therapeutics can alter gastrointestinal physiology and cause diarrhea. The extent of diarrhea-associated impact on drug pharmacokinetics has not been quantitatively described. To address this knowledge gap, we used a population pharmacokinetic modeling approach with data collected in a phase IIa study of matched human immunodeficiency virus (HIV)-infected adults with/without cryptosporidiosis and diarrhea to examine diarrhea-associated impact on oral clofazimine pharmacokinetics. A population pharmacokinetic model was developed with 428 plasma samples from 23 HIV-infected adults with/without Cryptosporidium infection using nonlinear mixed-effects modeling. Covariates describing cryptosporidiosis-associated diarrhea severity (e.g., number of diarrhea episodes, diarrhea grade) or HIV infection (e.g., viral load, CD4+ T cell count) were evaluated. A two-compartment model with lag time and first-order absorption and elimination best fit the data. Maximum diarrhea grade over the study duration was found to be associated with a more than sixfold reduction in clofazimine bioavailability. Apparent clofazimine clearance, intercompartmental clearance, central volume of distribution, and peripheral volume of distribution were 3.71 L/h, 18.2 L/h (interindividual variability [IIV] 45.0%), 473 L (IIV 3.46%), and 3434 L, respectively. The absorption rate constant was 0.625 h-1 (IIV 149%) and absorption lag time was 1.83 h. In conclusion, the maximum diarrhea grade observed for the duration of oral clofazimine administration was associated with a significant reduction in clofazimine bioavailability. Our results highlight the importance of studying disease impacts on oral therapeutic pharmacokinetics to inform dose optimization and maximize the chance of treatment success.


Cryptosporidiosis , Cryptosporidium , HIV Infections , Adult , Humans , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Diarrhea/drug therapy , HIV , HIV Infections/complications , HIV Infections/drug therapy , Clinical Trials, Phase II as Topic
11.
Ther Drug Monit ; 46(3): 363-369, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38161267

BACKGROUND: Pharmacokinetic studies of bedaquiline and delamanid in patients with pre-extensively drug-resistant tuberculosis (pre-XDR TB) will help in the optimization of these drugs for both culture conversion and adverse events. METHODS: A prospective cohort of 165 adult patients (56% male with mean [SD] age 29 [9.7] years) with pre-XDR TB was treated with bedaquiline, delamanid, clofazimine, and linezolid for 24 weeks at 5 sites in India. Bedaquiline was administered at 400 mg daily for 2 weeks followed by 200 mg thrice weekly for 22 weeks, whereas delamanid was administered at 100 mg twice daily. In 23 consenting participants at 8 and 16 weeks of treatment, blood was collected at 0, 2, 4, 5, 6, 8, 12, and 24 hours postdosing for an intense pharmacokinetic study. Pharmacokinetic parameters were correlated with sputum culture conversion and adverse events. RESULTS: The mean (SD) age and weight of patients were 30 (10) years and 54 kg, respectively. The median minimum concentration (C min ) and time-concentration curve (AUC) for bedaquiline, respectively, were 0.6 mcg/mL and 27 mcg/mL·h at week 8 and 0.8 mcg/mL and 36 mcg/mL·h at week 16, suggesting drug accumulation over time. The median C min and AUC of delamanid, respectively, were 0.17 mcg/mL and 5.1 mcg/mL·h at week 8 and 0.20 mcg/mL and 7.5 mcg/mL·h at week 16. Delay in sputum conversion was observed in patients with drug concentrations lower than the targeted concentration. At weeks 8 and 16, 13 adverse events were observed. Adverse events were resolved through symptomatic treatment. Body mass index was found to be significantly associated with drug-exposure parameters. CONCLUSIONS: Bedaquiline and delamanid when co-administered exhibit plasma drug levels within the targeted concentrations, showing an exposure-response relationship.


Antitubercular Agents , Diarylquinolines , Nitroimidazoles , Oxazoles , Sputum , Tuberculosis, Multidrug-Resistant , Humans , Diarylquinolines/pharmacokinetics , Diarylquinolines/therapeutic use , Male , Adult , Nitroimidazoles/pharmacokinetics , Nitroimidazoles/therapeutic use , Nitroimidazoles/adverse effects , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/adverse effects , Antitubercular Agents/therapeutic use , Female , Oxazoles/pharmacokinetics , Oxazoles/therapeutic use , Oxazoles/adverse effects , Sputum/microbiology , Prospective Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Young Adult , Middle Aged , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Cohort Studies , Adolescent
12.
Int Health ; 16(1): 123-125, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-37026448

BACKGROUND: Patients with TB resistant to rifampicin (Rr-TB), and those with additional resistance to fluoroquinolones (pre-XDR-TB), should be treated with bedaquiline-pretomanid-linezolid-moxifloxacin and bedaquiline-pretomanid-linezolid, respectively. However, pretomanid is not yet widely available. METHODS: This is a pragmatic prospective single-arm study investigating the efficacy and safety of 9 mo of bedaquiline-delamanid-linezolid-clofazimine in patients with pre-XDR-TB or Rr-TB unresponsive to Rr-TB treatment in Nigeria. RESULTS: From January 2020 to June 2022, 14 of 20 patients (70%) successfully completed treatment, five died and one was lost-to-follow-up. No one experienced a treatment-emergent grade three/four event. Treatment success was higher compared with global pre-XDR-TB treatment outcomes. CONCLUSIONS: While pretomanid is unavailable, highly resistant TB can be treated with bedaquiline-delamanid-linezolid-clofazimine.


Extensively Drug-Resistant Tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/therapeutic use , Clofazimine/therapeutic use , Extensively Drug-Resistant Tuberculosis/drug therapy , Linezolid/therapeutic use , Nigeria , Prospective Studies , Rifampin/pharmacology , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy
13.
Int J Antimicrob Agents ; 63(2): 107061, 2024 Feb.
Article En | MEDLINE | ID: mdl-38103753

OBJECTIVES: Patients with Mycobacterium avium complex-pulmonary disease (MAC-PD) can exhibit contraindications in applying the recommended treatment regimens by the guidelines. Clofazimine (CFZ) is considered a promising drug for MAC-PD treatment and is frequently included in alternative regimens; however, its efficacy remains unclear. METHODS: MAC-PD patients, unsuitable for standard regimens, were enrolled continuously in a prospective study at Beijing Chest Hospital. The treatment response of the CFZ-containing regimen was monitored. RESULTS: Fifty patients were enrolled in the initial treatment, and 25 patients had a history of anti-TB treatment. Nodular bronchiectasis was observed in 34 patients, while 8 patients exhibited fibrocavitary changes. Additionally, eight patients displayed a combination of both patterns. In a multivariate analysis, MAC-PD patients with CFZ MIC < 0.25 mg/L were significantly associated with culture conversion [OR 8.415, 95% CI (1.983-35.705); P = 0.004]. Among patients who had previous TB treatment history, patients with CFZ MIC < 0.25 mg/L had a higher chance of acquiring culture conversion outcomes [(OR 7.737, 95% CI 1.032-57.989); P = 0.046]. In contrast, among patients with no previous TB treatment history, the RIF-containing regimen had a higher chance of acquiring culture conversion outcomes [(OR 11.038, 95%CI 1.008-120.888); P = 0.049]. CONCLUSION: MAC-PD patients unsuitable for standard regimens could benefit from a CFZ-containing regimen, especially for patients with previous TB treatment history and baseline CFZ MIC values lower than 0.25 mg/L.


Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Clofazimine/therapeutic use , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection/drug therapy , Prospective Studies , Drug Therapy, Combination , Lung Diseases/drug therapy , Anti-Bacterial Agents/therapeutic use
14.
Parasitol Res ; 123(1): 69, 2023 Dec 23.
Article En | MEDLINE | ID: mdl-38135783

Toxoplasmosis is a worldwide zoonosis caused by the protozoan parasite Toxoplasma gondii. Although this infection is generally asymptomatic in immunocompetent individuals, it can cause serious clinical manifestations in newborns with congenital infection or in immunocompromised patients. As current treatments are not always well tolerated, there is an urgent need to find new drugs against human toxoplasmosis. Drug repurposing has gained considerable momentum in the last decade and is a particularly attractive approach for the search of therapeutic alternatives to treat rare and neglected diseases. Thus, in this study, we investigated the antiproliferative effect of several repurposed drugs. Of these, clofazimine and triclabendazole displayed a higher selectivity against T. gondii, affecting its replication. Furthermore, both compounds inhibited spermine incorporation into the parasite, which is necessary for the formation of other polyamines. The data reported here indicate that clofazimine and triclabendazole could be used for the treatment of human toxoplasmosis and confirms that drug repurposing is an excellent strategy to find new therapeutic targets of intervention.


Toxoplasma , Toxoplasmosis , Humans , Infant, Newborn , Triclabendazole/pharmacology , Spermine , Clofazimine/pharmacology , Clofazimine/therapeutic use , Toxoplasmosis/drug therapy , Toxoplasmosis/parasitology
15.
PLoS Negl Trop Dis ; 17(11): e0011379, 2023 Nov.
Article En | MEDLINE | ID: mdl-38011249

BACKGROUND: Bedaquiline (BDQ), by targeting the electron transport chain and having a long half-life, is a good candidate to simplify leprosy treatment. Our objectives were to (i) determine the minimal effective dose (MED) of BDQ administered orally, (ii) evaluate the benefit of combining two inhibitors of the respiratory chain, BDQ administered orally and clofazimine (CFZ)) and (iii) evaluate the benefit of an intramuscular injectable long-acting formulation of BDQ (intramuscular BDQ, BDQ-LA IM), in a murine model of leprosy. METHODOLOGY/PRINCIPAL FINDINGS: To determine the MED of BDQ administered orally and the benefit of adding CFZ, 100 four-week-old female nude mice were inoculated in the footpads with 5x103 bacilli of M. leprae strain THAI53. Mice were randomly allocated into: 1 untreated group, 5 groups treated with BDQ administered orally (0.10 to 25 mg/kg), 3 groups treated with CFZ 20 mg/kg alone or combined with BDQ administered orally 0.10 or 0.33 mg/kg, and 1 group treated with rifampicin (RIF) 10 mg/kg. Mice were treated 5 days a week during 24 weeks. To evaluate the benefit of the BDQ-LA IM, 340 four-week-old female swiss mice were inoculated in the footpads with 5x103 to 5x101 bacilli (or 5x100 for the untreated control group) of M. leprae strain THAI53. Mice were randomly allocated into the following 11 groups treated with a single dose (SD) or 3 doses (3D) 24h after the inoculation: 1 untreated group, 2 treated with RIF 10 mg/kg SD or 3D, 8 treated with BDQ administered orally or BDQ-LA IM 2 or 20 mg/kg, SD or 3D. Twelve months later, mice were sacrificed and M. leprae bacilli enumerated in the footpad. All the footpads became negative with BDQ at 3.3 mg/kg. The MED of BDQ administered orally against M. leprae in this model is therefore 3.3 mg/kg. The combination of CFZ and BDQ 10-fold lower than this MED did not significantly increase the bactericidal activity of CFZ. The BDQ-LA IM displayed similar or lower bactericidal activity than the BDQ administered orally. CONCLUSION: We demonstrated that the MED of BDQ administered orally against M. leprae was 3.3 mg/kg in mice and BDQ did not add significantly to the efficacy of CFZ at the doses tested. BDQ-LA IM was similar or less active than BDQ administered orally at equivalent dosing and frequency but should be tested at higher dosing in order to reach equivalent exposure in further experiments.


Diarylquinolines , Leprosy , Female , Animals , Mice , Disease Models, Animal , Mice, Nude , Diarylquinolines/pharmacology , Diarylquinolines/therapeutic use , Rifampin/therapeutic use , Rifampin/pharmacology , Clofazimine/therapeutic use , Leprosy/drug therapy , Mycobacterium leprae , Antitubercular Agents
16.
Microbiol Spectr ; 11(6): e0228223, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37982630

IMPORTANCE: New drugs are needed to combat multidrug-resistant tuberculosis. The electron transport chain (ETC) maintains the electrochemical potential across the cytoplasmic membrane and allows the production of ATP, the energy currency of any living cell. The mycobacterial engine F-ATP synthase catalyzes the formation of ATP and has come into focus as an attractive and rich drug target. Recent deep insights into these mycobacterial F1FO-ATP synthase elements opened the door for a renaissance of structure-based target identification and inhibitor design. In this study, we present the GaMF1.39 antimycobacterial compound, targeting the rotary subunit γ of the biological engine. The compound is bactericidal, inhibits infection ex vivo, and displays enhanced anti-tuberculosis activity in combination with ETC inhibitors, which promises new strategies to shorten tuberculosis chemotherapy.


Clofazimine , Mycobacterium tuberculosis , Clofazimine/pharmacology , Clofazimine/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Adenosine Triphosphate
17.
Mikrobiyol Bul ; 57(4): 639-649, 2023 Oct.
Article Tr | MEDLINE | ID: mdl-37885391

Mycobacterium abscessus complex (MABSC) is one of the most resistant bacteria against antimicrobial agents. The number of agents that can be used by oral route, such as macrolides, is limited in antimicrobial therapy. In recent years, rifabutin and clofazimine have gained importance as they can be administered by oral route and have shown synergistic effects with macrolides and aminoglycosides. The aim of this study was to determine the in vitro activity of rifabutin and clofazimine against clinical isolates of MABSC resistant to macrolides. A total of 48 MABSC isolates obtained from respiratory tract and other clinical samples in the Tuberculosis Laboratories of the Faculty of Medicine of Manisa Celal Bayar and Ege Universities were included in the study. Subspecies differentiation and aminoglycoside and macrolide resistance of the isolates were determined by GenoType NTM-DR test. Rifabutin and clofazimine susceptibilities were determined by standard broth microdilution method. Of the MABSC isolates 42 were identified as M.abscessus subsp. abscessus, three as M.abscessus subsp. bolletii and three as M.abscessus subsp. massiliense. None of the isolates exhibited rrs and rrl mutations indicating acquired macrolide resistance and aminoglycoside resistance. However, the erm(41) T28 genotype which is associated with inducible macrolide resistance was detected in 41 (85%) of the strains. All M.abscessus subsp. massiliense isolates were found to be genotypically susceptible to macrolides. The minimum inhibitory concentration (MIC) range values for rifabutin were 0.0625 to 32 µg/mL, while for clofazimine, the range was 0.0625 to 1 µg/mL. Rifabutin MIC values were significantly higher (mean 5.98 µg/mL vs 0.5 µg/mL, p= 0.026) in the isolates with macrolide resistance. There was no correlation between macrolide resistance and clofazimine MIC values (mean 0.25 µg/mL vs. 0.214 µg/mL, p= 0.758). The MIC50 and MIC90 values for rifabutin were 1 and 8 µg/mL, respectively, while for clofazimine they were 0.25 and 0.5 µg/mL. Macrolide resistance was found to be higher in isolates with rifabutin MIC values above the MIC50 value (p= 0.045). In conclusion, the determination of higher rifabutin MIC values in isolates resistant to macrolides suggested that susceptibility testing should be performed before adding rifabutin to the treatment regimen. The low MIC values of clofazimine in all strains indicated that it may be used as a first choice in the combination therapy. However, further studies using a larger number of clinical isolates and applying genotypic and phenotypic susceptibility tests are needed to determine threshold MIC values to assist clinicians in making treatment decisions.


Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrolides/pharmacology , Macrolides/therapeutic use , Rifabutin/pharmacology , Rifabutin/therapeutic use , Clofazimine/pharmacology , Clofazimine/therapeutic use , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Drug Resistance, Bacterial/genetics , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/microbiology
18.
Biomed Pharmacother ; 167: 115539, 2023 Nov.
Article En | MEDLINE | ID: mdl-37742606

Among different strategies to develop novel therapies, drug repositioning (aka repurposing) aims at identifying new uses of an already approved or investigational drug. This approach has the advantages of availability of the extensive pre-existing knowledge of the drug's safety, pharmacology and toxicology, manufacturing and formulation. It provides advantages to the risk-versus-rewards trade-off as compared to the costly and time-consuming de novo drug discovery process. Clofazimine, a red-colored synthetic derivative of riminophenazines initially isolated from lichens, was first synthesized in the 1950 s, and passed through several phases of repositioning in its history as a drug. Being initially developed as an anti-tuberculosis treatment, it was repurposed for the treatment of leprosy, prior to re-repositioning for the treatment of multidrug-resistant tuberculosis and other infections. Since 1990 s, reports on the anticancer properties of clofazimine, both in vitro and in vivo, started to appear. Among the diverse mechanisms of action proposed, the activity of clofazimine as a specific inhibitor of the oncogenic Wnt signaling pathway has recently emerged as the promising targeting mechanism of the drug against breast, colon, liver, and other forms of cancer. Seventy years after the initial discovery, clofazimine's journey as a drug finding new applications continues, serving as a colorful illustration of drug repurposing in modern pharmacology.


Clofazimine , Tuberculosis, Multidrug-Resistant , Humans , Clofazimine/pharmacology , Clofazimine/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Drug Discovery , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use
19.
Biomater Adv ; 154: 213594, 2023 Nov.
Article En | MEDLINE | ID: mdl-37657277

The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 µm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 µg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 µg and âˆ¼ 600 µg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 µg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.


Pneumonia , Tuberculosis , Mice , Animals , Clofazimine/pharmacology , Clofazimine/therapeutic use , Respiratory Aerosols and Droplets , Tuberculosis/drug therapy , Tuberculosis/microbiology , Pneumonia/drug therapy , Inflammation/drug therapy
20.
Chest ; 164(4): 846-859, 2023 10.
Article En | MEDLINE | ID: mdl-37419144

BACKGROUND: Mycobacterium abscessus is the second most common nontuberculous mycobacterium respiratory pathogen and shows in vitro resistance to nearly all oral antimicrobials. M abscessus treatment success is low in the presence of macrolide resistance. RESEARCH QUESTION: Does treatment with amikacin liposome inhalation suspension (ALIS) improve culture conversion in patients with M abscessus pulmonary disease who are treatment naive or who have treatment-refractory disease? STUDY DESIGN AND METHODS: In an open-label protocol, patients were given ALIS (590 mg) added to background multidrug therapy for 12 months. The primary outcome was sputum culture conversion defined as three consecutive monthly sputum cultures showing negative results. The secondary end point included development of amikacin resistance. RESULTS: Of 33 patients (36 isolates) who started ALIS with a mean age of 64 years (range, 14-81 years), 24 patients (73%) were female, 10 patients (30%) had cystic fibrosis, and nine patients (27%) had cavitary disease. Three patients (9%) could not be evaluated for the microbiologic end point because of early withdrawal. All pretreatment isolates were amikacin susceptible and only six isolates (17%) were macrolide susceptible. Eleven patients (33%) were given parenteral antibiotics. Twelve patients (40%) received clofazimine with or without azithromycin as companion therapy. Fifteen patients (50%) with evaluable longitudinal microbiologic data demonstrated culture conversion, and 10 patients (67%) sustained conversion through month 12. Six of the 33 patients (18%) demonstrated mutational amikacin resistance. All were patients using clofazimine or clofazimine plus azithromycin as companion medication(s). Few serious adverse events occurred for ALIS users; however, reduction of dosing to three times weekly was common (52%). INTERPRETATION: In a cohort of patients primarily with macrolide-resistant M abscessus, one-half of the patients using ALIS showed sputum culture conversion to negative findings. The emergence of mutational amikacin resistance was not uncommon and occurred with the use of clofazimine monotherapy. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03038178; URL: www. CLINICALTRIALS: gov.


Cystic Fibrosis , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Female , Middle Aged , Male , Amikacin , Anti-Bacterial Agents , Liposomes/therapeutic use , Clofazimine/therapeutic use , Azithromycin/therapeutic use , Macrolides/therapeutic use , Drug Resistance, Bacterial , Leprostatic Agents/therapeutic use , Cystic Fibrosis/drug therapy , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Microbial Sensitivity Tests
...