Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.196
1.
J Prim Care Community Health ; 15: 21501319241249645, 2024.
Article En | MEDLINE | ID: mdl-38726585

Clostridioides difficile infection (CDI) is one of the most common and severe nosocomial infections worldwide. It can also affect healthy individuals in the community. The incidence of CDI has been on the rise globally for the past decade, necessitating a proactive approach to combat its spread; new strategies are being developed to enhance diagnostic accuracy and optimize treatment outcomes. Implementing the 2-step testing has increased diagnostic specificity, reducing the usage of CD-specific antibiotics with no concomitant increase in surgical complication rates. In 2021, the Infectious Diseases Society of America/Society for Healthcare Epidemiology of America (IDSA/SHEA) shifted its preference for initial treatment to fidaxomicin over vancomycin and metronidazole due to its lower recurrence rate. It also prioritized fidaxomicin for the treatment of recurrent CDI. There are new developments on the frontiers of fecal microbiota therapies, with RBX2660 and SER-109 approved recently by the FDA for prevention, with other microbiome-based therapies in various development and clinical trials. This review offers providers an updated and practical guide for CDI management.


Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Humans , Clostridium Infections/prevention & control , Clostridium Infections/diagnosis , Clostridium Infections/therapy , Anti-Bacterial Agents/therapeutic use , Fecal Microbiota Transplantation , Cross Infection/prevention & control , Practice Guidelines as Topic , Fidaxomicin/therapeutic use , Metronidazole/therapeutic use
2.
Sci Rep ; 14(1): 10665, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724540

Bioaerosols generated during toilet flushing can contribute to the spread of airborne pathogens and cross-contamination in indoor environments. This presents an increased risk of fomite-mediated or aerosol disease transmission. This study systematically investigated the factors contributing to increased bioaerosol exposure following toilet flushing and developed an empirical model for predicting the exposure-relevant bioaerosol concentration. Air in a toilet cubicle was sampled by impaction after seeding with Clostridium difficile spores. Design of Experiments (DoE) main effects screening and full factorial design approaches were then employed to investigate the significant factors that heighten the risk of exposure to bioaerosols post-flush. Our findings reveal that the inoculated bacterial concentration (C), time elapsed after flushing (t), lateral distance (d), and mechanical ventilation (v) are significant predictors of bioaerosol concentration, with p-values < 0.05. The interaction term, C × d showed a marked increase in bioaerosol concentration up to 232 CFU/m3 at the closest proximity and highest pathogen load. The interplay of C and t (C × t) demonstrated a time-dependent attenuation of bioaerosol viability, with concentrations peaking at 241 CFU/m3 immediately post-flush and notably diminishing over time. The lateral distance and time post-flush (d × t) interaction also revealed a gradual decrease in bioaerosol concentration, highlighting the effectiveness of spatial and temporal dilution in mitigating bioaerosol exposure risks. Furthermore, there is an immediate rise in relative humidity levels post-flush, impacting the air quality in the toilet environment. This study not only advances our understanding of exposure pathways in determining bioaerosol exposure, but also offers pivotal insights for designing targeted interventions to reduce bioaerosol exposure. Recommendations include designing public toilets with antimicrobial surfaces, optimizing ventilation, and initiating timely disinfection protocols to prioritise surfaces closest to the toilet bowl during peak exposure periods, thereby promoting healthier indoor environments and safeguarding public health in high-traffic toilet settings.


Aerosols , Air Microbiology , Clostridioides difficile , Toilet Facilities , Aerosols/analysis , Humans , Air Pollution, Indoor/analysis , Bathroom Equipment/microbiology
3.
Gut Microbes ; 16(1): 2342583, 2024.
Article En | MEDLINE | ID: mdl-38722061

Vancomycin and metronidazole are commonly used treatments for Clostridioides difficile infection (CDI). However, these antibiotics have been associated with high levels of relapse in patients. Fidaxomicin is a new treatment for CDI that is described as a narrow spectrum antibiotic that is minimally active on the commensal bacteria of the gut microbiome. The aim of this study was to compare the effect of fidaxomicin on the human gut microbiome with a number of narrow (thuricin CD) and broad spectrum (vancomycin and nisin) antimicrobials. The spectrum of activity of each antimicrobial was tested against 47 bacterial strains by well-diffusion assay. Minimum inhibitory concentrations (MICs) were calculated against a select number of these strains. Further, a pooled fecal slurry of 6 donors was prepared and incubated for 24 h with 100 µM of each antimicrobial in a mini-fermentation system together with a no-treatment control. Fidaxomicin, vancomycin, and nisin were active against most gram positive bacteria tested in vitro, although fidaxomicin and vancomycin produced larger zones of inhibition compared to nisin. In contrast, the antimicrobial activity of thuricin CD was specific to C. difficile and some Bacillus spp. The MICs showed similar results. Thuricin CD exhibited low MICs (<3.1 µg/mL) for C. difficile and Bacillus firmus, whereas fidaxomicin, vancomycin, and nisin demonstrated lower MICs for all other strains tested when compared to thuricin CD. The narrow spectrum of thuricin CD was also observed in the gut model system. We conclude that the spectrum of activity of fidaxomicin is comparable to that of the broad-spectrum antibiotic vancomycin in vitro and the broad spectrum bacteriocin nisin in a complex community.


Anti-Bacterial Agents , Feces , Fidaxomicin , Gastrointestinal Microbiome , Microbial Sensitivity Tests , Nisin , Vancomycin , Nisin/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Fidaxomicin/pharmacology , Vancomycin/pharmacology , Gastrointestinal Microbiome/drug effects , Feces/microbiology , Bacteria/drug effects , Bacteria/classification , Clostridioides difficile/drug effects , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Bacteriocins/pharmacology
4.
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38717815

Clostridioides difficile infection (CDI) remains a significant public health threat globally. New interventions to treat CDI rely on an understanding of the evolution and epidemiology of circulating strains. Here we provide longitudinal genomic data on strain diversity, transmission dynamics and antimicrobial resistance (AMR) of C. difficile ribotypes (RTs) 014/020 (n=169), 002 (n=77) and 056 (n=36), the three most prominent C. difficile strains causing CDI in Australia. Genome scrutiny showed that AMR was uncommon in these lineages, with resistance-conferring alleles present in only 15/169 RT014/020 strains (8.9 %), 1/36 RT056 strains (2.78 %) and none of 77 RT002 strains. Notably, ~90 % of strains were resistant to MLSB agents in vitro, but only ~5.9 % harboured known resistance alleles, highlighting an incongruence between AMR genotype and phenotype. Core genome analyses revealed all three RTs contained genetically heterogeneous strain populations with limited evidence of clonal transmission between CDI cases. The average number of pairwise core genome SNP (cgSNP) differences within each RT group ranged from 23.3 (RT056, ST34, n=36) to 115.6 (RT002, ST8, n=77) and 315.9 (RT014/020, STs 2, 13, 14, 49, n=169). Just 19 clonal groups (encompassing 40 isolates), defined as isolates differing by ≤2 cgSNPs, were identified across all three RTs (RT014/020, n=14; RT002, n=3; RT056, n=2). Of these clonal groups, 63 % (12/19) comprised isolates from the same Australian State and 37 % (7/19) comprised isolates from different States. The low number of plausible transmission events found for these major RTs (and previously documented populations in animal and environmental sources/reservoirs) points to widespread and persistent community sources of diverse C. difficile strains as opposed to ongoing nationwide healthcare outbreaks dominated by a single clone. Together, these data provide new insights into the evolution of major lineages causing CDI in Australia and highlight the urgent need for enhanced surveillance, and for public health interventions to move beyond the healthcare setting and into a One Health paradigm to effectively combat this complex pathogen.


Clostridioides difficile , Clostridium Infections , Phylogeny , Ribotyping , Clostridioides difficile/genetics , Clostridioides difficile/classification , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Australia/epidemiology , Humans , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Clostridium Infections/transmission , Genome, Bacterial , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Polymorphism, Single Nucleotide , Genotype
5.
BMC Infect Dis ; 24(1): 468, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702635

BACKGROUND: Clostridioides difficile infection (CDI) causes a major burden to individuals and society, yet the impact may vary depending on age, sex, underlying comorbidities and where CDI was acquired (hospital or community). METHODS: This Swedish nationwide population-based cohort study (2006-2019) compared all 43,150 individuals with CDI to their 355,172 matched controls (first year and entire follow-up). Negative binomial regression models compared the cumulated length of stay, number of in-hospital admissions, outpatient visits and prescriptions after the first CDI episode expressed as incidence rate ratios (IRR) and 95% confidence intervals for the entire follow-up. RESULTS: Overall, 91.6% of CDI cases were hospital acquired, and 16.8% presented with recurrence(s); 74.8%of cases were ≥ 65 years and 54.2% were women. Compared to individuals without CDI, in-hospital stay rates were 18.01 times higher after CDI (95% CI 17.40-18.63, first-year: 27.4 versus 1.6 days), 9.45 times higher in-hospital admission (95% CI 9.16-9.76, first-year: 2.6 versus 1.3 hospitalisations), 3.94 times higher outpatient visit (95% CI 3.84-4.05, first-year: 4.0 versus 1.9 visits) and 3.39 times higher dispensed prescriptions rates (95% CI 3.31-3.48, first-year: 25.5 versus 13.7 prescriptions). For all outcomes, relative risks were higher among the younger (< 65 years) than the older (≥ 65 years), and in those with fewer comorbidities, but similar between sexes. Compared to those without recurrence, individuals with recurrence particularly showed a higher rate of hospital admissions (IRR = 1.18, 95% 1.12-1.24). Compared to community-acquired CDI, those with hospital-acquired CDI presented with a higher rate of hospital admissions (IRR = 7.29, 95% CI 6.68-7.96) and a longer length of stay (IRR = 7.64, 95% CI 7.07-8.26). CONCLUSION: CDI was associated with increased health consumption in all affected patient groups. The majority of the CDI burden could be contributed to hospital-acquired CDI (~ 9/10), older patients (~ 3/4) and those with multiple comorbidities (~ 6/10 Charlson score ≥ 3), with 1/5 of the total CDI burden contributed to individuals with recurrence. Yet, relatively speaking the burden was higher among the younger and those with fewer comorbidities, compared to their peers without CDI.


Clostridium Infections , Recurrence , Humans , Female , Male , Clostridium Infections/epidemiology , Sweden/epidemiology , Middle Aged , Aged , Adult , Cohort Studies , Young Adult , Adolescent , Aged, 80 and over , Clostridioides difficile , Hospitalization/statistics & numerical data , Length of Stay/statistics & numerical data , Cross Infection/epidemiology , Incidence , Child , Child, Preschool , Infant , Patient Acceptance of Health Care/statistics & numerical data
6.
World J Gastroenterol ; 30(16): 2179-2183, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38690018

In this editorial we comment on the article published in the recent issue of the World journal of Gastroenterology. We focus specifically on the mechanisms un-derlying the effects of fecal microbiota transplantation (FMT) for irritable bowel syndrome (IBS), the factors which affect the outcomes of FMT in IBS patients, and challenges. FMT has emerged as a efficacious intervention for clostridium difficile infection and holds promise as a therapeutic modality for IBS. The utilization of FMT in the treatment of IBS has undergone scrutiny in numerous randomized controlled trials, yielding divergent outcomes. The current frontier in this field seeks to elucidate these variations, underscore the existing knowledge gaps that necessitate exploration, and provide a guideline for successful FMT imple-mentation in IBS patients. At the same time, the application of FMT as a treatment for IBS confronts several challenges.


Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/microbiology , Fecal Microbiota Transplantation/methods , Humans , Treatment Outcome , Feces/microbiology , Randomized Controlled Trials as Topic , Clostridioides difficile/pathogenicity , Clostridium Infections/therapy , Clostridium Infections/microbiology
7.
Proc Natl Acad Sci U S A ; 121(19): e2321836121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687788

Interleukin 22 (IL-22) promotes intestinal barrier integrity, stimulating epithelial cells to enact defense mechanisms against enteric infections, including the production of antimicrobial peptides. IL-22 binding protein (IL-22BP) is a soluble decoy encoded by the Il22ra2 gene that decreases IL-22 bioavailability, attenuating IL-22 signaling. The impact of IL-22BP on gut microbiota composition and functioning is poorly understood. We found that Il22ra2-/- mice are better protected against Clostridioides difficile and Citrobacter rodentium infections. This protection relied on IL-22-induced antimicrobial mechanisms before the infection occurred, rather than during the infection itself. Indeed, the gut microbiota of Il22ra2-/- mice mitigated infection of wild-type (WT) mice when transferred via cohousing or by cecal microbiota transplantation. Indicator species analysis of WT and Il22ra2-/- mice with and without cohousing disclosed that IL22BP deficiency yields a gut bacterial composition distinct from that of WT mice. Manipulation of dietary fiber content, measurements of intestinal short-chain fatty acids and oral treatment with acetate disclosed that resistance to C. difficile infection is related to increased production of acetate by Il22ra2-/--associated microbiota. Together, these findings suggest that IL-22BP represents a potential therapeutic target for those at risk for or with already manifest infection with this and perhaps other enteropathogens.


Citrobacter rodentium , Clostridioides difficile , Enterobacteriaceae Infections , Gastrointestinal Microbiome , Interleukin-22 , Mice, Knockout , Animals , Mice , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/prevention & control , Receptors, Interleukin/metabolism , Receptors, Interleukin/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Clostridium Infections/immunology , Clostridium Infections/microbiology , Clostridium Infections/prevention & control
8.
Biochem Biophys Res Commun ; 715: 149957, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38688057

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.


Catalytic Domain , Clostridioides difficile , Endopeptidases , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Crystallography, X-Ray , Endopeptidases/chemistry , Endopeptidases/metabolism , Endopeptidases/genetics , Models, Molecular , Hexosaminidases/chemistry , Hexosaminidases/genetics , Hexosaminidases/metabolism , Mutagenesis , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutagenesis, Site-Directed , Protein Domains
9.
J Microbiol Biotechnol ; 34(4): 828-837, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38668685

Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.


Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Disease Models, Animal , Drug Therapy, Combination , Feces , Gastrointestinal Microbiome , Metronidazole , RNA, Ribosomal, 16S , Vancomycin , Animals , Metronidazole/administration & dosage , Vancomycin/administration & dosage , Vancomycin/pharmacology , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridioides difficile/genetics , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Intestines/microbiology , Intestines/drug effects , Male , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Metabolome/drug effects
10.
Molecules ; 29(7)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38611721

Despite the technologies applied to food production, microbial contamination and chemical deterioration are still matters of great concern. In order to limit these phenomena, new natural approaches should be applied. In this context, the present study aimed to assess the antioxidant and anti-Clostridial effects of two different polyphenolic extracts derived from olive mill vegetation water, one liquid (LE) and one encapsulated (EE). The extracts have been preliminary characterized using Liquid Chromatography Quadrupole Time-Of Flight spectrometry. The Oxygen Radical Absorbance Capacity method was used to determine the antioxidant capacity, registering a higher value for EE compared to that for LE (3256 ± 85 and 2446 ± 13 µgTE/g, respectively). The antibacterial activity against C. perfringens, C. botulinum and C. difficile was studied by the agar well diffusion method, MIC and MBC determination and a time-kill test. The results confirm that EE and LE are able to limit microbial growth, albeit with minor effects when the phenolic compounds are encapsulated. Further studies are needed to evaluate the possible application of these extracts in food systems.


Clostridioides difficile , Olea , Wastewater , Antioxidants/pharmacology , Clostridium , Clostridium perfringens
11.
Ann Clin Microbiol Antimicrob ; 23(1): 35, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664689

PURPOSE: The clinical significance of negative toxin enzyme immunoassays (EIA) for Clostridioides difficile infections (CDIs) is unclear. Our study aimed to investigate the significance of toxin EIA-negative in the diagnosis and prognosis of CDI. METHODS: All stool specimens submitted for C. difficile toxin EIA testing were cultured to isolate C. difficile. In-house PCR for tcdA, tcdB, cdtA, and cdtB genes were performed using C. difficile isolates. Stool specimens were tested with C. difficile toxins A and B using EIA kit (RIDASCREEN Clostridium difficile toxin A/B, R-Biopharm AG, Darmstadt, Germany). Characteristics and subsequent CDI episodes of toxin EIA-negative and -positive patients were compared. RESULTS: Among 190 C. difficile PCR-positive patients, 83 (43.7%) were toxin EIA-negative. Multivariate analysis revealed independent associations toxin EIA-negative results and shorter hospital stays (OR = 0.98, 95% CI 0.96-0.99, p = 0.013) and less high-risk antibiotic exposure in the preceding month (OR = 0.38, 95% CI 0.16-0.94, p = 0.035). Toxin EIA-negative patients displayed a significantly lower white blood cell count rate (11.0 vs. 35.4%, p < 0.001). Among the 54 patients who were toxin EIA-negative and did not receive CDI treatment, three (5.6%) were diagnosed with CDI after 7-21 days without complication. CONCLUSION: Our study demonstrates that toxin EIA-negative patients had milder laboratory findings and no complications, despite not receiving treatment. Prolonged hospitalisation and exposure to high-risk antibiotics could potentially serve as markers for the development of toxin EIA-positive CDI.


Bacterial Proteins , Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Feces , Humans , Clostridioides difficile/genetics , Feces/microbiology , Male , Female , Bacterial Toxins/analysis , Clostridium Infections/diagnosis , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Aged , Middle Aged , Bacterial Proteins/genetics , Bacterial Proteins/analysis , Enterotoxins/analysis , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Immunoenzyme Techniques , Adult , Treatment Outcome , Polymerase Chain Reaction , Prognosis
12.
Gut Microbes ; 16(1): 2337312, 2024.
Article En | MEDLINE | ID: mdl-38591915

Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.


Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Fecal Microbiota Transplantation , Vancomycin/pharmacology , Clostridium Infections/drug therapy , Clostridium Infections/prevention & control
13.
J Korean Med Sci ; 39(12): e118, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38565175

BACKGROUND: Since the emergence of hypervirulent strains of Clostridioides difficile, the incidence of C. difficile infections (CDI) has increased significantly. METHODS: To assess the incidence of CDI in Korea, we conducted a prospective multicentre observational study from October 2020 to October 2021. Additionally, we calculated the incidence of CDI from mass data obtained from the Health Insurance Review and Assessment Service (HIRA) from 2008 to 2020. RESULTS: In the prospective study with active surveillance, 30,212 patients had diarrhoea and 907 patients were diagnosed with CDI over 1,288,571 patient-days and 193,264 admissions in 18 participating hospitals during 3 months of study period; the CDI per 10,000 patient-days was 7.04 and the CDI per 1,000 admission was 4.69. The incidence of CDI was higher in general hospitals than in tertiary hospitals: 6.38 per 10,000 patient-days (range: 3.25-12.05) and 4.18 per 1,000 admissions (range: 1.92-8.59) in 11 tertiary hospitals, vs. 9.45 per 10,000 patient-days (range: 5.68-13.90) and 6.73 per 1,000 admissions (range: 3.18-15.85) in seven general hospitals. With regard to HIRA data, the incidence of CDI in all hospitals has been increasing over the 13-year-period: from 0.3 to 1.8 per 10,000 patient-days, 0.3 to 1.6 per 1,000 admissions, and 6.9 to 56.9 per 100,000 population, respectively. CONCLUSION: The incidence of CDI in Korea has been gradually increasing, and its recent value is as high as that in the United State and Europe. CDI is underestimated, particularly in general hospitals in Korea.


Clostridioides difficile , Clostridium Infections , Cross Infection , Humans , Prospective Studies , Incidence , Watchful Waiting , Cross Infection/epidemiology , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Republic of Korea/epidemiology , Tertiary Care Centers , Insurance, Health
14.
Nat Commun ; 15(1): 2842, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565558

Antibiotic-induced dysbiosis is a major risk factor for Clostridioides difficile infection (CDI), and fecal microbiota transplantation (FMT) is recommended for treating CDI. However, the underlying mechanisms remain unclear. Here, we show that Tritrichomonas musculis (T.mu), an integral member of the mouse gut commensal microbiota, reduces CDI-induced intestinal damage by inhibiting neutrophil recruitment and IL-1ß secretion, while promoting Th1 cell differentiation and IFN-γ secretion, which in turn enhances goblet cell production and mucin secretion to protect the intestinal mucosa. T.mu can actively metabolize arginine, not only influencing the host's arginine-ornithine metabolic pathway, but also shaping the metabolic environment for the microbial community in the host's intestinal lumen. This leads to a relatively low ornithine state in the intestinal lumen in C. difficile-infected mice. These changes modulate C. difficile's virulence and the host intestinal immune response, and thus collectively alleviating CDI. These findings strongly suggest interactions between an intestinal commensal eukaryote, a pathogenic bacterium, and the host immune system via inter-related arginine-ornithine metabolism in the regulation of pathogenesis and provide further insights for treating CDI.


Clostridioides difficile , Clostridium Infections , Animals , Mice , Arginine , Ornithine , Intestines/microbiology , Fecal Microbiota Transplantation , Clostridium Infections/therapy , Clostridium Infections/microbiology
15.
Biomed Res Int ; 2024: 2929315, 2024.
Article En | MEDLINE | ID: mdl-38572169

Background: Rattus norvegicus (R. norvegicus) population plays a significant role in the spread of numerous diseases in urban environments. The present study is aimed at investigating the presence of Campylobacter jejuni (C. jejuni), C. coli, Clostridium difficile (C. difficile), C. difficile toxigenic, and C. perfringens in R. norvegicus captured from urban areas of Tehran, Iran. Methods: From October 2021 to October 2022, 100 urban rats were trapped in 5 different districts of Tehran, Iran. The genomic DNA was extracted from fecal samples, and the presence of C. jejuni, C. coli, C. perfringens, and C. difficile species was evaluated using PCR assay. Moreover, PCR was used to assess the toxicity of C. difficile isolates. Results: Overall, 30% (n = 30/100) of fecal samples were positive for zoonotic pathogens. Based on the PCR on hippuricase (hipO), glycine (gly), CIDIF, and phospholipase C (plc) genes, C. perfringens and C. difficile were isolated from 18.2% (n = 14/77) and 5.2% (n = 4/77) of male rats. The highest frequency of C. perfringens and C. jejuni was 25% (n = 5/20) related to the south of Tehran. Toxigenic C. difficile was not detected in all regions. Conclusion: According to the findings, rats are the main reservoirs for diseases. Therefore, rodent control coupled with the implementation of surveillance systems should be prioritized for urban health.


Campylobacter jejuni , Clostridioides difficile , Animals , Male , Rats , Clostridium perfringens , Clostridioides difficile/genetics , Campylobacter jejuni/genetics , Iran , Intestines , Feces
16.
Magy Seb ; 77(1): 15-22, 2024 Apr 02.
Article Hu | MEDLINE | ID: mdl-38564297

A mára ritkán eloforduló tuberkulózis (tbc) extrapulmonális manifesztációi elorehaladott rosszindulatú daganatok képét utánozhatják, jelentos diagnosztikus dilemmákat okozva. A tbc igazolása gyakorta bonyolult, komplex vizsgálatokat igényel. Egy fiatal vietnámi nobeteg esetét ismertetjük, aki idült hasi fájdalom, fogyás, fejfájás, bal oldali hemiparesis miatt jelentkezett kórházunkban. Az urgens vizsgálatok hasi folyadékgyülemek, lymphadenopathia és peritonealis carcinosis képe mellett az uterushoz asszociált ökölnyi kismedencei térfoglaló képletet, intracranialisan agyödémát és metastaticusnak tuno gócokat ábrázoltak. Neurológiai, belgyógyászati, majd pulmonológiai klinikai vizsgálatok és kezelések során eloször disszeminált gynaecologiai tumor, majd meningealis-, miliaris tüdo- és kiterjedt hasüregi-kismedencei érintettséggel járó tbc gyanúja fogalmazódott meg. Bár mycobactérium jelenléte nem volt igazolható, antituberculoticus- és komplex antibiotikus terápiát alkalmaztak. Ennek szövodményeként Clostridium difficile okozta enterocolitis alakult ki. Átmeneti állapotrosszabbodás miatti intenzív osztályos kezelést követoen a beteget visszahelyezték kórházunk belgyógyászatára. Itt toxicus megacolon, acut peritonitis alakult ki, emiatt sürgos mutétet végeztünk.A hasüregben granulomatosus peritonitis encapsulans, extrém tágult, megrepedt taeniájú colon, hyperaemiás vékonybéltraktus, tuboovarialis tályogok voltak láthatók. Oncotomiát követoen salpingo-oophorectomiát és subtotalis colectomiát végeztünk, Brooke szerinti ileostomát készítettünk. Az intenzív osztályos, majd infektológiai kezelésnek köszönhetoen a beteg reconvalescentiája sikeres volt, kielégíto állapotban emittálták. A specimenek valós ideju PCR-vizsgálata során Mycobacterium DNS nem volt detektálható, végül a hasüregi váladék és granulomák mikroszkópos vizsgálatával sikerült saválló pálcákat identifikálni.Az eset kapcsán áttekintjük az extrapulmonális tbc diagnosztikus lehetoségeit és terápiás nehézségeit.


Clostridioides difficile , Megacolon, Toxic , Neoplasms , Peritonitis , Tuberculosis , Humans
17.
Swiss Med Wkly ; 154: 3571, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38579313

AIMS: This study evaluated an approach to establishing a comprehensive nationwide surveillance system for Clostridioides difficile infection in Switzerland. We report the results of patient-related surveillance and calculate the incidence rate of C. difficile infection in Switzerland in 2022. METHODS: Initiated in 2017 by the National Centre for Infection Prevention (Swissnoso), in collaboration with the Swiss Centre for Antibiotic Resistance (ANRESIS), laboratory surveillance enables the automatic import of C. difficile infection laboratory data and is fully operational. However, the very limited number of participating laboratories impedes the generation of representative results. To address this gap, Swissnoso introduced patient-related surveillance, with a questionnaire-based survey used across Swiss acute care hospitals. RESULTS: This survey revealed an incidence of 3.8 (Poisson 95% CI: 3.2-4.5) C. difficile infection episodes per 10,000 patient-days, just above the mean rate reported by the European Centre for Disease Prevention and Control (ECDC). Additionally, we report substantial heterogeneity in laboratory tests, diagnostic criteria and infection control practices among Swiss hospitals. CONCLUSION: This study underscores the importance of a joint effort towards standardized surveillance practices in providing comprehensive insights into C. difficile infection epidemiology and effective prevention strategies in Swiss healthcare settings. The patient-related approach remains the gold standard for C. difficile infection surveillance, although it demands substantial resources and provides results only annually. The proposed implementation of nationwide automated laboratory-based surveillance would be pragmatic and efficient, empowering authorities and hospitals to detect outbreaks promptly and to correlate infection rates with antibiotic consumption.


Clostridioides difficile , Clostridium Infections , Cross Infection , Humans , Switzerland/epidemiology , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Anti-Bacterial Agents/therapeutic use , Hospitals , Cross Infection/epidemiology
18.
Clin Chim Acta ; 558: 119674, 2024 May 15.
Article En | MEDLINE | ID: mdl-38621586

BACKGROUND: Clostridioides difficile infection (CDI) is the main etiologic agent of antibiotic-associated diarrhea. CDI contributes to gut inflammation and can lead to disruption of the intestinal epithelial barrier. Recently, the rate of CDI cases has been increased. Thus, early diagnosis of C. difficile is critical for controlling the infection and guiding efficacious therapy. APPROACH: A search strategy was set up using the terms C. difficile biomarkers and diagnosis. The found references were classified into two general categories; conventional and advanced methods. RESULTS: The pathogenicity and biomarkers of C. difficile, and the collection manners for CDI-suspected specimens were briefly explained. Then, the conventional CDI diagnostic methods were subtly compared in terms of duration, level of difficulty, sensitivity, advantages, and disadvantages. Thereafter, an extensive review of the various newly proposed techniques available for CDI detection was conducted including nucleic acid isothermal amplification-based methods, biosensors, and gene/single-molecule microarrays. Also, the detection mechanisms, pros and cons of these methods were highlighted and compared with each other. In addition, approximately complete information on FDA-approved platforms for CDI diagnosis was collected. CONCLUSION: To overcome the deficiencies of conventional methods, the potential of advanced methods for C. difficile diagnosis, their direction, perspective, and challenges ahead were discussed.


Biomarkers , Clostridioides difficile , Clostridium Infections , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Clostridioides difficile/isolation & purification , Humans , Clostridium Infections/diagnosis , Clostridium Infections/microbiology
19.
Emerg Infect Dis ; 30(5): 908-915, 2024 May.
Article En | MEDLINE | ID: mdl-38666567

Considering patient room shortages and prevalence of other communicable diseases, reassessing the isolation of patients with Clostridioides difficile infection (CDI) is imperative. We conducted a retrospective study to investigate the secondary CDI transmission rate in a hospital in South Korea, where patients with CDI were not isolated. Using data from a real-time locating system and electronic medical records, we investigated patients who had both direct and indirect contact with CDI index patients. The primary outcome was secondary CDI transmission, identified by whole-genome sequencing. Among 909 direct and 2,711 indirect contact cases, 2 instances of secondary transmission were observed (2 [0.05%] of 3,620 cases), 1 transmission via direct contact and 1 via environmental sources. A low level of direct contact (113 minutes) was required for secondary CDI transmission. Our findings support the adoption of exhaustive standard preventive measures, including environmental decontamination, rather than contact isolation of CDI patients in nonoutbreak settings.


Clostridioides difficile , Clostridium Infections , Humans , Clostridium Infections/transmission , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Republic of Korea/epidemiology , Retrospective Studies , Female , Male , Cross Infection/epidemiology , Cross Infection/transmission , Cross Infection/microbiology , Time Factors , Aged , Middle Aged , Adult , Contact Tracing
20.
Surg Clin North Am ; 104(3): 545-556, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677819

Clostridioides difficile colitis is an important source of hospital-acquired diarrhea associated with antibiotic use. Symptoms are profuse watery diarrhea, typically following a course of antibiotics; however, some cases of fulminant disease may manifest with shock, ileus, or megacolon. Nonfulminant colitis is treated with oral fidaxomicin. C difficile colitis has a high potential for recurrence, and recurrent episodes are also treated with fidaxomicin. Bezlotoxumab is another medication that may be used in populations at high risk for further recurrence. Fulminant disease is treated with maximal medical therapy and early surgical consultation. Antibiotic stewardship is critical to preventing C difficile colitis.


Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Colitis , Humans , Clostridium Infections/diagnosis , Clostridium Infections/therapy , Anti-Bacterial Agents/therapeutic use , Colitis/microbiology , Colitis/diagnosis , Colitis/therapy , Fidaxomicin/therapeutic use
...