Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Mol Biol ; 436(7): 168371, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977297

RESUMEN

Spindlin1 is a histone reader with three Tudor-like domains and its transcriptional co-activator activity could be attenuated by SPINDOC. The first two Tudors are involved in histone methylation readout, while the function of Tudor 3 is largely unknown. Here our structural and binding studies revealed an engagement mode of SPINDOC-Spindlin1, in which a hydrophobic motif of SPINDOC, DOCpep3, stably interacts with Spindlin1 Tudor 3, and two neighboring K/R-rich motifs, DOCpep1 and DOCpep2, bind to the acidic surface of Spindlin1 Tudor 2. Although DOCpep3-Spindlin1 engagement is compatible with histone readout, an extended SPINDOC fragment containing the K/R-rich region attenuates histone or TCF4 binding by Spindlin1 due to introduced competition. This inhibitory effect is more pronounced for weaker binding targets but not for strong ones such as H3 "K4me3-K9me3" bivalent mark. Further ChIP-seq and RT-qPCR indicated that SPINDOC could promote genomic relocation of Spindlin1, thus modulate downstream gene transcription. Collectively, we revealed multivalent engagement between SPINDOC and Spindlin1, in which a hydrophobic motif acts as the primary binding site for stable SPINDOC-Spindlin1 association, while K/R-rich region modulates the target selectivity of Spindlin1 via competitive inhibition, therefore attenuating the transcriptional co-activator activity of Spindlin1.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Co-Represoras , Regulación de la Expresión Génica , Histonas , Proteínas Asociadas a Microtúbulos , Fosfoproteínas , Dominios y Motivos de Interacción de Proteínas , Transcripción Genética , Dominio Tudor , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Co-Represoras/química , Proteínas Co-Represoras/metabolismo , Histonas/metabolismo , Metilación , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica , Humanos , Mapeo de Interacción de Proteínas
2.
Elife ; 102021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34075876

RESUMEN

The plant corepressor TOPLESS (TPL) is recruited to a large number of loci that are selectively induced in response to developmental or environmental cues, yet the mechanisms by which it inhibits expression in the absence of these stimuli are poorly understood. Previously, we had used the N-terminus of Arabidopsis thaliana TPL to enable repression of a synthetic auxin response circuit in Saccharomyces cerevisiae (yeast). Here, we leveraged the yeast system to interrogate the relationship between TPL structure and function, specifically scanning for repression domains. We identified a potent repression domain in Helix 8 located within the CRA domain, which directly interacted with the Mediator middle module subunits Med21 and Med10. Interactions between TPL and Mediator were required to fully repress transcription in both yeast and plants. In contrast, we found that multimer formation, a conserved feature of many corepressors, had minimal influence on the repression strength of TPL.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Co-Represoras/metabolismo , Complejo Mediador/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/química , Proteínas Co-Represoras/genética , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Complejo Mediador/química , Complejo Mediador/genética , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
3.
Nat Commun ; 12(1): 1045, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594072

RESUMEN

Recurring chromosomal translocation t(10;17)(p15;q21) present in a subset of human acute myeloid leukemia (AML) patients creates an aberrant fusion gene termed ZMYND11-MBTD1 (ZM); however, its function remains undetermined. Here, we show that ZM confers primary murine hematopoietic stem/progenitor cells indefinite self-renewal capability ex vivo and causes AML in vivo. Genomics profilings reveal that ZM directly binds to and maintains high expression of pro-leukemic genes including Hoxa, Meis1, Myb, Myc and Sox4. Mechanistically, ZM recruits the NuA4/Tip60 histone acetyltransferase complex to cis-regulatory elements, sustaining an active chromatin state enriched in histone acetylation and devoid of repressive histone marks. Systematic mutagenesis of ZM demonstrates essential requirements of Tip60 interaction and an H3K36me3-binding PWWP (Pro-Trp-Trp-Pro) domain for oncogenesis. Inhibitor of histone acetylation-'reading' bromodomain proteins, which act downstream of ZM, is efficacious in treating ZM-induced AML. Collectively, this study demonstrates AML-causing effects of ZM, examines its gene-regulatory roles, and reports an attractive mechanism-guided therapeutic strategy.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Co-Represoras/química , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Leucemia Mieloide Aguda/patología , Lisina Acetiltransferasa 5/metabolismo , Acetilación , Animales , Carcinogénesis , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos/genética , Regulación Leucémica de la Expresión Génica , Genoma Humano , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Ratones Endogámicos BALB C , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas de Fusión Oncogénica/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 296: 100351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524397

RESUMEN

C-terminal binding proteins (CtBPs) are cotranscriptional factors that play key roles in cell fate. We have previously shown that NAD(H) promotes the assembly of similar tetramers from either human CtBP1 and CtBP2 and that CtBP2 tetramer destabilizing mutants are defective for oncogenic activity. To assist structure-based design efforts for compounds that disrupt CtBP tetramerization, it is essential to understand how NAD(H) triggers tetramer assembly. Here, we investigate the moieties within NAD(H) that are responsible for triggering tetramer formation. Using multiangle light scattering (MALS), we show that ADP is able to promote tetramer formation of both CtBP1 and CtBP2, whereas AMP promotes tetramer assembly of CtBP1, but not CtBP2. Other NAD(H) moieties that lack the adenosine phosphate, including adenosine and those incorporating nicotinamide, all fail to promote tetramer assembly. Our crystal structures of CtBP1 with AMP reveal participation of the adenosine phosphate in the tetrameric interface, pinpointing its central role in NAD(H)-linked assembly. CtBP1 and CtBP2 have overlapping but unique roles, suggesting that a detailed understanding of their unique structural properties might have utility in the design of paralog-specific inhibitors. We investigated the different responses to AMP through a series of site-directed mutants at 13 positions. These mutations reveal a central role for a hinge segment, which we term the 120s hinge that connects the substrate with coenzyme-binding domains and influences nucleotide binding and tetramer assembly. Our results provide insight into suitable pockets to explore in structure-based drug design to interfere with cotranscriptional activity of CtBP in cancer.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , NADP/metabolismo , Oxidorreductasas de Alcohol/química , Proteínas Co-Represoras/química , Proteínas de Unión al ADN/química , Humanos , Modelos Moleculares , NAD/metabolismo , Multimerización de Proteína
5.
Biochem Biophys Res Commun ; 545: 164-170, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33571907

RESUMEN

Mammalian Transducin-like enhancer of split (TLE) confer global repression of numerous target genes in conjunction with a myriad of DNA-binding repressors. These factors have a major role in the regulation of multiple signal transduction pathways. Evidence have been obtained regarding the possible role of some of these proteins in cancer. TLE3 was suggested as a marker for increased chemosensitivity from pathological studies. Here we demonstrate, using the TCGA data base, differences in expression of this gene compared to TLE1 in several cancers. In-vitro transduction of a retrovirus encoding TLE3 to A549 lung cancer cells increased paclitaxel effectivity while TLE1 introduction to these cells decreased it. While TLE1 and TLE3 share ∼80% amino acid identity, we show that mutating or reconstituting an amino-terminal phosphorylation site, which is present only in TLE1 but absent from TLE3, and is evolutionary conserved, converts the activity of TLE1 to that of TLE3 like and vice versa. We repeated these results in an adipocytes differentiation system. Our results reveal how a single phosphorylation site can confer distinct qualitative or quantitative activities on highly homologous transcriptional regulators.


Asunto(s)
Proteínas Co-Represoras/química , Proteínas Co-Represoras/metabolismo , Células A549 , Adipocitos/citología , Adipocitos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Biomarcadores de Tumor/química , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Línea Celular , Proteínas Co-Represoras/genética , Secuencia Conservada , Regulación de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Taxoides/farmacología
6.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468647

RESUMEN

Bromodomains (BDs) are small protein modules that interact with acetylated marks in histones. These posttranslational modifications are pivotal to regulate gene expression, making BDs promising targets to treat several diseases. While the general structure of BDs is well known, their dynamical features and their interplay with other macromolecules are poorly understood, hampering the rational design of potent and selective inhibitors. Here, we combine extensive molecular dynamics simulations, Markov state modeling, and available structural data to reveal a transiently formed state that is conserved across all BD families. It involves the breaking of two backbone hydrogen bonds that anchor the ZA-loop with the αA helix, opening a cryptic pocket that partially occludes the one associated to histone binding. By analyzing more than 1,900 experimental structures, we unveil just two adopting the hidden state, explaining why it has been previously unnoticed and providing direct structural evidence for its existence. Our results suggest that this state is an allosteric regulatory switch for BDs, potentially related to a recently unveiled BD-DNA-binding mode.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Co-Represoras/química , Proteínas de Unión al ADN/química , Histona Acetiltransferasas/química , Péptidos y Proteínas de Señalización Intracelular/química , Factores Generales de Transcripción/química , Factores de Transcripción/química , Proteína 28 que Contiene Motivos Tripartito/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cadenas de Markov , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo
7.
Structure ; 29(4): 310-319.e5, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264605

RESUMEN

C-terminal binding proteins 1 and 2 (CtBP1 and CtBP2) are transcriptional regulators that activate or repress many genes involved in cellular development, apoptosis, and metastasis. NADH-dependent CtBP activation has been implicated in multiple types of cancer and poor patient prognosis. Central to understanding activation of CtBP in oncogenesis is uncovering how NADH triggers protein assembly, what level of assembly occurs, and if oncogenic activity depends upon such assembly. Here, we present the cryoelectron microscopic structures of two different constructs of CtBP2 corroborating that the native state of CtBP2 in the presence of NADH is tetrameric. The physiological relevance of the observed tetramer was demonstrated in cell culture, showing that CtBP tetramer-destabilizing mutants are defective for cell migration, transcriptional repression of E-cadherin, and activation of TIAM1. Together with our cryoelectron microscopy studies, these results highlight the tetramer as the functional oligomeric form of CtBP2.


Asunto(s)
Oxidorreductasas de Alcohol/química , Proteínas Co-Represoras/química , Proteínas de Unión al ADN/química , Multimerización de Proteína , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Cadherinas/metabolismo , Dominio Catalítico , Movimiento Celular , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Mutación , NADP/metabolismo , Unión Proteica , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo
8.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722282

RESUMEN

FLICE-associated huge protein (FLASH), Yin Yang 1-Associated Protein-Related Protein (YARP) and Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) localize to discrete nuclear structures called histone locus bodies (HLBs) where they control various steps in histone gene expression. Near the C-terminus, FLASH and YARP contain a highly homologous domain that interacts with the C-terminal region of NPAT. Structural aspects of the FLASH-NPAT and YARP-NPAT complexes and their role in histone gene expression remain largely unknown. In this study, we used multidimensional NMR spectroscopy and in silico modeling to analyze the C-terminal domain in FLASH and YARP in an unbound form and in a complex with the last 31 amino acids of NPAT. Our results demonstrate that FLASH and YARP domains share the same fold of a triple α -helical bundle that resembles the DNA binding domain of Myb transcriptional factors and the SANT domain found in chromatin-modifying and remodeling complexes. The NPAT peptide contains a single α -helix that makes multiple contacts with α -helices I and III of the FLASH and YARP domains. Surprisingly, in spite of sharing a significant amino acid similarity, each domain likely binds NPAT using a unique network of interactions, yielding two distinct complexes. In silico modeling suggests that both complexes are structurally compatible with DNA binding, raising the possibility that they may function in identifying specific sequences within histone gene clusters, hence initiating the assembly of HLBs and regulating histone gene expression during cell cycle progression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Proteínas de Unión al Calcio/química , Proteínas de Ciclo Celular/química , Proteínas Co-Represoras/química , Simulación por Computador , Proteínas de Unión al ADN/química , Espectroscopía de Resonancia Magnética , Complejos Multiproteicos/química , Humanos , Conformación Proteica en Hélice alfa , Dominios Proteicos
9.
Viruses ; 12(6)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545337

RESUMEN

Death domain-associated protein 6 (Daxx) is a multifunctional, ubiquitously expressed and highly conserved chaperone protein involved in numerous cellular processes, including apoptosis, transcriptional repression, and carcinogenesis. In 2015, we identified Daxx as an antiretroviral factor that interfered with HIV-1 replication by inhibiting the reverse transcription step. In the present study, we sought to unravel the molecular mechanism of Daxx-mediated restriction and, in particular, to identify the protein(s) that Daxx targets in order to achieve its antiviral activity. First, we show that the SUMO-interacting motif (SIM) located at the C-terminus of the protein is strictly required for Daxx to inhibit HIV-1 reverse transcription. By performing a quantitative proteomic screen combined with classical biochemical analyses, we found that Daxx associated with incoming HIV-1 cores through a SIM-dependent interaction with cyclophilin A (CypA) and capsid (CA). Daxx was found to reside within a multiprotein complex associated with viral capsids, also containing TNPO3, TRIM5α, and TRIM34. Given the well-known influence of these cellular factors on the stability of HIV-1 cores, we investigated the effect of Daxx on the cytoplasmic fate of incoming cores and found that Daxx prevented HIV-1 uncoating in a SIM-dependent manner. Altogether, our findings suggest that, by recruiting TNPO3, TRIM5α, and TRIM34 and possibly other proteins onto incoming HIV-1 cores through a SIM-dependent interaction with CA-bound CypA, Daxx increases their stability, thus preventing uncoating and reverse transcription. Our study uncovers a previously unknown function of Daxx in the early steps of HIV-1 infection and further illustrates how reverse transcription and uncoating are two tightly interdependent processes.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Infecciones por VIH/metabolismo , VIH-1/genética , Chaperonas Moleculares/metabolismo , Proteína SUMO-1/metabolismo , Desencapsidación Viral , Secuencias de Aminoácidos , Cápside/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas Co-Represoras/química , Proteínas Co-Represoras/genética , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Transcripción Reversa , Proteína SUMO-1/genética , beta Carioferinas/genética , beta Carioferinas/metabolismo
10.
Biochem Biophys Res Commun ; 530(2): 440-447, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32553630

RESUMEN

C-terminal binding protein 2 (CtBP2) is a transcriptional co-repressor that regulates many genes involved in normal cellular events. Because CtBP2 overexpression has been implicated in various human cancers, its protein levels must be precisely regulated. Previously, we reported that CtBP1 and CtBP1-mediated transcriptional repression are regulated by X-linked inhibitor of apoptosis protein (XIAP). In the present study, we sought to investigate whether CtBP2 is also regulated by XIAP or any other human IAP. We found that cIAP1 interacts with CtBP2 via through BIR domains to regulates the steady-state levels of CtBP2 protein in the nucleus. The levels of CtBP2 were gradually increased upon cIAP1 overexpression and downregulated upon cIAP1 depletion. Interestingly, the RING domain of cIAP1 responsible for E3 ligase activity was not required for this regulation. Finally, the levels of CtBP2 modulated by cIAP1 affected the transcription of CtBP2 target genes and subsequent cell migration. Taken together, our data demonstrate a novel function of cIAP1 which involves protecting CtBP2 from degradation to stabilize its steady-state level. These results suggest that cIAP1 might be a useful target in strategies aiming to downregulate the steady-state level of CtBP2 protein in treating human cancers.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Oxidorreductasas de Alcohol/química , Línea Celular Tumoral , Proteínas Co-Represoras/química , Células HeLa , Humanos , Proteínas Inhibidoras de la Apoptosis/química , Neoplasias/metabolismo , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
11.
Nat Commun ; 11(1): 956, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075969

RESUMEN

Nuclear receptor (NR) transcription factors use a conserved activation function-2 (AF-2) helix 12 mechanism for agonist-induced coactivator interaction and NR transcriptional activation. In contrast, ligand-induced corepressor-dependent NR repression appears to occur through structurally diverse mechanisms. We report two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation. Helix 12 is displaced from the solvent-exposed active conformation and occupies the orthosteric ligand-binding pocket enabled by a conformational change that doubles the pocket volume. Paramagnetic relaxation enhancement (PRE) NMR and chemical crosslinking mass spectrometry confirm the repressive helix 12 conformation. PRE NMR also defines the mechanism of action of the corepressor-selective inverse agonist T0070907, and reveals that apo-helix 12 exchanges between transcriptionally active and repressive conformations-supporting a fundamental hypothesis in the NR field that helix 12 exchanges between transcriptionally active and repressive conformations.


Asunto(s)
Benzamidas/metabolismo , Proteínas Co-Represoras/metabolismo , PPAR gamma/química , PPAR gamma/metabolismo , Piridinas/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión , Proteínas Co-Represoras/química , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Mutación , Coactivadores de Receptor Nuclear/química , Coactivadores de Receptor Nuclear/metabolismo , PPAR gamma/agonistas , PPAR gamma/genética , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Transcripción Genética
12.
Biochem Biophys Res Commun ; 523(2): 354-360, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31866012

RESUMEN

The epithelial to mesenchymal transition (EMT) is a cell intrinsic program controlling cellular morphological and phenotypic remodeling in a wide range of biological processes. Despite the accumulating evidence, the transcriptional networks regulating EMT still remain to be elucidated. In this study, we demonstrate that C-terminal binding protein 2 (CtBP2), a critical transcriptional co-repressor harboring pyridine nucleotide sensing capability, orchestrates the EMT program at least in part through a novel transcriptional interaction with an octamer transcription factor, OCT1 (POU2F1, POU class 2 homeobox 1). We identified novel interactions of CtBP2 with several octamer transcription factors, and CtBP2 exhibits a direct interaction with OCT1 in particular. OCT1 accelerates the EMT program as reported, which is diminished by the mutation of the CtBP-binding motif in OCT1, suggesting OCT1 represses epithelial gene expression through recruiting the co-repressor CtBP2. In accordance with these findings, a canonical EMT activator transforming growth factor-ß (TGF-ß) promotes the formation of the CtBP2/OCT1 complex. Our observations illustrate the role of CtBP2 to orchestrate the EMT program through the interaction with OCT1 and highlight the potential of therapeutic exploitation of this new transcriptional system for a wide range of diseases.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas Co-Represoras/química , Proteínas Co-Represoras/genética , Secuencia Conservada , Transición Epitelial-Mesenquimal/genética , Femenino , Redes Reguladoras de Genes , Humanos , Células MCF-7 , Ratones , Mutación , Factor 1 de Transcripción de Unión a Octámeros/química , Factor 1 de Transcripción de Unión a Octámeros/genética , Dominios y Motivos de Interacción de Proteínas , Ratas , Factor de Crecimiento Transformador beta/metabolismo
13.
Structure ; 28(2): 157-168.e5, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31879127

RESUMEN

The interactions between SUMO proteins and SUMO-interacting motif (SIM) in nuclear bodies formed by the promyelocytic leukemia (PML) protein (PML-NBs) have been shown to be modulated by either phosphorylation of the SIMs or acetylation of SUMO proteins. However, little is known about how this occurs at the atomic level. In this work, we examined the role that acetylation of SUMO1 plays on its binding to the phosphorylated SIMs (phosphoSIMs) of PML and Daxx. Our results demonstrate that SUMO1 binding to the phosphoSIM of either PML or Daxx is dramatically reduced by acetylation at either K39 or K46. However, acetylation at K37 only impacts binding to Daxx. Structures of acetylated SUMO1 variants bound to the phosphoSIMs of PML and Daxx demonstrate that there is structural plasticity in SUMO-SIM interactions. The plasticity observed in these structures provides a robust mechanism for regulating SUMO-SIM interactions in PML-NBs using signaling generated post-translational modifications.


Asunto(s)
Proteínas Co-Represoras/química , Proteínas Co-Represoras/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteína de la Leucemia Promielocítica/química , Proteína de la Leucemia Promielocítica/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Acetilación , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Proteína SUMO-1/genética
14.
Molecules ; 24(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370197

RESUMEN

The interaction between androgen receptor (AR) and coactivator proteins plays a critical role in AR-mediated prostate cancer (PCa) cell growth, thus its inhibition is emerging as a promising strategy for PCa treatment. To develop potent inhibitors of the AR-coactivator interaction, we have designed and synthesized a series of bis-benzamides by modifying functional groups at the N/C-terminus and side chains. A structure-activity relationship study showed that the nitro group at the N-terminus of the bis-benzamide is essential for its biological activity while the C-terminus can have either a methyl ester or a primary carboxamide. Surveying the side chains with various alkyl groups led to the identification of a potent compound 14d that exhibited antiproliferative activity (IC50 value of 16 nM) on PCa cells. In addition, biochemical studies showed that 14d exerts its anticancer activity by inhibiting the AR-PELP1 interaction and AR transactivation.


Asunto(s)
Benzamidas/farmacología , Proteínas Co-Represoras/química , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/química , Factores de Transcripción/química , Antagonistas de Andrógenos/química , Antagonistas de Andrógenos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Co-Represoras/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Conformación Proteica en Hélice alfa/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Receptores Androgénicos/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos
15.
Cells ; 8(5)2019 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-31035373

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived organoids mimicking tissues and organs in vitro have advanced medical research, as they opened up new possibilities for in-depth basic research on human organ development as well as providing a human in vitro model for personalized therapeutic approaches. hiPSC-derived retinal organoids have proven to be of great value for modeling the human retina featuring a very similar cellular composition, layering, and functionality. The technically challenging imaging of three-dimensional structures such as retinal organoids has, however, raised the need for robust whole-organoid imaging techniques. To improve imaging of retinal organoids we optimized a passive clearing technique (PACT), which enables high-resolution visualization of fragile intra-tissue structures. Using cleared retinal organoids, we could greatly enhance the antibody labeling efficiency and depth of imaging at high resolution, thereby improving the three-dimensional microscopy output. In that course, we were able to identify the spatial morphological shape and organization of, e.g., photoreceptor cells and bipolar cell layers. Moreover, we used the synaptic protein CtBP2/Ribeye to visualize the interconnection points of photoreceptor and bipolar cells forming the retinal-specific ribbon synapses.


Asunto(s)
Células Madre Pluripotentes Inducidas/ultraestructura , Organoides , Células Fotorreceptoras/ultraestructura , Retina/ultraestructura , Oxidorreductasas de Alcohol/química , Técnicas de Cultivo de Célula/métodos , Proteínas Co-Represoras/química , Humanos , Técnicas de Cultivo de Órganos/métodos , Organoides/crecimiento & desarrollo , Organoides/ultraestructura , Ingeniería de Tejidos/métodos
16.
Sci Rep ; 9(1): 4019, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858420

RESUMEN

The full length human histone 3 lysine 4 demethylase KDM5B (PLU-1/Jarid1B) has been studied using Hydrogen/Deuterium exchange mass spectrometry, homology modelling, sequence analysis, small angle X-ray scattering and electron microscopy. This first structure on an intact multi-domain Jumonji histone demethylase reveal that the so-called PLU region, in the central region of KDM5B, has a curved α-helical three-dimensional structure, that acts as a rigid linker between the catalytic core and a region comprising four α-helices, a loop comprising the PHD2 domain, two large intrinsically disordered loops and the PHD3 domain in close proximity. The dumbbell shaped and curved KDM5B architecture observed by electron microscopy is complementary to the nucleosome surface and has a striking overall similarity to that of the functionally related KDM1A/CoREST complex. This could suggest that there are similarities between the demethylation mechanisms employed by the two histone 3 lysine 4 demethylases at the molecular level.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/química , Proteínas Nucleares/química , Proteínas Represoras/química , Proteínas Co-Represoras/química , Desmetilación , Histona Demetilasas/química , Humanos , Proteínas del Tejido Nervioso/química , Dominios Proteicos
17.
Plant Mol Biol ; 100(1-2): 47-58, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30783952

RESUMEN

KEY MESSAGE: The two predicted WD40 propellers on TOPLESS function as protein-protein interaction domains. The 1st WD40 propeller mediates interaction with RAV1, and the 2nd WD40 propeller mediates interaction with VRN5. The TOPLESS/TOPLESS-RELATED (TPL/TPR) co-repressor family proteins are known to interact with a wide variety of proteins including transcription factors, Mediator subunits, histone deacetylases, and histone tails. Through these interactions, TPL/TPR act to repress transcription in an increasingly diverse array of plant pathways. Proteins that bind TPL/TPR typically contain one or more Repression Domains (RDs) that mediate the interaction. For example, the well-characterized Ethylene response factor-associated Amphiphilic Repression (EAR) motif is known to facilitate interaction by binding the TOPLESS Domain (TPD) located in the N-terminus. Here we show that in yeast two-hybrid assays, the non-EAR protein, Related to ABI3/VP1-1 (RAV1), binds a novel region located within the first nine WD40-repeats of TPL. Protein modeling and in silico analysis suggest that these nine WD40 repeats may form the first of two WD40 propellers located on C-terminus of TPL. The interaction between RAV1 and the 1st WD40 propeller is conserved with another RAV family member, TEMPRANILLO1 (TEM1) and is mediated by the B3 Repression Domain (BRD) located on both RAV1 and TEM1. Also, the predicted 2nd WD40 propeller was shown in yeast cells to bind Vernalization 5 (VRN5), which contains several unconfirmed partial RDs. Furthermore, we demonstrate that the 1st WD40 propeller of TPL can form a complex with RAV1 both in yeast and in Arabidopsis protoplasts.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Co-Represoras/química , Proteínas Co-Represoras/metabolismo , Repeticiones WD40 , Arabidopsis/metabolismo , Modelos Biológicos , Unión Proteica , Protoplastos/metabolismo , Relación Estructura-Actividad
18.
J Neurosci ; 39(14): 2606-2619, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30696732

RESUMEN

Active zones at chemical synapses are highly specialized sites for the regulated release of neurotransmitters. Despite a high degree of active zone protein conservation in vertebrates, every type of chemical synapse expresses a given set of protein isoforms and splice variants adapted to the demands on neurotransmitter release. So far, we know little about how specific active zone proteins contribute to the structural and functional diversity of active zones. In this study, we explored the nanodomain organization of ribbon-type active zones by addressing the significance of Piccolino, the ribbon synapse-specific splice variant of Piccolo, for shaping the ribbon structure. We followed up on previous results, which indicated that rod photoreceptor synaptic ribbons lose their structural integrity in a knockdown of Piccolino. Here, we demonstrate an interaction between Piccolino and the major ribbon component RIBEYE that supports plate-shaped synaptic ribbons in retinal neurons. In a detailed ultrastructural analysis of three different types of retinal ribbon synapses in Piccolo/Piccolino-deficient male and female rats, we show that the absence of Piccolino destabilizes the superstructure of plate-shaped synaptic ribbons, although with variable manifestation in the cell types examined. Our analysis illustrates how the expression of a specific active zone protein splice variant (e.g., Piccolino) contributes to structural diversity of vertebrate active zones.SIGNIFICANCE STATEMENT Retinal ribbon synapses are a specialized type of chemical synapse adapted for the regulated fast and tonic release of neurotransmitter. The hallmark of retinal ribbon synapses is the plate-shaped synaptic ribbon, which extends from the release site into the terminals' cytoplasm and tethers hundreds of synaptic vesicles. Here, we show that Piccolino, the synaptic ribbon specific splice variant of Piccolo, interacts with RIBEYE, the main component of synaptic ribbons. This interaction occurs via several PxDLS-like motifs located at the C terminus of Piccolino, which can connect multiple RIBEYE molecules. Loss of Piccolino disrupts the characteristic plate-shaped structure of synaptic ribbons, indicating a role of Piccolino in synaptic ribbon assembly.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Neuropéptidos/metabolismo , Neuronas Retinianas/metabolismo , Sinapsis/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Animales , Proteínas Co-Represoras/química , Proteínas Co-Represoras/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Neuropéptidos/química , Neuropéptidos/genética , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Neuronas Retinianas/ultraestructura , Sinapsis/genética , Sinapsis/ultraestructura
19.
Epigenetics Chromatin ; 12(1): 2, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30602385

RESUMEN

BACKGROUND: Boundaries in the Drosophila bithorax complex delimit autonomous regulatory domains that activate the parasegment (PS)-specific expression of homeotic genes. The Fab-7 boundary separates the iab-6 and iab-7 regulatory domains that control Abd-B expression in PS11 and PS12. This boundary is composed of multiple functionally redundant elements and has two key activities: it blocks crosstalk between iab-6 and iab-7 and facilitates boundary bypass. RESULTS: Here, we have used a structure-function approach to elucidate the biochemical properties and the in vivo activities of a conserved BEN domain protein, Insensitive, that is associated with Fab-7. Our biochemical studies indicate that in addition to the C-terminal BEN DNA-binding domain, Insv has two domains that mediate multimerization: one is a coiled-coil domain in the N-terminus, and the other is next to the BEN domain. These multimerization domains enable Insv to bind simultaneously to two canonical 8-bp recognition motifs, as well as to a ~ 100-bp non-canonical recognition sequence. They also mediate the assembly of higher-order multimers in the presence of DNA. Transgenic proteins lacking the N-terminal coiled-coil domain are compromised for boundary function in vivo. We also show that Insv interacts directly with CP190, a protein previously implicated in the boundary functions of several DNA-binding proteins, including Su(Hw) and dCTCF. While CP190 interaction is required for Insv binding to a subset of sites on polytene chromosomes, it has only a minor role in the boundary activity of Insv in the context of Fab-7. CONCLUSIONS: The subdivision of eukaryotic chromosomes into discrete topological domains depends upon the pairing of boundary elements. In flies, pairing interactions are specific and typically orientation dependent. They occur in cis between neighboring heterologous boundaries, and in trans between homologous boundaries. One potential mechanism for ensuring pairing-interaction specificity is the use of sequence-specific DNA-binding proteins that can bind simultaneously with two or more recognition sequences. Our studies indicate that Insv can assemble into a multivalent DNA-binding complex and that the N-terminal Insv multimerization domain is critical for boundary function.


Asunto(s)
Proteínas Co-Represoras/química , Proteínas de Drosophila/química , Multimerización de Proteína , Animales , Sitios de Unión , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Aisladores , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica
20.
Biochem J ; 475(24): 3921-3932, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30552170

RESUMEN

At face value, the Sin3 histone deacetylase (HDAC) complex appears to be a prototypical co-repressor complex, that is, a multi-protein complex recruited to chromatin by DNA bound repressor proteins to facilitate local histone deacetylation and transcriptional repression. While this is almost certainly part of its role, Sin3 stubbornly refuses to be pigeon-holed in quite this way. Genome-wide mapping studies have found that Sin3 localises predominantly to the promoters of actively transcribed genes. While Sin3 knockout studies in various species result in a combination of both up- and down-regulated genes. Furthermore, genes such as the stem cell factor, Nanog, are dependent on the direct association of Sin3 for active transcription to occur. Sin3 appears to have properties of a co-repressor, co-activator and general transcription factor, and has thus been termed a co-regulator complex. Through a series of unique domains, Sin3 is able to assemble HDAC1/2, chromatin adaptors and transcription factors in a series of functionally and compositionally distinct complexes to modify chromatin at both gene-specific and global levels. Unsurprisingly, therefore, Sin3/HDAC1 have been implicated in the regulation of numerous cellular processes, including mammalian development, maintenance of pluripotency, cell cycle regulation and diseases such as cancer.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Animales , Proteínas Co-Represoras/química , Proteínas Co-Represoras/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Organogénesis/fisiología , Estructura Secundaria de Proteína , Complejo Correpresor Histona Desacetilasa y Sin3/química , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...