Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
FEBS J ; 288(14): 4412-4427, 2021 07.
Article En | MEDLINE | ID: mdl-33555104

Genetic susceptibility of type 2 diabetes and Juxtaposed with another zinc finger protein 1 (Jazf1) has been reported; however, the precise role of Jazf1 in metabolic processes remains elusive. In this study, using Jazf1-knockout (KO)-induced pluripotent stem cells (iPSC), pancreatic beta cell line MIN6 cells, and Jazf-1 heterozygous KO (Jazf1+/- ) mice, the effect of Jazf1 on gradual differentiation was investigated. We checked the alterations of the genes related with ß-cell specification, maturation, and insulin release against glucose treatment by the gain and loss of the Jazf1 gene in the MIN6 cells. Because undifferentiated Jazf1-KO iPSC were not significantly different from wild-type (WT) iPSC, the size and endoderm marker expression after embryoid body (EB) and teratoma formation were investigated. Compared to EB and teratomas formed with WT iPSC, the EB and teratomas from with Jazf1-KO iPSC were smaller, and in teratomas, the expression of proliferation markers was reduced. Moreover, the expression of the gene sets for ß-cell differentiation and the levels of insulin and C-peptide secreted by insulin precursor cells were notably reduced in ß-cells differentiated from Jazf1-KO iPSC compared with those differentiated from WT iPSC. A comparison of Jazf1+/- and WT mice showed that Jazf1+/- mice had lower levels of serum insulin, pancreatic insulin expression, and decreased pancreatic ß-cell size, which resulted in defects in the glucose homeostasis. These findings suggest that Jazf1 plays a pivotal role in the differentiation of ß-cells and glucose homeostasis.


Cell Differentiation , Co-Repressor Proteins/physiology , DNA-Binding Proteins/physiology , Glucose/metabolism , Homeostasis , Induced Pluripotent Stem Cells/cytology , Insulin-Secreting Cells/cytology , Insulin/metabolism , Animals , Cells, Cultured , Female , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organogenesis
2.
Sci Rep ; 11(1): 856, 2021 01 13.
Article En | MEDLINE | ID: mdl-33441685

Adequate viral replication in tumor cells is the key to improving the anti-cancer effects of oncolytic adenovirus therapy. In this study, we introduced short hairpin RNAs against death-domain associated protein (Daxx), a repressor of adenoviral replication, and precursor terminal protein (pTP), an initiator of adenoviral genome replication, into adenoviral constructs to determine their contributions to viral replication. Both Daxx downregulation and pTP overexpression increased viral production in variety of human cancer cell lines, and the enhanced production of virus progeny resulted in more cell lysis in vitro, and tumor regression in vivo. We confirmed that increased virus production by Daxx silencing, or pTP overexpression, occurred using different mechanisms by analyzing levels of adenoviral protein expression and virus production. Specifically, Daxx downregulation promoted both virus replication and oncolysis in a consecutive manner by optimizing IVa2-based packaging efficiency, while pTP overexpression by increasing both infectious and total virus particles but their contribution to increased viral production may have been damaged to some extent by their another contribution to apoptosis and autophagy. Therefore, introducing both Daxx shRNA and pTP in virotherapy may be a suitable strategy to increase apoptotic tumor-cell death and to overcome poor viral replication, leading to meaningful reductions in tumor growth in vivo.


Co-Repressor Proteins/metabolism , Molecular Chaperones/metabolism , Oncolytic Virotherapy/methods , Virus Replication/physiology , Adenoviridae/genetics , Adenoviridae/metabolism , Adenovirus E1A Proteins/metabolism , Adenovirus E1A Proteins/physiology , Adenovirus E2 Proteins/metabolism , Adenovirus E2 Proteins/physiology , Cell Line, Tumor , Co-Repressor Proteins/physiology , Humans , Molecular Chaperones/physiology , Oncolytic Viruses/genetics , Oncolytic Viruses/metabolism , RNA, Small Interfering/genetics , Viral Proteins/genetics , Virus Replication/genetics
3.
Plant Physiol Biochem ; 157: 256-263, 2020 Dec.
Article En | MEDLINE | ID: mdl-33152644

TOPLESS (TPL)/TOPLESS-related (TPR) corepressors are important regulators of plant growth and development, but their functions in chrysanthemum (Chrysanthemum morifolium) are currently unclear. In this study, a chrysanthemum TPL/TPR family gene, designated CmTPL1-1, was characterized. This gene encodes an 1135-amino-acid polypeptide harboring a conserved N-terminal domain and two C-terminal WD40 domains. CmTPL1-1 showed no transcriptional activity in yeast, and a localization experiment indicated that it localized to the nuclei in onion epidermal cells. Transcript profiling established that the gene was most highly expressed in the stem apex. The heterologous expression of CmTPL1-1 in Arabidopsis thaliana produced a pleiotropic phenotype, including smaller leaves, shorter siliques, increased meristem number, asymmetrical petal distribution and reduced stamen number. In transgenic plants, four AtARFs were downregulated, while six AtIAAs and two AtGH3s were upregulated at the transcript level; moreover, the expression of three key class I KNOTTED-like homeobox (KNOX) genes was upregulated. In addition, by yeast two-hybrid screening of a chrysanthemum cDNA library, we found that CmTPL1-1 could interact with CmWOX4, CmLBD38 and CmLBD36, and these interactions were confirmed by bimolecular fluorescence complementation (BiFC) assays. Overall, we speculated that heterologous expression of CmTPL1-1 regulates plant growth and development by interacting with auxin signaling in Arabidopsis.


Arabidopsis/physiology , Chrysanthemum/genetics , Co-Repressor Proteins/physiology , Meristem/physiology , Plant Proteins/physiology , Arabidopsis/genetics , Co-Repressor Proteins/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology
4.
Gastroenterology ; 159(4): 1328-1341.e3, 2020 10.
Article En | MEDLINE | ID: mdl-32553763

BACKGROUND & AIMS: Notch signaling maintains intestinal stem cells (ISCs). When ISCs exit the niche, Notch signaling among early progenitor cells at position +4/5 regulates their specification toward secretory vs enterocyte lineages (binary fate). The transcription factor ATOH1 is repressed by Notch in ISCs; its de-repression, when Notch is inactivated, drives progenitor cells to differentiate along the secretory lineage. However, it is not clear what promotes transition of ISCs to progenitors and how this fate decision is established. METHODS: We sorted cells from Lgr5-GFP knockin intestines from mice and characterized gene expression patterns. We analyzed Notch regulation by examining expression profiles (by quantitative reverse transcription polymerase chain reaction and RNAscope) of small intestinal organoids incubated with the Notch inhibitor DAPT, intestine tissues from mice given injections of the γ-secretase inhibitor dibenzazepine, and mice with intestine-specific disruption of Rbpj. We analyzed intestine tissues from mice with disruption of the RUNX1 translocation partner 1 gene (Runx1t1, also called Mtg8) or CBFA2/RUNX1 partner transcriptional co-repressor 3 (Cbfa2t3, also called Mtg16), and derived their organoids, by histology, immunohistochemistry, and RNA sequencing (RNA-seq). We performed chromatin immunoprecipitation and sequencing analyses of intestinal crypts to identify genes regulated by MTG16. RESULTS: The transcription co-repressors MTG8 and MTG16 were highly expressed by +4/5 early progenitors, compared with other cells along crypt-villus axis. Expression of MTG8 and MTG16 were repressed by Notch signaling via ATOH1 in organoids and intestine tissues from mice. MTG8- and MTG16-knockout intestines had increased crypt hyperproliferation and expansion of ISCs, but enterocyte differentiation was impaired, based on loss of enterocyte markers and functions. Chromatin immunoprecipitation and sequencing analyses showed that MTG16 bound to promoters of genes that are specifically expressed by stem cells (such as Lgr5 and Ascl2) and repressed their transcription. MTG16 also bound to previously reported enhancer regions of genes regulated by ATOH1, including genes that encode Delta-like canonical Notch ligand and other secretory-specific transcription factors. CONCLUSIONS: In intestine tissues of mice and human intestinal organoids, MTG8 and MTG16 repress transcription in the earliest progenitor cells to promote exit of ISCs from their niche (niche exit) and control the binary fate decision (secretory vs enterocyte lineage) by repressing genes regulated by ATOH1.


Co-Repressor Proteins/physiology , DNA-Binding Proteins/physiology , Enterocytes/cytology , Enterocytes/metabolism , Proto-Oncogene Proteins/physiology , Repressor Proteins/physiology , Stem Cells/cytology , Transcription Factors/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Culture Techniques , Cell Differentiation , Cell Lineage , Mice , Stem Cell Niche , Stem Cells/metabolism
5.
Endocrinology ; 161(8)2020 08 01.
Article En | MEDLINE | ID: mdl-32449767

Nuclear receptor coactivators (NCOAs) and corepressors (NCORs) bind to nuclear hormone receptors in a ligand-dependent manner and mediate the transcriptional activation or repression of the downstream target genes in response to hormones, metabolites, xenobiotics, and drugs. NCOAs and NCORs are widely expressed in the mammalian brain. Studies using genetic animal models started to reveal pivotal roles of NCOAs/NCORs in the brain in regulating hormonal signaling, sexual behaviors, consummatory behaviors, exploratory and locomotor behaviors, moods, learning, and memory. Genetic variants of NCOAs or NCORs have begun to emerge from human patients with obesity, hormonal disruption, intellectual disability, or autism spectrum disorders. Here we review recent studies that shed light on the function of NCOAs and NCORs in the central nervous system.


Brain/metabolism , Co-Repressor Proteins/physiology , Nuclear Receptor Coactivators/physiology , Animals , Behavior/physiology , Brain/physiology , Co-Repressor Proteins/metabolism , Humans , Neurosecretory Systems/physiology , Nuclear Receptor Coactivators/metabolism , Transcriptional Activation
6.
Invest Ophthalmol Vis Sci ; 61(5): 37, 2020 05 11.
Article En | MEDLINE | ID: mdl-32437548

Purpose: To determine the influence of RIBEYE deletion and the resulting absence of synaptic ribbons on retinal light signaling by electroretinography. Methods: Full-field flash electroretinograms (ERGs) were recorded in RIBEYE knock-out (KO) and wild-type (WT) littermate mice under photopic and scotopic conditions, with oscillatory potentials (OPs) extracted by digital filtering. Flicker ERGs and ERGs following intravitreal injection of pharmacological agents were also obtained under scotopic conditions. Results: The a-wave amplitudes were unchanged between RIBEYE KO and WT mice; however, the b-wave amplitudes were reduced in KOs under scotopic, but not photopic, conditions. Increasing stimulation frequency led to a greater reduction in RIBEYE KO b-wave amplitudes compared with WTs. Furthermore, we observed prominent, supernormal OPs in RIBEYE KO mice in comparison with WT mice. Following intravitreal injections with l-2 amino-4-phosphonobutyric acid and cis-2,3 piperidine dicarboxylic acid to block ON and OFF responses at photoreceptor synapses, OPs were completely abolished in both mice types, indicating a synaptic origin of the prominent OPs in the KOs. Conversely, tetrodotoxin treatment to block voltage-gated Na+ channels/spiking neurons did not differentially affect OPs in WT and KO mice. Conclusions: The decreased scotopic b-wave and decreased responses to increased stimulation frequencies are consistent with signaling malfunctions at photoreceptor and inner retinal ribbon synapses. Because phototransduction in the photoreceptor outer segments is unaffected in the KOs, their supernormal OPs presumably result from a dysfunction in retinal synapses. The relatively mild ERG phenotype in KO mice, particularly in the photopic range, is probably caused by compensatory mechanisms in retinal signaling pathways.


Alcohol Oxidoreductases/physiology , Co-Repressor Proteins/physiology , Electroretinography , Retinal Cone Photoreceptor Cells/physiology , Synapses/physiology , Synaptic Transmission , Vision, Ocular/physiology , Aminobutyrates/pharmacology , Animals , Evoked Potentials, Visual/physiology , Excitatory Amino Acid Agonists/pharmacology , Female , Gene Deletion , Intravitreal Injections , Male , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Night Vision/physiology , Photic Stimulation , Piperidines/pharmacology , Retinal Cone Photoreceptor Cells/ultrastructure , Sodium Channel Blockers/pharmacology , Synapses/drug effects , Synapses/ultrastructure , Tetrodotoxin/pharmacology
7.
Trends Cancer ; 6(3): 247-260, 2020 03.
Article En | MEDLINE | ID: mdl-32101727

Alternative lengthening of telomeres (ALT) is a mechanism of telomere maintenance that is observed in many of the most recalcitrant cancer subtypes. Telomeres in ALT cancer cells exhibit a distinctive nucleoprotein architecture shaped by the mismanagement of chromatin that fosters cycles of DNA damage and replicative stress that activate homology-directed repair (HDR). Mutations in specific chromatin-remodeling factors appear to be key determinants of the emergence and survival of ALT cancer cells. However, these may represent vulnerabilities for the targeted elimination of ALT cancer cells that infiltrate tissues and organs to become devastating tumors. In this review we examine recent findings that provide new insights into the factors and mechanisms that mediate telomere length maintenance and survival of ALT cancer cells.


Neoplasms/genetics , Telomere Homeostasis , Chromatin/ultrastructure , Clonal Evolution , Co-Repressor Proteins/antagonists & inhibitors , Co-Repressor Proteins/physiology , DNA Damage , DNA Repair , DNA Replication , DNA, Neoplasm/metabolism , DNA, Neoplasm/ultrastructure , Histones/physiology , Homologous Recombination , Humans , Models, Genetic , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/physiology , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Neoplasms/ultrastructure , Nucleic Acid Conformation , Telomerase/genetics , Telomerase/physiology , X-linked Nuclear Protein/antagonists & inhibitors , X-linked Nuclear Protein/physiology
8.
PLoS Biol ; 18(1): e3000594, 2020 01.
Article En | MEDLINE | ID: mdl-31895940

Alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX), a DAXX (death domain-associated protein) interacting protein, is often lost in cells using the alternative lengthening of telomeres (ALT) pathway, but it is not known how ATRX loss leads to ALT. We report that ATRX deletion from mouse cells altered the repair of telomeric double-strand breaks (DSBs) and induced ALT-like phenotypes, including ALT-associated promyelocytic leukemia (PML) bodies (APBs), telomere sister chromatid exchanges (T-SCEs), and extrachromosomal telomeric signals (ECTSs). Mechanistically, we show that ATRX affects telomeric DSB repair by promoting cohesion of sister telomeres and that loss of ATRX in ALT cells results in diminished telomere cohesion. In addition, we document a role for DAXX in the repair of telomeric DSBs. Removal of telomeric cohesion in combination with DAXX deficiency recapitulates all telomeric DSB repair phenotypes associated with ATRX loss. The data reveal that ATRX has an effect on telomeric DSB repair and that this role involves both telomere cohesion and a DAXX-dependent pathway.


Co-Repressor Proteins/physiology , DNA Breaks, Double-Stranded , DNA Repair/genetics , Molecular Chaperones/physiology , Sister Chromatid Exchange/genetics , Telomere/genetics , X-linked Nuclear Protein/physiology , Animals , Cells, Cultured , Embryo, Mammalian , Female , HeLa Cells , Humans , Male , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Mice , Mice, Knockout , Signal Transduction/genetics , Telomere/metabolism , Telomere Homeostasis/genetics , alpha-Thalassemia/genetics , alpha-Thalassemia/pathology
9.
Hepatology ; 71(1): 130-147, 2020 01.
Article En | MEDLINE | ID: mdl-31148183

Hepatocellular carcinoma (HCC) is one of the fastest-rising causes of cancer-related death worldwide, but its deficiency of specific biomarkers and therapeutic targets in the early stages lead to severe inadequacy in the early diagnosis and treatment of HCC. Covalently closed circular RNA (circRNA), which was once considered an aberrant splicing by-product, is now drawing new interest in cancer research because of its remarkable functionality. Beneath the surface of the dominant functional proteins events, a hidden circRNA-centric noncoding regulatory RNAs network active in the very early stage of HCC is here revealed by a genome-wide analysis of mRNA, circRNA, and microRNA (miRNA) expression profiles. Circ-CDYL (chromodomain Y like) is specifically up-regulated in the early stages of HCC and therefore contributes to the properties of epithelial cell adhesion molecule (EPCAM)-positive liver tumor-initiating cells. Circ-CDYL interacts with mRNAs encoding hepatoma-derived growth factor (HDGF) and hypoxia-inducible factor asparagine hydroxylase (HIF1AN) by acting as the sponge of miR-892a and miR-328-3p, respectively. Subsequently, activation of the phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase-mechanistic target of rapamycin kinase complex 1/ß-catenin and NOTCH2 pathways, which promote the expression of the effect proteins, baculoviral IAP repeat containing 5 (BIRC5 or SURVIVIN) and MYC proto-oncogene, is influenced by circ-CDYL. A treatment incorporating circ-CDYL interference and traditional enzyme inhibitors targeting PI3K and HIF1AN demonstrated highly effective inhibition of stem-like characteristics and tumor growth in HCC. Finally, we demonstrated that circ-CDYL expression or which combined with HDGF and HIF1AN are both independent markers for discrimination of early stages of HCC with the odds ratios of 1.09 (95% confidence interval [CI], 1.02-1.17) and 124.58 (95% CI, 13.26-1170.56), respectively. Conclusion: These findings uncover a circRNA-centric noncoding regulatory RNAs network in the early stages of HCC and thus provide a possibility for surveillance and early treatment of HCC.


Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Co-Repressor Proteins/physiology , Hydro-Lyases/physiology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA, Circular/physiology , RNA, Untranslated/physiology , Humans , Neoplasm Staging , Proto-Oncogene Mas , Tumor Cells, Cultured
10.
Skelet Muscle ; 9(1): 26, 2019 10 31.
Article En | MEDLINE | ID: mdl-31666122

BACKGROUND: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia. METHODS: We analyzed gene expression data from muscle of mice or human patients with diverse muscle pathologies and identified LMCD1 as a gene strongly associated with skeletal muscle function. We transiently expressed or silenced LMCD1 in mouse gastrocnemius muscle or in mouse primary muscle cells and determined muscle/cell size, targeted gene expression, kinase activity with kinase arrays, protein immunoblotting, and protein synthesis levels. To evaluate force, calcium handling, and fatigue, we transduced the flexor digitorum brevis muscle with a LMCD1-expressing adenovirus and measured specific force and sarcoplasmic reticulum Ca2+ release in individual fibers. Finally, to explore the relationship between LMCD1 and calcineurin, we ectopically expressed Lmcd1 in the gastrocnemius muscle and treated those mice with cyclosporine A (calcineurin inhibitor). In addition, we used a luciferase reporter construct containing the myoregulin gene promoter to confirm the role of a LMCD1-calcineurin-myoregulin axis in skeletal muscle mass control and calcium handling. RESULTS: Here, we identify LIM and cysteine-rich domains 1 (LMCD1) as a positive regulator of muscle mass, that increases muscle protein synthesis and fiber size. LMCD1 expression in vivo was sufficient to increase specific force with lower requirement for calcium handling and to reduce muscle fatigue. Conversely, silencing LMCD1 expression impairs calcium handling and force, and induces muscle fatigue without overt atrophy. The actions of LMCD1 were dependent on calcineurin, as its inhibition using cyclosporine A reverted the observed hypertrophic phenotype. Finally, we determined that LMCD1 represses the expression of myoregulin, a known negative regulator of muscle performance. Interestingly, we observed that skeletal muscle LMCD1 expression is reduced in patients with skeletal muscle disease. CONCLUSIONS: Our gain- and loss-of-function studies show that LMCD1 controls protein synthesis, muscle fiber size, specific force, Ca2+ handling, and fatigue resistance. This work uncovers a novel role for LMCD1 in the regulation of skeletal muscle mass and function with potential therapeutic implications.


Co-Repressor Proteins/genetics , Co-Repressor Proteins/physiology , LIM Domain Proteins/genetics , LIM Domain Proteins/physiology , Muscle, Skeletal/physiology , Animals , Calcineurin/physiology , Calcineurin Inhibitors/pharmacology , Calcium/metabolism , Cells, Cultured , Gene Expression Regulation , Humans , Hypertrophy/genetics , Hypertrophy/pathology , Hypertrophy/physiopathology , Mice , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle Proteins/physiology , Muscle Strength/genetics , Muscle Strength/physiology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/physiopathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
11.
Dev Dyn ; 248(10): 918-930, 2019 10.
Article En | MEDLINE | ID: mdl-31301200

BACKGROUND: Developmental processes, including neuronal differentiation, require precise regulation of transcription. The RE-1 silencing transcription factor (Rest), is often called a "master neuronal regulator" due to its large number of neural-specific targets. Rest recruits CoRest (Rcor) and Sin3 corepressor complexes to gene regulatory sequences. CoRest not only associates with Rest, but with other transcription regulators. In this study, we generated zebrafish rcor1 mutants using transcription activator-like effector nucleases (TALENS), to study its requisite role in repression of Rest target genes as well as Rest-independent Rcor1 developmental functions. RESULTS: While rcor1 mutants have a slight decrease in fitness, most survived and produced viable offspring. We examined expression levels of RE1-containing genes in maternal zygotic rcor1 (MZrcor1) mutants and found that Rcor1 is generally not required for the repression of Rest target genes at early stages. However, MZrcor1 mutants undergo more rapid neurogenesis compared to controls. We found that at gastrula stages, Rcor1 acts as a repressor of her gene family, but at later stages, her6 decreased in the MZrcor1 mutant. CONCLUSIONS: Based on these findings, the central role of CoRest1 in neurogenesis is likely due to a Rest-independent role rather than as a Rest corepressor.


Co-Repressor Proteins/physiology , Nerve Tissue Proteins/metabolism , Neurogenesis/drug effects , Zebrafish Proteins/metabolism , Animals , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Embryo, Nonmammalian , Gastrula/physiology , Gene Expression Regulation, Developmental , Mutant Proteins , Nerve Tissue Proteins/genetics , Repressor Proteins/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Zebrafish , Zebrafish Proteins/genetics
12.
Cell Cycle ; 18(14): 1619-1634, 2019 07.
Article En | MEDLINE | ID: mdl-31177938

Myocardial ischemia-reperfusion (I/R) injury is caused by endothelial dysfunction and enhanced oxidative stress. The overexpression of JAZF1, a zinc finger protein, has been reported to promote cell proliferation and suppress myogenic differentiation in type 2 diabetes. However, the involvement of JAZF1 in myocardial I/R injury remains to be unclear. The current study aims to investigate the role by which JAZF1 influences cardiac microvascular endothelial cells (CMECs) in a rat model of myocardial I/R injury. A total of 50 rats were established as a myocardial I/R model to isolate CMECs, with alterations in JAZF1 expression. After that, the gain- or loss-function of JAZF1 on the proliferation, apoptosis and tube formation ability of CMECs were evaluated by a series of in vitro experiments. Results indicated that JAZF1 was down-regulated in CMECs of rats with myocardial I/R injury. After treatment with JAZF1, the levels of VEGF, Bcl-2, PDGF and p-Akt/Akt were all increased; however, the expression of Bax, caspase-3, caspase-9, p-Bad/Bad, c-caspase-3/caspase-3, c-caspase-9/caspase-9, and p-FKHR/FKHR exhibited decreased levels; CMEC proliferation and angiogenesis were increased, while cell apoptosis was attenuated. CMECs transfected with JAZF1 shRNA exhibited the contrary tendencies. The key findings of this study suggest that the over-expression of JAZF1 alleviates myocardial I/R injury by enhancing proliferation and angiogenesis of CMECs and in turn inhibiting apoptosis of CMECs via the activation of the Akt signaling pathway.


Co-Repressor Proteins/physiology , DNA-Binding Proteins/physiology , Endothelial Cells/metabolism , Myocardial Reperfusion Injury/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Zinc Fingers/genetics , Animals , Apoptosis/genetics , Caspases/metabolism , Cell Proliferation/genetics , Cells, Cultured , Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , Male , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/physiopathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/metabolism , bcl-2-Associated X Protein/metabolism
13.
Diabetes Metab Res Rev ; 35(5): e3148, 2019 07.
Article En | MEDLINE | ID: mdl-30838734

Excessive adiposity and metabolic inflammation are the key risk factors of type 2 diabetes mellitus (T2DM). Juxtaposed with another zinc finger gene 1 (JAZF1) has been identified as a novel transcriptional cofactor, with function of regulating glucose and lipid homeostasis and inflammation. JAZF1 is involved in metabolic process of T2DM via interaction with several nuclear receptors and protein kinases. Additionally, increasing evidence from genome-wide association studies (GWAS) has shown that JAZF1 polymorphisms are closely associated with T2DM. In this review, we have updated the latest research advances on JAZF1 and discussed its regulatory network in T2DM. The association between JAZF1 polymorphisms and T2DM is discussed as well. The information provided is of importance for guiding future studies as well as for the design of JAZF1-based T2DM therapy.


Co-Repressor Proteins/physiology , DNA-Binding Proteins/physiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Animals , Blood Glucose/metabolism , Carbohydrate Metabolism/genetics , Genome-Wide Association Study , Humans , Lipid Metabolism/genetics , Polymorphism, Genetic , Risk Factors
14.
BMC Plant Biol ; 18(1): 311, 2018 Nov 29.
Article En | MEDLINE | ID: mdl-30497415

BACKGROUND: Productivity of important crop rice is greatly affected by salinity. The plant hormone jasmonate plays a vital role in salt stress adaptation, but also evokes detrimental side effects if not timely shut down again. As novel strategy to avoid such side effects, OsJAZ8, a negative regulator of jasmonate signalling, is expressed under control of the salt-inducible promoter of the transcription factor ZOS3-11, to obtain a transient jasmonate signature in response to salt stress. To modulate the time course of jasmonate signalling, either a full-length or a dominant negative C-terminally truncated version of OsJAZ8 driven by the ZOS3-11 promoter were expressed in a stable manner either in tobacco BY-2 cells, or in japonica rice. RESULTS: The transgenic tobacco cells showed reduced mortality and efficient cycling under salt stress adaptation. This was accompanied by reduced sensitivity to Methyl jasmonate and increased responsiveness to auxin. In the case of transgenic rice, the steady-state levels of OsJAZ8 transcripts were more efficiently induced under salt stress compared to the wild type, this induction was more pronounced in the dominant-negative OsJAZ8 variant. CONCLUSIONS: The result concluded that, more efficient activation of OsJAZ8 was accompanied by improved salt tolerance of the transgenic seedlings and demonstrates the impact of temporal signatures of jasmonate signalling for stress tolerance.


Co-Repressor Proteins/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Salt-Tolerant Plants/metabolism , Co-Repressor Proteins/genetics , Co-Repressor Proteins/physiology , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/drug effects , Oryza/genetics , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/physiology , Plants, Genetically Modified/genetics , Salt Stress , Salt-Tolerant Plants/genetics , Signal Transduction , Nicotiana/genetics
16.
Nat Commun ; 8(1): 355, 2017 08 25.
Article En | MEDLINE | ID: mdl-28842554

Impairment of intrinsic plasticity is involved in a range of neurological disorders such as epilepsy. However, how intrinsic excitability is regulated is still not fully understood. Here we report that the epigenetic factor Chromodomain Y-like (CDYL) protein is a critical regulator of the initiation and maintenance of intrinsic neuroplasticity by regulating voltage-gated ion channels in mouse brains. CDYL binds to a regulatory element in the intron region of SCN8A and mainly recruits H3K27me3 activity for transcriptional repression of the gene. Knockdown of CDYL in hippocampal neurons results in augmented Nav1.6 currents, lower neuronal threshold, and increased seizure susceptibility, whereas transgenic mice over-expressing CDYL exhibit higher neuronal threshold and are less prone to epileptogenesis. Finally, examination of human brain tissues reveals decreased CDYL and increased SCN8A in the temporal lobe epilepsy group. Together, our findings indicate CDYL is a critical player for experience-dependent gene regulation in controlling intrinsic excitability.Alterations in intrinsic plasticity are important in epilepsy. Here the authors show that the epigenetic factor CDYL regulates the gene expression of the voltage gated sodium channel, Nav1.6, which contributes to seizures in a rat model of epilepsy.


Co-Repressor Proteins/physiology , Epilepsy/genetics , Histone Acetyltransferases/physiology , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Animals , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Epilepsy/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Hippocampus/metabolism , Hippocampus/pathology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Hydro-Lyases , Ion Channel Gating/genetics , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity/genetics , Rats, Sprague-Dawley , Seizures/genetics
17.
Plant J ; 92(2): 244-262, 2017 Oct.
Article En | MEDLINE | ID: mdl-28752516

CYCLING DOF FACTOR 1 (CDF1) and its homologs play an important role in the floral transition by repressing the expression of floral activator genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) in Arabidopsis. The day-length-specific removal of CDF1-dependent repression is a critical mechanism in photoperiodic flowering. However, the mechanism by which CDF1 represses CO and FT transcription remained elusive. Here we demonstrate that Arabidopsis CDF proteins contain non-EAR motif-like conserved domains required for interaction with the TOPLESS (TPL) co-repressor protein. This TPL interaction confers a repressive function on CDF1, as mutations of the N-terminal TPL binding domain largely impair the ability of CDF1 protein to repress its targets. TPL proteins are present on specific regions of the CO and FT promoters where CDF1 binds during the morning. In addition, TPL binding increases when CDF1 expression is elevated, suggesting that TPL is recruited to these promoters in a time-dependent fashion by CDFs. Moreover, reduction of TPL activity induced by expressing a dominant negative version of TPL (tpl-1) in phloem companion cells results in early flowering and a decreased sensitivity to photoperiod in a manner similar to a cdf loss-of-function mutant. Our results indicate that the mechanism of CDF1 repression is through the formation of a CDF-TPL transcriptional complex, which reduces the expression levels of CO and FT during the morning for seasonal flowering.


Arabidopsis Proteins/physiology , Arabidopsis/physiology , Flowers/growth & development , Repressor Proteins/physiology , Co-Repressor Proteins/physiology , Flowers/physiology , Gene Expression Regulation, Plant/physiology , Photoperiod
18.
Chin J Cancer ; 36(1): 28, 2017 Mar 09.
Article En | MEDLINE | ID: mdl-28279208

Worldwide, metastasis is the leading cause of more than 90% of cancer-related deaths. Currently, no specific therapies effectively impede metastasis. Metastatic processes are controlled by complex regulatory networks and transcriptional hierarchy. Corepressor metastasis-associated protein 3 (MTA3) has been confirmed as a novel component of nucleosome remodeling and histone deacetylation (NuRD). Increasing evidence supports the theory that, in the recruitment of transcription factors, coregulators function as master regulators rather than passive passengers. As a master regulator, MTA3 governs the target selection for NuRD and functions as a transcriptional repressor. MTA3 dysregulation is associated with tumor progression, invasion, and metastasis in various cancers. MTA3 is also a key regulator of E-cadherin expression and epithelial-to-mesenchymal transition. Elucidating the functions of MTA3 might help to find additional therapeutic approaches for targeting components of NuRD.


Co-Repressor Proteins/physiology , Epithelial-Mesenchymal Transition , Neoplasm Metastasis/physiopathology , Neoplasm Proteins/physiology , Animals , Humans , Neoplasms/pathology , Neoplasms/physiopathology
19.
Dev Biol ; 414(1): 34-44, 2016 06 01.
Article En | MEDLINE | ID: mdl-27085753

In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation.


Co-Repressor Proteins/physiology , Enhancer Elements, Genetic/genetics , Forkhead Transcription Factors/physiology , Gene Expression Regulation, Developmental/physiology , Mesoderm/growth & development , Nodal Signaling Ligands/physiology , Smad2 Protein/physiology , Transcription, Genetic/genetics , Xenopus Proteins/physiology , Xenopus laevis/genetics , Amino Acid Motifs , Animals , Blastula/metabolism , Gastrula/metabolism , Gene Expression Regulation, Developmental/genetics , Microinjections , Protein Binding , Protein Interaction Mapping , RNA, Messenger/genetics , Xenopus Proteins/biosynthesis , Xenopus Proteins/genetics , Xenopus laevis/embryology
20.
Proc Natl Acad Sci U S A ; 113(7): 1871-6, 2016 Feb 16.
Article En | MEDLINE | ID: mdl-26831087

Tle1 (transducin-like enhancer of split 1) is a corepressor that interacts with a variety of DNA-binding transcription factors and has been implicated in many cellular functions; however, physiological studies are limited. Tle1-deficient (Tle1(Δ/Δ)) mice, although grossly normal at birth, exhibit skin defects, lung hypoplasia, severe runting, poor body condition, and early mortality. Tle1(Δ/Δ) mice display a chronic inflammatory phenotype with increased expression of inflammatory cytokines and chemokines in the skin, lung, and intestine and increased circulatory IL-6 and G-CSF, along with a hematopoietic shift toward granulocyte macrophage progenitor and myeloid cells. Tle1(Δ/Δ) macrophages produce increased inflammatory cytokines in response to Toll-like receptor (TLR) agonists and lipopolysaccharides (LPS), and Tle1(Δ/Δ) mice display an enhanced inflammatory response to ear skin 12-O-tetradecanoylphorbol-13-acetate treatment. Loss of Tle1 not only results in increased phosphorylation and activation of proinflammatory NF-κB but also results in decreased Hes1 (hairy and enhancer of split-1), a negative regulator of inflammation in macrophages. Furthermore, Tle1(Δ/Δ) mice exhibit accelerated growth of B6-F10 melanoma xenografts. Our work provides the first in vivo evidence, to our knowledge, that TLE1 is a major counterregulator of inflammation with potential roles in a variety of inflammatory diseases and in cancer progression.


Co-Repressor Proteins/physiology , Genes, Tumor Suppressor , Inflammation/physiopathology , NF-kappa B/metabolism , Animals , Co-Repressor Proteins/genetics , Inflammation/metabolism , Mice , Mice, Transgenic
...