Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Toxicon ; 239: 107613, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38218383

RESUMEN

Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (Naja kaouthia), in three different expression systems, namely Escherichia coli BL21 (DE3) cells with the csCyDisCo plasmid, Escherichia coli SHuffle cells, and Komagataella phaffii (formerly known as Pichia pastoris). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His6-tagged α-cobratoxin expressed in K. phaffii exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.


Asunto(s)
Proteínas Neurotóxicas de Elápidos , Receptores Nicotínicos , Toxinas Biológicas , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas de los Tres Dedos , Proteínas Neurotóxicas de Elápidos/química , Proteínas Neurotóxicas de Elápidos/metabolismo , Receptores Nicotínicos/metabolismo , Ponzoñas , Venenos Elapídicos/química
2.
Protein Sci ; 31(5): e4296, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481650

RESUMEN

Each year, thousands of people fall victim to envenomings caused by cobras. These incidents often result in death due to paralysis caused by α-neurotoxins from the three-finger toxin (3FTx) family, which are abundant in elapid venoms. Due to their small size, 3FTxs are among the snake toxins that are most poorly neutralized by current antivenoms, which are based on polyclonal antibodies of equine or ovine origin. While antivenoms have saved countless lives since their development in the late 18th century, an opportunity now exists to improve snakebite envenoming therapy via the application of new biotechnological methods, particularly by developing monoclonal antibodies against poorly neutralized α-neurotoxins. Here, we describe the use of phage-displayed synthetic antibody libraries and the development and characterization of six synthetic antibodies built on a human IgG framework and developed against α-cobratoxin - the most abundant long-chain α-neurotoxin from Naja kaouthia venom. The synthetic antibodies exhibited sub-nanomolar affinities to α-cobratoxin and neutralized the curare-mimetic effect of the toxin in vitro. These results demonstrate that phage display technology based on synthetic repertoires can be used to rapidly develop human antibodies with drug-grade potencies as inhibitors of venom toxins.


Asunto(s)
Proteínas Neurotóxicas de Elápidos , Naja naja , Animales , Antivenenos/farmacología , Proteínas Neurotóxicas de Elápidos/farmacología , Caballos , Humanos , Naja naja/metabolismo , Neurotoxinas/química , Neurotoxinas/metabolismo , Ovinos
3.
Nature ; 602(7897): 529-533, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140402

RESUMEN

Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, ß-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αß, α4ßδ, α6ßδ and α5ßγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1ßγ, α2ßγ and α3ßγ receptor responses5,7-12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αß GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA-Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αß receptors that adapt them to a role in tonic signalling.


Asunto(s)
Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Receptores de GABA-A , Animales , Proteínas Neurotóxicas de Elápidos , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Mamíferos/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Zinc , Ácido gamma-Aminobutírico/metabolismo
4.
Toxins (Basel) ; 13(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34822602

RESUMEN

Naja atra, also known as Taiwanese cobra, is one of the most prevalent venomous snakes in Taiwan. Clinically, freeze-dried neurotoxic antivenom (FNAV) produced from horses by Taiwan Centers for Disease Control (CDC) has been the only approved treatment for N. atra envenoming for the last few decades. During antivenom production, large numbers of mice are used in the in vivo assay to determine whether the neutralization potency of hyperimmunized equines is satisfactory for large-scale harvesting. However, this in vivo assay is extremely laborious, expensive, and significantly impairs animal welfare. In the present study, we aimed to develop an in vitro ELISA-based system that could serve as an alternative assay to evaluate the neutralization potency of plasma from hyperimmunized equines. We initially obtained 51 plasma samples with known (high or low) neutralization potency assessed in vivo from 9 hyperimmunized equines and subsequently determined their antibody titers against the five major protein components of N. atra venom (neurotoxin (NTX), phospholipase A2 (PLA2), cytotoxin (CTX), cysteine-rich secretory protein (CRISP), and snake venom metalloproteinase (SVMP)) via ELISA. The antibody titer against NTX was the most effective in discriminating between high and low potency plasma samples. To identify the specific epitope(s) of NTX recognized by neutralization potency-related antibodies, 17 consecutive NTX-derived pentadecapeptides were synthesized and used as antigens to probe the 51 equine plasma samples. Among the 17 peptides, immunoreactive signals for three consecutive peptides (NTX1-8, NTX1-9, and NTX1-10) were significantly higher in the high potency relative to low potency equine plasma groups (p < 0.0001). Our ELISA system based on NTX1-10 peptide (RWRDHRGYRTERGCG) encompassing residues 28-42 of NTX displayed optimal sensitivity (96.88%) and specificity (89.47%) for differentiating between high- and low-potency plasma samples (area under the receiver operating characteristic curve (AUC) = 0.95). The collective data clearly indicate that the antibody titer against NTX protein or derived peptides can be used to efficiently discriminate between high and low neutralization potency of plasma samples from venom-immunized horses. This newly developed antibody detection ELISA based on NTX or its peptide derivatives has good potential to complement or replace the in vivo rodent assay for determining whether the neutralization potency of equine plasma is satisfactory for large-scale harvesting in the antivenom production process against N. atra.


Asunto(s)
Antivenenos/inmunología , Proteínas Neurotóxicas de Elápidos/inmunología , Venenos Elapídicos/inmunología , Péptidos/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Ensayo de Inmunoadsorción Enzimática , Caballos , Masculino , Ratones , Ratones Endogámicos ICR , Naja naja
5.
Int J Biol Macromol ; 184: 776-786, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34174307

RESUMEN

Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 µg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Neurotóxicas de Elápidos/farmacología , Naja/metabolismo , Proteómica/métodos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Venenos Elapídicos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Espectrometría de Masas en Tándem , Factores de Tiempo
6.
Arch Razi Inst ; 76(1): 127-138, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33818965

RESUMEN

Snake venoms are mostly composed of various proteins and peptides with toxicity and pharmacological effects depending on their geographical sources. Naja naja oxiana is one of the most medically important venomous snakes in Iran and Central Asia. The bite of this type of snake can cause severe pain and swelling, as well as neurotoxicity. Without medical treatment, symptoms quickly worsen and death can occur soon. A detailed understanding of venom components can provide new insight into the production of antivenom against toxic agents instead of crude venom. Specific antibodies against toxic fractions are of utmost importance in neutralizing crude venom. Therefore, the proteome profile of these fractions of Naja naja oxidana venom was analyzed using fractionation by gel filtration, two-dimensional electrophoresis, mass spectrometry, and data mining. Base on the results, in total, 32 spots were detected and categorized into three protein families, namely three-finger toxin (3FTx), phospholipase, and Cysteine-rich secretory proteins (CRISP). These proteins consist of more than 70% crude venom all with a molecular weight below 25 kDa. The 3FTx as a highly diverse constituent in the venom of Naja species was in large quantity in this district. Short-chain neurotoxins, including short neurotoxin, cytotoxin, and muscarinic toxin-like protein, were in abundance, respectively. In conclusion, the recognition of toxic fractions of Naja naja oxiana in this region could be of great help in the production of an effective antivenom against similar compositions. It can also help the medical care department to find out the clinical sign of cobra venom. To the best of our knowledge, this was the first study to report the proteomic of toxic fractions of Naja naja oxiana in Iran.


Asunto(s)
Elapidae , Naja naja , Animales , Proteínas Neurotóxicas de Elápidos , Electroforesis/veterinaria , Irán , Espectrometría de Masas/veterinaria , Proteoma , Proteómica
7.
Toxins (Basel) ; 13(2)2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672715

RESUMEN

Cobra venoms contain three-finger toxins (TFT) including α-neurotoxins efficiently binding nicotinic acetylcholine receptors (nAChRs). As shown recently, several TFTs block GABAA receptors (GABAARs) with different efficacy, an important role of the TFTs central loop in binding to these receptors being demonstrated. We supposed that the positive charge (Arg36) in this loop of α-cobratoxin may explain its high affinity to GABAAR and here studied α-neurotoxins from African cobra N. melanoleuca venom for their ability to interact with GABAARs and nAChRs. Three α-neurotoxins, close homologues of the known N. melanoleuca long neurotoxins 1 and 2, were isolated and sequenced. Their analysis on Torpedocalifornica and α7 nAChRs, as well as on acetylcholine binding proteins and on several subtypes of GABAARs, showed that all toxins interacted with the GABAAR much weaker than with the nAChR: one neurotoxin was almost as active as α-cobratoxin, while others manifested lower activity. The earlier hypothesis about the essential role of Arg36 as the determinant of high affinity to GABAAR was not confirmed, but the results obtained suggest that the toxin loop III may contribute to the efficient interaction of some long-chain neurotoxins with GABAAR. One of isolated toxins manifested different affinity to two binding sites on Torpedo nAChR.


Asunto(s)
Colinérgicos/farmacología , Proteínas Neurotóxicas de Elápidos/farmacología , Venenos Elapídicos/metabolismo , Antagonistas de Receptores de GABA-A/farmacología , Naja , Receptores de GABA/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/efectos de los fármacos , Animales , Sitios de Unión , Unión Competitiva , Línea Celular Tumoral , Colinérgicos/metabolismo , Proteínas Neurotóxicas de Elápidos/metabolismo , Antagonistas de Receptores de GABA-A/metabolismo , Potenciales de la Membrana , Ratones , Unión Proteica , Conformación Proteica , Receptores de GABA/genética , Receptores de GABA/metabolismo , Relación Estructura-Actividad , Torpedo , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
8.
Mar Drugs ; 19(2)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33669933

RESUMEN

Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, ß2 and ß4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.


Asunto(s)
Proteínas Neurotóxicas de Elápidos/farmacología , Conotoxinas/farmacología , Glioma/tratamiento farmacológico , Antagonistas Nicotínicos/farmacología , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología , Glioma/patología , Inhibidores de la Lipooxigenasa/farmacología , Nicotina/farmacología , Ratas , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Factores de Tiempo
9.
Toxins (Basel) ; 13(1)2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466660

RESUMEN

The Senegalese cobra, Naja senegalensis, is a non-spitting cobra species newly erected from the Naja haje complex. Naja senegalensis causes neurotoxic envenomation in Western Africa but its venom properties remain underexplored. Applying a protein decomplexation proteomic approach, this study unveiled the unique complexity of the venom composition. Three-finger toxins constituted the major component, accounting for 75.91% of total venom proteins. Of these, cardiotoxin/cytotoxin (~53%) and alpha-neurotoxins (~23%) predominated in the venom proteome. Phospholipase A2, however, was not present in the venom, suggesting a unique snake venom phenotype found in this species. The venom, despite the absence of PLA2, is highly lethal with an intravenous LD50 of 0.39 µg/g in mice, consistent with the high abundance of alpha-neurotoxins (predominating long neurotoxins) in the venom. The hetero-specific VINS African Polyvalent Antivenom (VAPAV) was immunoreactive to the venom, implying conserved protein antigenicity in the venoms of N. senegalensis and N. haje. Furthermore, VAPAV was able to cross-neutralize the lethal effect of N. senegalensis venom but the potency was limited (0.59 mg venom completely neutralized per mL antivenom, or ~82 LD50 per ml of antivenom). The efficacy of antivenom should be further improved to optimize the treatment of cobra bite envenomation in Africa.


Asunto(s)
Antivenenos/uso terapéutico , Venenos Elapídicos/análisis , Venenos Elapídicos/toxicidad , Fosfolipasas A2/análisis , Animales , Anticuerpos Neutralizantes/inmunología , Proteínas Neurotóxicas de Elápidos/análisis , Proteínas Neurotóxicas de Elápidos/toxicidad , Elapidae , Caballos , Humanos , Dosificación Letal Mediana , Ratones , Ratones Endogámicos ICR , Síndromes de Neurotoxicidad/terapia , Proteoma/análisis , Mordeduras de Serpientes/terapia
10.
PLoS One ; 15(11): e0241792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151979

RESUMEN

Passive Acoustic Monitoring (PAM) is a non-intrusive and cost-effective method capable of providing high-resolution, long-term information on the status and health of vocal populations and communities. To successfully monitor the same species over wide geographical and temporal scales, it is necessary to characterise the range of sound variability, as well as the consistency of sound features between populations. The meagre (Argyrosomus regius, Asso 1801) is an interesting case study because recent investigations suggest a wider vocal repertoire than previously described. In this study, meagre vocalizations were recorded and analysed from a variety of settings, ranging from rearing facilities to wild populations to provide a comprehensive characterisation of its vocal repertoire, while investigating the consistency of spawning sound features between populations. All sounds presented a similar acoustic structure in their basic unit (i.e. the pulse), while an important variability was found in the number of pulses; the meagre can emit sounds made of one single pulse or many pulses (up to more than 100). High level of overlap in the Principal Component Analysis made difficult to differentiate sound type clusters. Despite this, two sound types were identifiable: knocks (sounds from 1 to 3 pulses) and long grunts (sounds with more than 29 pulses). Discriminant Analysis carried out on PCA residuals showed that knock had the highest proportion of correct placement (92% of the observations correctly placed) followed by long grunts (80%). All other previously described sound types (intermediate grunt, short grunt and disturbance sounds) could not be separated and presented low levels of correct placement, suggesting that care should be taken when defining these as independent sound types. Finally, acoustic features consistency was found in meagre grunts emitted by different populations during spawning nights; statistical differences could be explained by recording settings and fish conditions. The results of this study provide important information for fostering PAM programs of wild meagre populations, while contributing to the discussion around the definition of fish sound types in vocal fish communities. Studies of this kind, which evaluate both variability and consistency of sound features, are of fundamental importance for maximising PAM efforts in the wild, at both the specific and the community level.


Asunto(s)
Perciformes/fisiología , Vocalización Animal/fisiología , Animales , Proteínas Neurotóxicas de Elápidos , Femenino , Francia , Masculino , Fragmentos de Péptidos , Péptidos Cíclicos , Portugal
11.
J Med Chem ; 63(22): 13709-13718, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33143415

RESUMEN

Venomous snakebites cause >100 000 deaths every year, in many cases via potent depression of human neuromuscular signaling by snake α-neurotoxins. Emergency therapy still relies on antibody-based antivenom, hampered by poor access, frequent adverse reactions, and cumbersome production/purification. Combining high-throughput discovery and subsequent structure-function characterization, we present simple peptides that bind α-cobratoxin (α-Cbtx) and prevent its inhibition of nicotinic acetylcholine receptors (nAChRs) as a lead for the development of alternative antivenoms. Candidate peptides were identified by phage display and deep sequencing, and hits were characterized by electrophysiological recordings, leading to an 8-mer peptide that prevented α-Cbtx inhibition of nAChRs. We also solved the peptide:α-Cbtx cocrystal structure, revealing that the peptide, although of unique primary sequence, binds to α-Cbtx by mimicking structural features of the nAChR binding pocket. This demonstrates the potential of small peptides to neutralize lethal snake toxins in vitro, establishing a potential route to simple, synthetic, low-cost antivenoms.


Asunto(s)
Proteínas Neurotóxicas de Elápidos/antagonistas & inhibidores , Proteínas Neurotóxicas de Elápidos/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Receptores Nicotínicos/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Proteínas Neurotóxicas de Elápidos/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Femenino , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína , Receptores Nicotínicos/química , Xenopus laevis
13.
Int J Biol Macromol ; 164: 2953-2963, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32846183

RESUMEN

Naja atra cobrotoxin and cardiotoxin 3 (CTX3) exhibit neurotoxicity and cytotoxicity, respectively. In the present study, we aimed to investigate whether the carboxyl groups of cobrotoxin play a role in structural constraints, thereby preventing cobrotoxin from exhibiting cytotoxic activity. Six of the seven carboxyl groups in cobrotoxin were conjugated with semicarbazide. Measurement of circular dichroism spectra and Trp fluorescence quenching showed that the gross conformation of semicarbazide-modified cobrotoxin (SEM-cobrotoxin) and cobrotoxin differed. In sharp contrast to cobrotoxin, SEM-cobrotoxin demonstrated membrane-damaging activity and cytotoxicity, which are feature more characteristic of CTX3. Furthermore, both SEM-cobrotoxin and CTX3 induced cell death through AMPK activation. Analyses of the interaction between polydiacetylene/lipid vesicles and fluorescence-labeled lipids revealed that SEM-cobrotoxin and cobrotoxin adopted different membrane-bound states. The structural characteristics of SEM-cobrotoxin were similar to those of CTX3, including trifluoroethanol (TFE)-induced structural transformation and membrane binding-induced conformational change. Conversely, cobrotoxin was insensitive to the TFE-induced effect. Collectively, the data of this study indicate that blocking negatively charged residues confers cobrotoxin with membrane-damaging activity and cytotoxicity. The findings also suggest that the structural constraints imposed by carboxyl groups control the functional properties of snake venom α-neurotoxins during the divergent evolution of snake venom neurotoxins and cardiotoxins.


Asunto(s)
Antineoplásicos/química , Proteínas Cardiotóxicas de Elápidos/química , Proteínas Neurotóxicas de Elápidos/química , Naja naja/metabolismo , Semicarbacidas/química , Proteínas Quinasas Activadas por AMP/metabolismo , Secuencia de Aminoácidos , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Proteínas Cardiotóxicas de Elápidos/farmacología , Proteínas Neurotóxicas de Elápidos/farmacología , Humanos , Modelos Moleculares , Conformación Proteica
14.
Mar Drugs ; 18(4)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272633

RESUMEN

Several biochemical mechanisms, including the arachidonic acid cascade and activation of nicotinic acetylcholine receptors (nAChRs), are involved in increased tumor survival. Combined application of inhibitors acting on these two pathways may result in a more pronounced antitumor effect. Here, we show that baicalein (selective 12-lipoxygenase inhibitor), nordihydroguaiaretic acid (non-selective lipoxygenase inhibitor), and indomethacin (non-selective cyclooxygenase inhibitor) are cytotoxic to Ehrlich carcinoma cells in vitro. Marine snail α-conotoxins PnIA, RgIA and ArIB11L16D, blockers of α3ß2/α6ß2, α9α10 and α7 nAChR subtypes, respectively, as well as α-cobratoxin, a blocker of α7 and muscle subtype nAChRs, exhibit low cytotoxicity, but enhance the antitumor effect of baicalein 1.4-fold after 24 h and that of nordihydroguaiaretic acid 1.8-3.9-fold after 48 h of cell cultivation. α-Conotoxin MII, a blocker of α6-containing and α3ß2 nAChR subtypes, increases the cytotoxic effect of indomethacin 1.9-fold after 48 h of cultivation. In vivo, baicalein, α-conotoxins MII and PnIA inhibit Ehrlich carcinoma growth and increase mouse survival; these effects are greatly enhanced by the combined application of α-conotoxin MII with indomethacin or conotoxin PnIA with baicalein. Thus, we show, for the first time, antitumor synergism of α-conotoxins and arachidonic acid cascade inhibitors.


Asunto(s)
Carcinoma de Ehrlich/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Conotoxinas/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Antagonistas Nicotínicos/farmacología , Animales , Ácido Araquidónico/antagonistas & inhibidores , Carcinoma/tratamiento farmacológico , Proteínas Neurotóxicas de Elápidos/farmacología , Sinergismo Farmacológico , Flavanonas/farmacología , Indometacina/farmacología , Masoprocol/farmacología , Ratones , Receptores Nicotínicos
15.
Drug Test Anal ; 12(7): 918-928, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32246898

RESUMEN

Venoms were first identified as potential doping agents by the racing industry in 2007 when three vials of cobra venom were seized during an inspection of a stable at Keeneland Racecourse in the USA. Venoms are a complex mixture of proteins, peptides, and other substances with a wide range of biological effects, including inhibiting the transmission of nervous and muscular impulses. As an example of this, cobratoxin, an α-neurotoxin found in cobra venom, is claimed to be an effective treatment for pain. Recent analysis of seized samples identified venom from two different species of snake. Proteomic analysis identified the first sample as cobra venom, while the second sample, in a vial labeled "Conotoxin", was identified as venom from a many banded krait. Cobratoxin, conotoxins, and bungarotoxins (a component of krait venom) are all α-neurotoxins, suggesting a common application for all three venom proteins as potential pain blocking medications. Using a peptide based on the nicotinic acetylcholine receptor, a one-step affinity purification method was developed for the detection of α-neurotoxins in plasma.


Asunto(s)
Doping en los Deportes/prevención & control , Neurotoxinas/análisis , Detección de Abuso de Sustancias/métodos , Animales , Bungarotoxinas/análisis , Bungarotoxinas/sangre , Proteínas Neurotóxicas de Elápidos/análisis , Proteínas Neurotóxicas de Elápidos/sangre , Conotoxinas/análisis , Conotoxinas/sangre , Caballos , Neurotoxinas/sangre , Proteómica/métodos , Receptores Nicotínicos/metabolismo , Detección de Abuso de Sustancias/veterinaria
16.
Sci Rep ; 10(1): 3861, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123252

RESUMEN

Snake venom α-neurotoxins, invaluable pharmacological tools, bind with high affinity to distinct subtypes of nicotinic acetylcholine receptor. The combinatorial high-affinity peptide (HAP), homologous to the C-loop of α1 and α7 nAChR subunits, binds biotinylated α-bungarotoxin (αBgt) with nanomolar affinity and might be a protection against snake-bites. Since there are no data on HAP interaction with other toxins, we checked its binding of α-cobratoxin (αCtx), similar to αBgt in action on nAChRs. Using radioiodinated αBgt, we confirmed a high affinity of HAP for αBgt, the complex formation is supported by mass spectrometry and gel chromatography, but only weak binding was registered with αCtx. A combination of protein intrinsic fluorescence measurements with the principal component analysis of the spectra allowed us to measure the HAP-αBgt binding constant directly (29 nM). These methods also confirmed weak HAP interaction with αCtx (>10000 nM). We attempted to enhance it by modification of HAP structure relying on the known structures of α-neurotoxins with various targets and applying molecular dynamics. A series of HAP analogues have been synthesized, HAP[L9E] analogue being considerably more potent than HAP in αCtx binding (7000 nM). The proposed combination of experimental and computational approaches appears promising for analysis of various peptide-protein interactions.


Asunto(s)
Bungarotoxinas/química , Proteínas Neurotóxicas de Elápidos/química , Simulación de Dinámica Molecular , Neurotoxinas/química , Péptidos/química , Receptor Nicotínico de Acetilcolina alfa 7/química , Unión Proteica , Estructura Secundaria de Proteína
17.
Int J Biol Macromol ; 140: 49-58, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421173

RESUMEN

Naja spp. venom is a natural source of active compounds with therapeutic application potential. Phospholipase A2 (PLA2) is abundant in the venom of Naja spp. and can perform neurotoxicity, cytotoxicity, cardiotoxicity, and hematological disorders. The PLA2s from Naja spp. venoms are Asp 49 isoenzymes with the exception of PLA2 Cys 49 from Naja sagittifera. When looking at the functional aspects, the neurotoxicity occurs by PLA2 called ß-toxins that have affinity for phosphatidylcholine in nerve endings and synaptosomes membranes, and by α-toxins that block the nicotinic acetylcholine receptors in the neuromuscular junctions. In addition, these neurotoxins may inhibit K+ and Ca++ channels or even interfere with the Na+/K+/ATPase enzyme. The disturbance in the membrane fluidity also results in inhibition of the release of acetylcholine. The PLA2 can act as anticoagulants or procoagulant. The cytotoxicity exerted by PLA2s result from changes in the cardiomyocyte membranes, triggering cardiac failure and hemolysis. The antibacterial activity, however, is the result of alterations that decrease the stability of the lipid bilayer. Thus, the understanding of the structural and functional aspects of PLA2s can contribute to studies on the toxic and therapeutic mechanisms involved in the envenomation by Naja spp. and in the treatment of pathologies.


Asunto(s)
Proteínas Neurotóxicas de Elápidos , Naja , Unión Neuromuscular/metabolismo , Fosfolipasas A2 , Sinaptosomas/metabolismo , Animales , Proteínas Neurotóxicas de Elápidos/química , Proteínas Neurotóxicas de Elápidos/uso terapéutico , Unión Neuromuscular/patología , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipasas A2/química , Fosfolipasas A2/uso terapéutico , Relación Estructura-Actividad , Sinaptosomas/patología
18.
J Proteomics ; 206: 103418, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31201947

RESUMEN

The Philippine cobra, Naja philippinensis, is a WHO Category 1 venomous snake of medical importance responsible for fatal envenomation in the northern Philippines. To elucidate the venom proteome and pathophysiology of envenomation, N. philippinensis venom proteins were decomplexed with reverse-phase high-performance liquid chromatography, and protein fractions were subsequently digested with trypsin, followed by nano-liquid chromatography-tandem mass spectrometry analysis and data mining. Three-finger toxins (3FTX, 66.64% of total venom proteins) and phospholipases A2 (PLA2, 22.88%) constitute the main bulk of venom proteome. Other proteins are present at low abundances (<4% each); these include metalloproteinase, serine protease, cobra venom factor, cysteine-rich secretory protein, vespryn, phosphodiesterase, 5' nucleotidase and nerve growth factor. In the three-finger toxin family, the alpha-neurotoxins comprise solely short neurotoxins (SNTX, 44.55%), supporting that SNTX is the principal toxin responsible for neuromuscular paralysis and lethality reported in clinical envenomation. Cytotoxins (CTX) are the second most abundant 3FTX proteins in the venom (21.31%). The presence of CTX correlates with the venom cytotoxic effect, which is more prominent in murine cells than in human cells. From the practical standpoint, SNTX-driven neuromuscular paralysis is significant in N. philippinensis envenomation. Antivenom production and treatment should be tailored accordingly to ensure effective neutralization of SNTX. BIOLOGICAL SIGNIFICANCE: The venom proteome of Naja philippinensis, the Philippine cobra, is unravelled for the first time. Approximately half the protein bulk of the venom is made up of short neurotoxins (44.55% of the total venom proteins). As the only alpha-neurotoxins present in the venom, short neurotoxins are the causative toxins of the post-synaptic blockade and fast-onset neuromuscular paralysis in N. philippinensis envenomation. A substantial amount of cytotoxins (21.31%) was also detected in N. philippinensis venom, supporting that the venom can be cytotoxic although the effect is much weaker in human cells compared to murine cells. The finding is consistent with the low incidence of local tissue necrosis in N. philippinensis envenomation, although this does not negate the need for monitoring and care of bite wound in the patients.


Asunto(s)
Proteínas Neurotóxicas de Elápidos/metabolismo , Naja naja/metabolismo , Síndromes de Neurotoxicidad/epidemiología , Proteómica/métodos , Mordeduras de Serpientes/epidemiología , Animales , Asia Sudoriental/epidemiología , Células Cultivadas , Proteínas Neurotóxicas de Elápidos/análisis , Humanos , Ratones , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/terapia , Neurotoxinas/análisis , Neurotoxinas/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Índice de Severidad de la Enfermedad , Mordeduras de Serpientes/etiología , Mordeduras de Serpientes/terapia
19.
PLoS One ; 13(6): e0198276, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29894484

RESUMEN

A crucial mechanism to the formation of native, fully functional, 3D structures from local secondary structures is unraveled in this study. Through the introduction of various amino acid substitutions at four canonical ß-turns in a three-fingered protein, Toxin α from Naja nigricollis, we found that the release of internal entropy to the external environment through the globally synchronized movements of local substructures plays a crucial role. Throughout the folding process, the folding species were saturated with internal entropy so that intermediates accumulated at the equilibrium state. Their relief from the equilibrium state was accomplished by the formation of a critical disulfide bridge, which could guide the synchronized movement of one of the peripheral secondary structure. This secondary structure collided with a core central structure, which flanked another peripheral secondary structure. This collision displaced the internal thermal fluctuations from the first peripheral structure to the second peripheral structure, where the displaced thermal fluctuations were ultimately released as entropy. Two protein folding processes that acted in succession were identified as the means to establish the flow of thermal fluctuations. The first process was the time-consuming assembly process, where stochastic combinations of colliding, native-like, secondary structures provided candidate structures for the folded protein. The second process was the activation process to establish the global mutual relationships of the native protein in the selected candidate. This activation process was initiated and propagated by a positive feedback process between efficient entropy release and well-packed local structures, which moved in synchronization. The molecular mechanism suggested by this experiment was assessed with a well-defined 3D structure of erabutoxin b because one of the turns that played a critical role in folding was shared with erabutoxin b.


Asunto(s)
Proteínas Neurotóxicas de Elápidos/química , Disulfuros/química , Entropía , Naja/metabolismo , Sustitución de Aminoácidos , Animales , Modelos Moleculares , Pliegue de Proteína , Estructura Secundaria de Proteína
20.
Drug Test Anal ; 10(5): 880-885, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29232492

RESUMEN

Cobra (Naja naja kaouthia) venom contains a toxin called α-cobratoxin (α-Cbtx) containing 71 amino acids (MW 7821 Da) with a reported analgesic power greater than morphine. In 2013, the first analytical method for the detection of α-Cbtx in equine plasma was developed by Bailly-Chouriberry et al, allowing the confirmation of the presence of α-Cbtx at low concentrations (1-5 ng/mL or 130-640 fmol/mL) in plasma samples. To increase the method sensitivity and therefore to improve the detection of α-Cbtx in post-administration plasma samples, a nano-liquid chromatography-mass spectrometry/high resolution mass spectrometry (nLC-MS/HRMS) method was developed. This new method allowed us to confirm the presence of α-Cbtx in plasma samples spiked at 100 pg/mL (12.8 fmol/mL) and the detection of α-Cbtx was obtained in plasma samples collected 72 hours post-administration (50 pg/mL or 6.4 fmol/mL) which was defined as the limit of detection (LOD). The presented method is 20-fold more sensitive compared to the method previously described.


Asunto(s)
Analgésicos/sangre , Proteínas Neurotóxicas de Elápidos/sangre , Caballos/sangre , Detección de Abuso de Sustancias/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Liquida/métodos , Doping en los Deportes , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...