Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.078
1.
Adv Parasitol ; 124: 91-154, 2024.
Article En | MEDLINE | ID: mdl-38754928

Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.


Coccidiosis , Neospora , Protozoan Vaccines , Animals , Coccidiosis/prevention & control , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/drug therapy , Coccidiosis/immunology , Neospora/immunology , Protozoan Vaccines/immunology , Cattle , Cattle Diseases/prevention & control , Cattle Diseases/parasitology , Vaccine Development
2.
Poult Sci ; 103(7): 103865, 2024 Jul.
Article En | MEDLINE | ID: mdl-38810564

Chicken coccidiosis has inflicted significant economic losses upon the poultry industry. The primary strategies for preventing and controlling chicken coccidiosis include anticoccidial drugs and vaccination. However, these approaches face limitations, such as drug residues and resistance associated with anticoccidial drugs, and safety concerns related to live vaccines. Consequently, the urgent development of innovative vaccines, such as subunit vaccines, is imperative. In previous study, we screened 2 candidate antigens: Eimeria maxima lysophospholipase (EmLPL) and E. maxima regulatory T cell inducing molecule 1 (EmTregIM-1). To investigate the immune protective effect of the 2 candidate antigens against Eimeria maxima (E. maxima) infection, we constructed recombinant plasmids, namely pET-28a-EmLPL and pET-28a-EmTregIM-1, proceeded to induce the expression of recombinant proteins of EmLPL (rEmLPL) and EmTregIM-1 (rEmTregIM-1). The immunogenic properties of these proteins were confirmed through western blot analysis. Targeting EmLPL and EmTregIM-1, we developed subunit vaccines and encapsulated them in PLGA nanoparticles, resulting in nano-vaccines: PLGA-rEmLPL and PLGA-rEmTregIM-1. The efficacy of these vaccines was assessed through animal protection experiments. The results demonstrated that rEmLPL and rEmTregIM-1 were successfully recognized by anti-E. maxima chicken sera and His-conjugated mouse monoclonal antibodies. Immunization with both subunit and nano-vaccines containing EmLPL and EmTregIM-1 markedly mitigated weight loss and reduced oocyst shedding in chickens infected with E. maxima. Furthermore, the anticoccidial indexes (ACI) for both rEmLPL and PLGA-rEmLPL exceeded 160, whereas those for rEmTregIM-1 and PLGA-rEmTregIM-1 were above 120 but did not reach 160, indicating superior protective efficacy of the rEmLPL and PLGA-rEmLPL formulations. By contrast, the protection afforded by rEmTregIM-1 and PLGA-rEmTregIM-1 was comparatively lower. Thus, EmLPL is identified as a promising candidate antigen for vaccine development against E. maxima infection.


Chickens , Coccidiosis , Eimeria , Poultry Diseases , Protozoan Vaccines , Animals , Eimeria/immunology , Coccidiosis/veterinary , Coccidiosis/prevention & control , Coccidiosis/immunology , Coccidiosis/parasitology , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Poultry Diseases/immunology , Protozoan Vaccines/immunology , Protozoan Vaccines/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Antigens, Protozoan/immunology
3.
Parasitol Res ; 123(3): 167, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38507102

The Eimeria tenella Yulin strain (EtYL), which is sensitive to most anti-coccidial drugs, was isolated in the Yulin area of Guangxi, China. Then, Eimeria tenella Yulin precocious line (pEtYL), a precocious line with a prepatent period of 108 h, was obtained through early selection. The biological characteristics of pEtYL, including its morphology, purity, oocyst excretion curve, reproductive capacity, pathogenicity, immunogenicity, and preservation time, were comprehensively analyzed. The results showed that the isolated precocious line of E. tenella exhibited high purity, relatively weak pathogenicity, and good immunogenicity and can be used as a live vaccine line for chicken coccidiosis.


Coccidiosis , Eimeria tenella , Poultry Diseases , Animals , China , Coccidiosis/prevention & control , Oocysts , Virulence , Chickens
4.
Microb Biotechnol ; 17(3): e14447, 2024 Mar.
Article En | MEDLINE | ID: mdl-38478376

Chicken coccidiosis is an intestinal disease caused by the parasite Eimeria, which severely damages the growth of chickens and causes significant economic losses in the poultry industry. Improvement of the immune protective effect of antigens to develop high efficiency subunit vaccines is one of the hotspots in coccidiosis research. Sporozoite-specific surface antigen 1 (SAG1) of Eimeria tenella (E. tenella) is a well-known protective antigen and is one of the main target antigens for the development of subunit, DNA and vector vaccines. However, the production and immunoprotective effects of SAG1 need to be further improved. Here, we report that both SAG1 from E. tenella and its fusion protein with the xylanase XynCDBFV-SAG1 are recombinant expressed and produced in Pichia pastoris (P. pastoris). The substantial expression quantity of fusion protein XynCDBFV-SAG1 is achieved through fermentation in a 15-L bioreactor, reaching up to about 2 g/L. Moreover, chickens immunized with the fusion protein induced higher protective immunity as evidenced by a significant reduction in the shedding of oocysts after E. tenella challenge infection compared with immunized with recombinant SAG1. Our results indicate that the xylanase enhances the immunogenicity of subunit antigens and has the potential for developing novel molecular adjuvants. The high expression level of fusion protein XynCDBFV-SAG1 in P. pastoris holds promise for the development of effective recombinant anti-coccidial subunit vaccine.


Coccidiosis , Eimeria tenella , Saccharomycetales , Animals , Eimeria tenella/genetics , Chickens , Antigens, Surface , Antigens, Protozoan/genetics , Coccidiosis/prevention & control , Coccidiosis/veterinary , Recombinant Proteins/genetics , Vaccines, Synthetic/genetics
5.
Acta Parasitol ; 69(1): 951-999, 2024 Mar.
Article En | MEDLINE | ID: mdl-38492183

PURPOSE: The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens. METHODS: Chickens were infected with 4 × 104 E. tenella oocysts at 21 days old for primary infection and with 8 × 104 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1ß and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-ß4 was analyzed using semi-quantitative reverse transcriptase-PCR. RESULTS: The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4+ and CD8+ T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1ß, IL-6 and anti-inflammatory cytokines as TGF-ß4 following primary infection, while their expression was downregulated following secondary infection. CONCLUSION: The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4+ and CD8+ T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.


Chickens , Chitosan , Coccidiosis , Cytokines , Eimeria tenella , Nanoparticles , Plant Extracts , Poultry Diseases , Rosmarinus , Animals , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/prevention & control , Coccidiosis/drug therapy , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Eimeria tenella/drug effects , Cytokines/metabolism , Rosmarinus/chemistry , Oocysts/drug effects , Feces/parasitology , Animal Feed/analysis
6.
Poult Sci ; 103(5): 103596, 2024 May.
Article En | MEDLINE | ID: mdl-38471232

This study compared 2 herbal anticoccidiosis drugs (water-soluble and feed-additive drugs) with monensin coccidiostat, toltrazuril (TTZ, anticoccidiosis drug), and Livacox Q (anticoccidiosis vaccine) in terms of their effects on the prevention and treatment of coccidiosis in broilers. In this study, 280 Ross 308 broiler chickens (a mix of both genders) were used in a completely randomized design with 7 treatments and 5 replications each including 8 chickens per replicate. On d 21 of rearing, all experimental groups, except for the negative control group (NC), were challenged with a mixed suspension of common strains of Eimeria, and the intended indices were assessed, including performance indices, number of oocysts per gram (OPG) of feces, intestinal injuries, and the total number of intestinal bacteria. In addition, the NC and the group receiving the monensin had greater body weight gain (BWG) (P < 0.05). At the end of week 6, the monensin group had the highest feed intake (FI), while the water soluble medicine treatment resulted in the lowest feed intake (P < 0.05). Regarding the lesion scores on day 28, the highest and lowest rates of jejunal injuries were observed in the positive control group (PC), the monensin and vaccine group respectively. The rate of oocysts excretion (oocysts per gram of feces = OPG) on different days was higher in the PC group, and the use of monensin could further reduce excretion compared to the other groups (P > 0.05). Based on a comparison of the population of lactic acid bacteria between the NC and both medicinal plant treated groups, the use of these products could increase the population of these types of bacteria. Moreover, the population of Escherichia coli was less considerable in the NC and herbal powder groups (P < 0.05). Overall, similar to commercial medicines, the herbal medicines used in this project can be effective in the prevention and treatment of coccidiosis and can improve profitability in broiler rearing centers by improving intestinal health.


Animal Feed , Chickens , Coccidiosis , Coccidiostats , Diet , Eimeria , Poultry Diseases , Protozoan Vaccines , Triazines , Animals , Coccidiosis/veterinary , Coccidiosis/prevention & control , Coccidiosis/parasitology , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Triazines/pharmacology , Triazines/administration & dosage , Animal Feed/analysis , Male , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/pharmacology , Eimeria/physiology , Female , Diet/veterinary , Random Allocation , Dietary Supplements/analysis
7.
Poult Sci ; 103(4): 103560, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417336

This study was conducted to examine the efficacy of a bromelain-based supplementation coded ANR-pf on growth performance and intestinal lesion of broiler chickens under necrotic enteritis (NE) challenge. A total of 540 Ross 308 day-old male chicks were randomly allocated into 6 treatments of 6 replicates. The bromelain formulation was delivered to chickens through gavaging or in drinking water method twice, on d 8 and 13. Nonchallenged groups included 1) without or 2) with the specific bromelain formulation gavaged at 0.8 mL/kg. NE-challenged groups included 3) without the specific bromelain formulation; 4) gavaged with 0.4 mL/kg; 5) gavaged with 0.8 mL/kg and 6) supplemented with 0.8 mL/kg via drinking water. Birds were challenged with Eimeria spp. on d 9 and Clostridium perfringens (NE-18 strain) on d 14 and 15. On d 14 and 19, fresh faecal contents were collected for the determination of oocyst counts. Intestinal lesion scores were determined on d16. Performance and mortality were recorded throughout the entire experiment. Among challenged groups, birds received additive via drinking water had higher weight gain (WG) compared to the remaining groups (P < 0.001) in the grower phase and had lower FCR compared to 0.4 mL/kg inoculated group in the grower and finisher phases (P < 0.001). Bromelain supplementation via drinking water improved the WG of challenged birds, similar to that of the nonchallenged birds (P < 0.001), and lowered FCR compared to other challenged groups (P < 0.001). Nonchallenged birds and birds that received bromelain formulation in drinking water did not have lesions throughout the small intestine whereas challenged birds, either un-supplemented or supplemented with bromelain via inoculation route recorded similar lesion score levels in the jejunum. At d 19, birds received bromelain in drinking water had lower fecal oocyst numbers compared to challenged birds without additive (P < 0.001). In conclusion, bromelain administration via drinking water could ameliorate the negative impacts of NE-infection in broilers by improving performance, lowering the oocyst numbers and lesion scores.


Clostridium Infections , Coccidiosis , Drinking Water , Enteritis , Poultry Diseases , Animals , Male , Chickens , Enteritis/drug therapy , Enteritis/prevention & control , Enteritis/veterinary , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium Infections/pathology , Coccidiosis/drug therapy , Coccidiosis/prevention & control , Coccidiosis/veterinary , Bromelains/pharmacology , Bromelains/therapeutic use , Clostridium perfringens , Weight Gain , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Poultry Diseases/pathology , Animal Feed/analysis , Diet/veterinary
8.
Exp Parasitol ; 259: 108719, 2024 Apr.
Article En | MEDLINE | ID: mdl-38364954

BACKGROUND: Rabbit coccidiosis is a parasitism caused by either one or multiple co-infections of Eimeria species. Among them, Eimeria intestinalis is the primary pathogen responsible for diarrhea, growth retardation, and potential mortality in rabbits. Concerns regarding drug resistance and drug residues have led to the development of recombinant subunit vaccines targeting Eimeria species as a promising preventive measure. The aim of this study was to assess the immunoprotective efficacy of recombinant subunit vaccines comprising EiROP25 and EiROP30 (rhoptry proteins (ROPs)) against E. intestinalis infection in rabbits. METHODS: Cloning, prokaryotic expression, and protein purification were performed to obtain EiROP25 and EiROP30. Five groups of fifty 35-day-old Eimeria-free rabbits were created (unchallenged control group, challenged control group, vector protein control group, rEiROP25 group, and rEiROP30 group), with 10 rabbits in each group. Rabbits in the rEiROP25 and rEiROP30 groups were immunized with the recombinant proteins (100 µg per rabbit) for primary and booster immunization (100 µg per rabbit) at a two-week intervals, and challenged with 7 × 104 oocysts per rabbit after an additional two-week interval. Two weeks after the challenge, the rabbits were euthanized for analysis. Weekly collections of rabbit sera were made to measure changes in specific IgG and cytokine level. Clinical symptoms and pathological changes after challenge were observed and recorded. At the conclusion of the animal experiment, lesion scores, the relative weight increase ratio, the oocyst reduction rate, and the anticoccidial index were computed. RESULTS: Rabbits immunized with rEiROP25 and rEiROP30 exhibited relative weight gain ratios of 56.57% and 72.36%, respectively. Oocysts decreased by 78.14% and 84.06% for the rEiROP25 and rEiROP30 groups, respectively. The anticoccidial indexes were 140 and 155. Furthermore, there was a noticeable drop in intestinal lesions. After the primary immunization with rEiROP25 and rEiROP30, a week later, there was a notable rise in specific IgG levels, which remained elevated for two weeks following challenge (P < 0.05). Interleukin (IL)-2 levels increased markedly in the rEiROP25 group, whereas IL-2, interferon gamma (IFN-γ), and IL-4 levels increased substantially in the rEiROP30 group (P < 0.05). CONCLUSION: Immunization of rabbits indicated that both rEiROP25 and rEiROP30 are capable of inducing an increase in specific antibody levels. rEiROP25 triggered a Th1-type immune protection response, while rEiROP30 elicited a Th1/Th2 mixed response. EiROP25 and EiROP30 can generate a moderate level of immune protection, with better efficacy observed for EiROP30. This study provides valuable insights for the promotion of recombinant subunit vaccines targeting rabbit E. intestinalis infection.


Coccidiosis , Eimeria , Poultry Diseases , Protozoan Vaccines , Rabbits , Animals , Coccidiosis/prevention & control , Coccidiosis/veterinary , Recombinant Proteins , Vaccines, Synthetic , Oocysts , Vaccines, Subunit , Immunoglobulin G , Chickens , Poultry Diseases/prevention & control
9.
Vet Parasitol ; 327: 110141, 2024 Apr.
Article En | MEDLINE | ID: mdl-38367528

Eimeria tenella is the most pathogenic and harmful intestinal parasitic protozoan. Recombinant DNA vaccines open options for promising strategies for preventing avian coccidiosis, replacing chemical drugs and live oocyst vaccines. Two important antigenic proteins, EtAMA3 (also known as SporoAMA1) and EtRON2L2, act together to promote the invasion of E. tenella sporozoites. In this study, a recombinant DNA vaccine, designated pcDNA3.1(+)-AR, was constructed based on EtAMA3DII, EtRON2L2D3, and EtRON2L2D4. Chickens were intramuscularly immunized with different doses (25, 50, or 100 µg) of pcDNA3.1(+)-AR to evaluate its immunoprotective effects in vivo. The chickens in the 50 µg and 100 µg groups had higher cytokine concentrations (interleukin 2, interferon-gamma, and interleukin 10), and lesion scores (81.9% and 67.57%, respectively) and relative oocyst production (47% and 19%, respectively) reduced compared with the unchallenged group, indicating partial protection against E. tenella. These results suggest that pcDNA3.1(+)-AR is a promising vaccine candidate against avian coccidiosis.


Coccidiosis , Eimeria tenella , Poultry Diseases , Protozoan Vaccines , Vaccines, DNA , Animals , Chickens/parasitology , Coccidiosis/prevention & control , Coccidiosis/veterinary , Recombinant Proteins , Oocysts , Poultry Diseases/parasitology
10.
Vet Parasitol Reg Stud Reports ; 48: 100971, 2024 02.
Article En | MEDLINE | ID: mdl-38316499

Canine coccidiosis caused by Cystoisospora canis and Cystoisospora ohioensis-complex is common in kennels. While often underestimated, coccidiosis may cause severe clinical signs in puppies and sometimes even lead to death, so preventative measures are important. This study examines Cystoisospora spp. infection at a Labrador retriever breeding facility in Madrid, Spain. To identify environmental factors associated with infection, dams were examined throughout a reproductive cycle (from oestrus to 60 days postpartum) and their puppies during their first 60 days of life. Also assessed was the efficacy of combined treatment with emodepside (0.9 mg/ml) and toltrazuril (18 mg/ml) at a dose of 0.5 ml/kg of weight, equivalent to 0.45 mg/kg and 9 mg/kg, respectively, in puppies on day 35 of life. Oocyst shedding was detected in 4.6-18.6% of 45 dams examined and in 2.2-9.1% of their litters (315 puppies). In both cases, peak opg elimination was recorded on day 30 postpartum/of life. The species of Cystoisospora detected were C. canis (91.3%) and C. ohioensis-complex (8.7%). While in both dams and puppies opg counts were higher in autumn when rainfall was at its highest, correlation between opg and rainfall emerged as significant only in puppies (p = 0.031). The treatment of 35 day-old puppies with toltrazuril was 100% effective in controlling this infection in the kennel. Our findings therefore suggest the need for a strict hygiene regime and the use of toltrazuril as blanket treatment to reduce Cystoisospora transmission in dog breeding facilities.


Coccidiosis , Dog Diseases , Isospora , Sarcocystidae , Female , Dogs , Animals , Coccidiosis/drug therapy , Coccidiosis/prevention & control , Coccidiosis/veterinary , Triazines/therapeutic use , Triazines/pharmacology , Dog Diseases/drug therapy , Dog Diseases/prevention & control
11.
Avian Pathol ; 53(4): 264-284, 2024 Aug.
Article En | MEDLINE | ID: mdl-38349388

ABSTRACTThe study was conducted to investigate the effect of dietary encapsulated organic acids (EOAs) and anticoccidials on the age-dependent development trend of intestinal Lactobacillus, E. coli, coliforms, and Eimeria in Eimeria spp.-infected broiler chickens from reused litter. In total, 525 mixed-sex 1-day-old broiler chickens were used in an uninfected/un-supplemented control plus a 2 (no EOA or 0.1% EOA) × 3 (no anticoccidial, 0.05% maduramicin, and 0.02% diclazuril) factorial arrangement of treatments as a completely randomized design with five replicates of 15 chickens. Results indicated that the cubic model is the best model for explaining the development trends of the intestinal microbial population in uninfected and infected chickens (affected by the EOAs and anticoccidials). Based on the cubic models, the microbial populations had development trends with a decreasing slope from 1-day-old until the early or middle finisher period. EOAs and anticoccidials, especially their simultaneous usage, improved (P < 0.05) the linear and cubic models' slope (affected negatively by Eimeria infection). A polynomial model (order = 6) was determined as the best model for explaining the EOAs and anticoccidial effects on the trend of intestinal Eimeria oocysts in infected chickens. The infection peak (which happened at 25 days) was reduced by EOAs and anticoccidials, especially their simultaneous usage. In conclusion, cubic and polynomial (order = 6) regressions are the best models fitted for explaining the microbiota and Eimeria oocysts trends, respectively. EOAs and anticoccidials, especially their simultaneous usage, had beneficial effects on the microbiota and Eimeria development trends and gastrointestinal health in coccidia-infected broiler chickens. RESEARCH HIGHLIGHTSCubic regression is the best model for explaining intestinal microbiota development.Polynomial regression is the best model for intestinal Eimeria oocysts development.Age-development trends are affected by dietary encapsulated organic acids and anticoccidials.


Animal Feed , Chickens , Coccidiosis , Coccidiostats , Eimeria , Gastrointestinal Microbiome , Oocysts , Poultry Diseases , Animals , Chickens/parasitology , Chickens/growth & development , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/prevention & control , Coccidiosis/drug therapy , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Gastrointestinal Microbiome/drug effects , Oocysts/drug effects , Diet/veterinary , Male , Dietary Supplements , Female , Intestines/parasitology , Intestines/microbiology , Triazines/pharmacology , Triazines/administration & dosage , Acids/pharmacology , Lactones , Nitriles
12.
Vet Parasitol ; 327: 110133, 2024 Apr.
Article En | MEDLINE | ID: mdl-38266373

Goat coccidiosis compromises animal welfare, reduces productivity and may cause mortality and delayed growth rates in goat kids around the weaning period worldwide. This field study was conducted to evaluate the efficacy of metaphylactic treatments with two doses of toltrazuril (20 or 40 mg/kg body weight - BW, p. o.), at different timing, in kids naturally infected with Eimeria spp. A total of 97 healthy goat kids (Majorera milk aptitude breed) were divided into five groups, depending on the age of treatment (2 or 7 weeks). One group remained untreated as a negative control until the end of the study. Faecal oocyst shedding, faecal consistency, and body weight of the animals were monitored at day 0 and at weekly intervals. Counts of oocysts per gram of faeces (OPG) were determined by a modified McMaster technique. Morphometric identification of Eimeria species was carried out on individual faecal samples from each experimental group after oocyst sporulation. Goat kids treated at two weeks of age maintained OPG values close to zero during the 5 weeks post-treatment and, overall, had lower faecal oocyst counts than untreated control animals. No significant differences were observed between the two doses of toltrazuril used in two-week-old treated animals. By contrast, when treatment was carried out at seven weeks of age, the dose of 40 mg/kg BW of toltrazuril reduced oocyst levels for longer and to a greater extent than the 20 mg/kg dose. Irrespectively of the treatment and dose, toltrazuril delayed the appearance of pathogenic Eimeria species, i. e. Eimeria ninakohlyakimovae and Eimeria arloingi. As a whole, Eimeria christenseni, with a rather moderate pathogenicity, was highly predominant throughout the study period, including the untreated control group, which was probably the reason why clinical signs of coccidiosis were barely observed throughout the experiment. Under these circumstances, the positive effect of toltrazuril on body weight condition observed in some treated groups was difficult to correlate to the timing and doses. Metaphylactic treatments with 20 mg/kg BW toltrazuril given at two weeks of age are sufficient to control oocyst excretion in goat kids; whereas if administered later in 7-week-old animals, thereby coinciding with the frequently observed peak of oocyst elimination in goat kids under field conditions, a higher dose might be advisable to prevent environmental contamination with infectious oocysts.


Coccidiosis , Eimeria , Goat Diseases , Animals , Goats , Coccidiosis/drug therapy , Coccidiosis/prevention & control , Coccidiosis/veterinary , Triazines/therapeutic use , Triazines/pharmacology , Feces , Oocysts , Body Weight , Goat Diseases/drug therapy , Goat Diseases/prevention & control
13.
Poult Sci ; 103(1): 103234, 2024 Jan.
Article En | MEDLINE | ID: mdl-37980744

Avian coccidiosis caused by Eimeria is a serious parasitic disease that poses a threat to the poultry industry. Currently, prevention and treatment mainly rely on the administration of anticoccidials and live oocyst vaccines. However, the prevalence of drug resistance and the inherent limitations of live vaccines have driven the development of novel vaccines. In this study, the surface protein (Et-SAG14), a previously annotated rhoptry protein (Eten5-B), and a gametocyte phosphoglucomutase (Et-PGM1) were characterized and the vaccine potential of the recombinant proteins were evaluated. Et-SAG14 was dispersed in the form of particles in the sporozoite and merozoite stages, whereas Et-PGM1 was distributed in the apical part of the sporozoite and merozoite stages. The previously annotated rhoptry Eten5-B was found not to be located in the rhoptry but distributed in the cytoplasm of sporozoites and merozoites. Immunization with rEten5-B significantly elevated host interferon gamma (IFN-γ) and interleukin 10 (IL-10) transcript levels and exhibited moderate anticoccidial effects with an anticoccidial index (ACI) of 161. Unexpectedly, both recombinant Et-SAG14 and Et-PGM1 immunization significantly reduced host IFN-γ and IL-10 transcription levels, and did not show protection against E. tenella challenge (ACI < 80). These results suggest that the rEten5-B protein can trigger immune protection against E. tenella and may be a potential and effective subunit vaccine for the control of coccidiosis in poultry.


Coccidiosis , Eimeria tenella , Poultry Diseases , Protozoan Vaccines , Vaccines , Animals , Interleukin-10 , Chickens , Recombinant Proteins , Coccidiosis/prevention & control , Coccidiosis/veterinary , Sporozoites , Interferon-gamma
14.
Vet Res Commun ; 48(1): 403-416, 2024 Feb.
Article En | MEDLINE | ID: mdl-37736869

This study aimed to assess the efficacy of an anticoccidial vaccine and the anticoccidial activity of Aloe vera in broiler chickens infected with Eimeria tenella (E. tenella). A total of 225 healthy, sexless, one-day-old broiler chicks (avian48) from a commercial broiler company were randomized into nine experimental groups of 25 chicks. The groups were as follows: Group 1 (control, vaccinated, non-infected), Group 2 (vaccinated and infected with 5 × 104 sporulated oocysts), Group 3 (vaccinated, infected with 5 × 104 sporulated oocysts, and treated with Aloe vera), Group 4 (infected with 5 × 104 sporulated oocysts and treated with Aloe vera), Group 5 (positive control, infected with 5 × 104 sporulated oocysts), Group 6 (challenged with 5 × 104 sporulated oocysts and then treated with amprolium), Group 7 (treated with amprolium), Group 8 (blank control negative group), and Group 9 (treated with Aloe vera gel).Various parameters were evaluated, including clinical signs, growth performance, oocyst shedding, hematological and immunological parameters, and pathological lesion scoring. The results demonstrated that Aloe vera improved growth performance, reduced oocyst shedding, and decreased caecal lesion scores in E. Tenella-infected broiler chicks. The use of Aloe vera in combination with either amprolium or anticoccidial vaccines provided a potential solution to the issues of drug resistance and drug residues.In conclusion, this study provides valuable insights regarding the control of coccidiosis in broilers. Supplementing the chicken diet with Aloe vera had beneficial effects on the pathogenicity and infectivity of E. tenella, making it a cost-effective alternative as an herbal extract with no adverse side effects for coccidiosis control. These findings suggest that Aloe vera can be considered a potential candidate for inclusion in broiler diets for effective coccidiosis control.


Aloe , Coccidiosis , Eimeria tenella , Poultry Diseases , Animals , Chickens , Amprolium/pharmacology , Amprolium/therapeutic use , Coccidiosis/drug therapy , Coccidiosis/prevention & control , Coccidiosis/veterinary , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Oocysts , Vaccination/veterinary , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control
15.
Poult Sci ; 103(1): 103226, 2024 Jan.
Article En | MEDLINE | ID: mdl-37995420

The objective of the present studies was to evaluate muramidase (MUR) supplementation in broilers under Eimeria and/or Clostridium perfringens challenge. For this, 2 experiments were conducted. Experiment 1. A total of 256 one-day old male Cobb 500 chicks were placed in battery cages in a completely randomized design, with 5 treatment groups, 7 replicate cages per treatment and 8 birds per cage. The treatments were: nonchallenged control (NC), challenged control (CC), CC + MUR at 25,000 or 35,000 LSU(F)/kg, and CC + Enramycin at 10 ppm (positive control-PC). Challenge consisted of 15× the recommended dose of coccidiosis vaccine at placement, and Clostridium perfringens (108 CFU/bird) inoculation at 10, 11, and 12 d. Macro and microscopic evaluation, immunohistochemistry, and gene expression were evaluated at 7, 14, 21, and 28 d of age. Experiment 2. A total of 1,120 one-day old male Cobb 500 chicks were placed in floor pens with fresh litter in a completely randomized design, with 4 treatment groups, 8 replicate pens per treatment, and 35 birds per pen. The treatments were: Control, supplementation of MUR at 25,000 or 45,000 LSU(F)/kg, and a positive control (basal diet plus Enramycin). At 10, 11, and 12 d of the experiment all the birds were inoculated by oral gavage with a fresh broth culture of a field isolate Clostridium perfringens (0.5 mL containing 106 CFU/bird). It was observed that in Experiment 1 MUR supplementation reduced the infiltration of macrophages and CD8+ lymphocytes in the liver and ileum of infected birds, downregulated IL-8 and upregulated IL-10 expression. In Experiment 2, MUR linearly improved the growth performance of the birds, increased breast meat yield, and improved absorption capacity. MUR supplementation elicited an anti-inflammatory response in birds undergoing a NE challenge model that may explain the improved growth performance of supplemented birds.


Clostridium Infections , Coccidiosis , Eimeria , Poultry Diseases , Animals , Male , Eimeria/physiology , Clostridium perfringens/physiology , Chickens/physiology , Muramidase , Coccidiosis/prevention & control , Coccidiosis/veterinary , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Intestines , Diet/veterinary , Animal Feed/analysis
16.
Br Poult Sci ; 65(1): 87-96, 2024 Feb.
Article En | MEDLINE | ID: mdl-38018563

1. The following study was conducted to evaluate the influence of coccidiosis vaccine-induced metabolic stress on the utilisation of minerals in broilers. The starter, grower and finisher phase diets, including macro- and micro minerals at the recommended levels for the breed standards, were fed to chickens between 1 and 39 d of age.2. A total of 486, one-d-old male broilers were randomly distributed into three coccidiosis management programs (CMP) with six replications each. The CMP comprised: monensin sodium (MON), coccidiosis vaccine (VAC), not treated with MON or VAC (CNT).3. No significant differences between CMP were observed for body weight and weight gain among treatments. When compared to the CNT, the VAC program increased feed intake (P < 0.05) between d 1 to 13 and 14 to 26, while FCR worsened in the latter (P < 0.05) and the former (P = 0.05) periods.4. For birds in the MON and VAC programs, tibia bone length at d 13 and bone diameter at d 39 were both enhanced (P < 0.05). Meat yield characteristics were comparable among the CMP.5. Faeces of VAC birds had a lower (P < 0.05) dry matter and ash content than those in CNT program. CMP had no effect on serum or bone mineral concentrations at any point in time. For minerals, Mg, Na, and K faecal excretion was reduced (P < 0.01) as a result of the VAC program at d 13 with a trend at d 26.6. Compared to the CNT, the VAC program decreased the percentage ratio of drip loss (P = 0.08), water holding capacity (P < 0.01) and cooking loss (P < 0.01) in breast meat.7. Overall, the results showed that current broiler industry practices are capable of meeting the mineral needs of broilers vaccinated against coccidiosis.


Coccidiosis , Poultry Diseases , Male , Animals , Chickens , Vaccines, Attenuated , Monensin/pharmacology , Minerals , Coccidiosis/prevention & control , Coccidiosis/veterinary , Diet/veterinary , Animal Feed , Dietary Supplements , Poultry Diseases/prevention & control
17.
Poult Sci ; 103(1): 103187, 2024 Jan.
Article En | MEDLINE | ID: mdl-37980755

Anti-interleukin (IL)-10 may preserve broiler performance during coccidiosis by diminishing Eimeria spp. host-evasion but has not been evaluated during secondary Clostridium perfringens challenge (necrotic enteritis). Early Salmonella Typhimurium inoculation is implemented in some models to improve repeatability-a potential confounder due to Salmonella using similar IL-10 host evasion pathways. The objective was to evaluate performance and disease outcomes in broilers fed anti-IL-10 during necrotic enteritis challenge ± S. Typhimurium. Three 42 d replicate studies in wire-floor cages (32 cages/replicate) were conducted with Ross 308 chicks assigned to diets ± 0.03% anti-IL-10 for 25 d before moving to floor pens for the study remainder. In replicates 1 and 2, 640 chicks were placed at hatch (20/cage) and inoculated with sterile saline ± 1 × 108 colony forming units (CFU) S. Typhimurium. Replicate 3 placed 480 chicks (15/cage) at hatch. On d 14, S. Typhimurium-inoculated chicks (replicates 1 and 2) or those designated for challenge (replicate 3) were inoculated with 15,000 sporulated Eimeria maxima M6 oocysts. On d 18 and 19, half the E. maxima-challenged chicks were gavaged with 1 × 108 CFU C. perfringens. Body weight (BW) and feed intake were measured throughout, while 6 chicks/ treatment were scored for jejunal lesions at 7 and 3 d postinoculation (pi) with E. maxima and C. perfringens, respectively. Oocyst shedding was measured at 8 and 4 dpi with E. maxima and C. perfringens, respectively. Performance and oocyst shedding were analyzed with diet and challenge fixed effects (SAS 9.4), whereas lesion scores and mortalities were analyzed by ordinal logistic regression (R 4.2.2; P ≤ 0.05). In replicate 3, no wk 3 feed conversion ratio (FCR) differences were observed between chicks fed anti-IL-10 challenged with E. maxima ± C. perfringens, whereas control-fed chicks had a 50 point less efficient FCR during E. maxima + C. perfringens challenge vs. E. maxima only (P = 0.04). Outcomes suggest anti-IL-10 may preserve bird feed efficiency during necrotic enteritis challenge in models without S. Typhimurium.


Clostridium Infections , Coccidiosis , Eimeria , Enteritis , Poultry Diseases , Animals , Chickens , Salmonella typhimurium , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Interleukin-10 , Coccidiosis/prevention & control , Coccidiosis/veterinary , Clostridium perfringens , Diet , Enteritis/prevention & control , Enteritis/veterinary , Enteritis/pathology , Poultry Diseases/prevention & control , Animal Feed/analysis
18.
Vet Res ; 54(1): 119, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38093398

Clinical avian coccidiosis is typically caused by coinfection with several Eimeria species. Recombinant protein and DNA vaccines have shown promise in controlling coccidiosis. On this basis, DNA vaccines that encode multiple epitopes from different Eimeria species may provide broad protection against coinfections. In this study, we designed a fusion gene fragment, 14EGT, that contained concentrated T-cell epitopes from four common antigens of Eimeria species (14-3-3, elongation factor 2, glyceraldehyde-3-phosphate dehydrogenase, and transhydrogenase). The multiepitope DNA vaccine pVAX1-14EGT and recombinant protein vaccine pET-32a-14EGT (r14EGT) were then created based on the 14EGT fragment. Subsequently, cellular and humoral immune responses were measured in vaccinated chickens. Vaccination-challenge trials were also conducted, where the birds were vaccinated with the 14EGT preparations and later exposed to single or multiple Eimeria species to evaluate the protective efficacy of the vaccines. According to the results, vaccination with 14EGT preparations effectively increased the proportions of CD4+ and CD8+ T cells and the levels of Th1 and Th2 hallmark cytokines. The levels of serum IgG antibodies were also significantly increased. Animal vaccination trials revealed alleviated enteric lesions, weight loss, and oocyst output compared to those of the control groups. The preparations were found to be moderately effective against single Eimeria species, with the anticoccidial index (ACI) ranging from 160 to 180. However, after challenge with multiple Eimeria species, the protection provided by the 14EGT preparations was not satisfactory, with ACI values of 142.18 and 146.41. Collectively, the results suggest that a multiepitope vaccine that encodes the T-cell epitopes of common antigens derived from Eimeria parasites could be a potential and effective strategy to control avian coccidiosis.


Coccidiosis , Eimeria tenella , Eimeria , Poultry Diseases , Protozoan Vaccines , Vaccines, DNA , Animals , Eimeria/genetics , Chickens , Epitopes, T-Lymphocyte , CD8-Positive T-Lymphocytes , Antigens, Protozoan/genetics , Coccidiosis/prevention & control , Coccidiosis/veterinary , Recombinant Proteins , Eimeria tenella/genetics
19.
Front Immunol ; 14: 1277955, 2023.
Article En | MEDLINE | ID: mdl-38111572

Background: Rhoptry organelle proteins (ROPs) secreted by apicomplexan parasites play important roles during parasites invasion and survival in host cells, and are potential vaccine candidates against apicomplexan diseases. Eimeria tenella (E. tenella) is one of the most noteworthy apicomplexan species, which causes hemorrhagic pathologies. Although dozens of putative E. tenella ROP sequences are annotated, most ROP proteins are not well studied. Methods: In this study, an E. tenella ROP21 gene was identified and the recombinant EtROP21 protein (rEtROP21) was expressed in Escherichia coli. The developmental expression levels, localization, and protective efficacy against E. tenella infection in chickens were studied. Results: An EtROP21 gene fragment with an open reading frame (ORF) of 981 bp was obtained from the Beijing strain of E. tenella. The rEtROP21 has a molecular weight of approximately 50 kDa and was recognized by rEtROP21-immunized mouse serum. Two specific protein bands, about 43 KDa and 95 KDa in size, were detected in the whole sporozoite proteins using the rEtROP21-immunized chicken serum. RT-qPCR analysis of the E. tenella ROP21 gene (EtROP21) revealed that its mRNA levels were higher in merozoites and sporozoites than in sporulated and unsporulated oocysts. Immunofluorescence and immunoelectron analyses showed that the EtROP21 protein predominantly localizes in the bulb region of rhoptries distributed at anterior, posterior, and perinuclear regions of E. tenella sporozoites. Immunization and challenge experiments revealed that immunizing chickens with rEtROP21 significantly increased their average body weight gain while decreasing mean lesion score and oocyst output (P <0.05). When compared with the challenged control group, the rEtROP21-immunized group was associated with a significantly higher relative weight gain (90.2%) and a greater reduction in oocyst output (67%) (P <0.05). The anticoccidial index of the rEtROP21-immunized group was 163.2. Chicken serum ELISA revealed that the levels of the specific anti- rEtROP21 antibody, IFN-γ, and IL-4 were significantly higher in the rEtROP21-immunized group than in the challenged control group (P <0.05). Conclusion: These results indicate that rEtROP21 can induce a high level of specific immune response and it is a potential candidate for the development of vaccines against E. tenella infection in chickens.


Coccidiosis , Eimeria tenella , Animals , Mice , Protozoan Proteins , Coccidiosis/prevention & control , Coccidiosis/veterinary , Chickens , Recombinant Proteins , Sporozoites , Oocysts/metabolism
20.
BMC Vet Res ; 19(1): 248, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38017513

Coccidiosis is the most prevalent disease-causing widespread economic loss among farm and domestic animals. Currently, several drugs are available for the control of this disease but resistance has been confirmed for all of them. There is an urgent need, therefore, for the identification of new sources as alternative treatments to control coccidiosis. The present work aimed to study the effect of the Persea americana extract (PAE) as an anti-coccidial, anti-oxidant, and anti-apoptotic modulator during murine intestinal Eimeria papillata infection. A total of 25 male mice were divided into five groups, as follows: Group1: Non-infected-non-treated (negative control), Group2: Non-infected-treated group with PAE (500 mg/kg b.w). Group3: Infected-non-treated (positive control), Group4: Infected-treated group with PAE (500 mg/kg b.w.), and Group5: Infected-treated group with Amprolium (120 mg/kg b.w.). Groups (3-5) were orally inoculated with 1 × 103 sporulated E. papillata oocysts. After 60 min of infection, groups (4 and 5) were treated for 5 consecutive days with the recommended doses of PAE and amprolium. The fact that PAE has an anti-coccidial efficacy against intestinal E. papillata infection in mice has been clarified by the reduction of fecal oocyst output on the 5th day post-infection by about 85.41%. Moreover, there is a significant reduction in the size of each parasite stage in the jejunal tissues of the infected-treated group with PAE. PAE counteracted the E. papillata-induced loss of glutathione peroxidase (GPx), superoxide dismutase (SOD), and total antioxidant capacity (TCA). E. papillata infection also induced an increase in the apoptotic cells expressed by caspase-3 which modulated after PAE treatment. Moreover, the mRNA expression of the goblet cell response gene, mucin (MUC2), was upregulated from 0.50 to 1.20-fold after treatment with PAE. Based on our results, PAE is a promising medicinal plant with anti-coccidial, anti-oxidant, and anti-apoptotic activities and could be used as a food additive.


Coccidiosis , Eimeria , Persea , Rodent Diseases , Animals , Mice , Antioxidants/therapeutic use , Antioxidants/pharmacology , Amprolium/pharmacology , Amprolium/therapeutic use , Coccidiosis/drug therapy , Coccidiosis/prevention & control , Coccidiosis/veterinary , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Oocysts
...