Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36.964
1.
Food Res Int ; 186: 114314, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729708

Variability in microbial growth is a keystone of modern Quantitative Microbiological Risk Assessment (QMRA). However, there are still significant knowledge gaps on how to model variability, with the most common assumption being that variability is constant. This is implemented by an error term (with constant variance) added on top of the secondary growth model (for the square root of the growth rate). However, this may go against microbial ecology principles, where differences in growth fitness among bacterial strains would be more prominent in the vicinity of the growth limits than at optimal growth conditions. This study coins the term "secondary models for variability", evaluating whether they should be considered in QMRA instead of the constant strain variability hypothesis. For this, 21 strains of Listeria innocua were used as case study, estimating their growth rate by the two-fold dilution method at pH between 5 and 10. Estimates of between-strain variability and experimental uncertainty were obtained for each pH using mixed-effects models, showing the lowest variability at optimal growth conditions, increasing towards the growth limits. Nonetheless, the experimental uncertainty also increased towards the extremes, evidencing the need to analyze both sources of variance independently. A secondary model was thus proposed, relating strain variability and pH conditions. Although the modelling approach certainly has some limitations that would need further experimental validation, it is an important step towards improving the description of variability in QMRA, being the first model of this type in the field.


Food Microbiology , Listeria , Listeria/growth & development , Listeria/classification , Hydrogen-Ion Concentration , Models, Biological , Colony Count, Microbial , Risk Assessment
2.
Mycopathologia ; 189(3): 42, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709375

Pneumocystis pneumonia is a serious lung infection caused by an original ubiquitous fungus with opportunistic behavior, referred to as Pneumocystis jirovecii. P. jirovecii is the second most common fungal agent among invasive fungal infections after Candida spp. Unfortunately, there is still an inability to culture P. jirovecii in vitro, and so a great impairment to improve knowledge on the pathogenesis of Pneumocystis pneumonia. In this context, animal models have a high value to address complex interplay between Pneumocystis and the components of the host immune system. Here, we propose a protocol for a murine model of Pneumocystis pneumonia. Animals become susceptible to Pneumocystis by acquiring an immunocompromised status induced by iterative administration of steroids within drinking water. Thereafter, the experimental infection is completed by an intranasal challenge with homogenates of mouse lungs containing Pneumocystis murina. The onset of clinical signs occurs within 5 weeks following the infectious challenge and immunosuppression can then be withdrawn. At termination, lungs and bronchoalveolar lavage (BAL) fluids from infected mice are analyzed for fungal load (qPCR) and immune response (flow cytometry and biochemical assays). The model is a useful tool in studies focusing on immune responses initiated after the establishment of Pneumocystis pneumonia.


Bronchoalveolar Lavage Fluid , Disease Models, Animal , Lung , Pneumonia, Pneumocystis , Animals , Pneumonia, Pneumocystis/microbiology , Pneumonia, Pneumocystis/pathology , Pneumonia, Pneumocystis/immunology , Bronchoalveolar Lavage Fluid/microbiology , Lung/microbiology , Lung/pathology , Mice , Pneumocystis , Colony Count, Microbial , Pneumocystis carinii , Immunocompromised Host
3.
Food Res Int ; 183: 114214, 2024 May.
Article En | MEDLINE | ID: mdl-38760141

Ochratoxin A (OTA) is a toxin produced by several Aspergillus species, mainly those belonging to section Circumdati and section Nigri. The presence of OTA in cheese has been reported recently in cave cheese in Italy. As artisanal cheese production in Brazil has increased, the aim of this study was to investigate the presence of ochratoxin A and related fungi in artisanal cheese consumed in Brazil. A total of 130 samples of artisanal cheeses with natural moldy rind at different periods of maturation were collected. Of this total, 79 samples were collected from 6 producers from Canastra region in the state of Minas Gerais, since this is the largest artisanal cheese producer region; 13 samples from one producer in the Amparo region in the state of São Paulo and 36 samples from markets located in these 2 states. Aspergillus section Circumdati occurred in samples of three producers and some samples from the markets. A. section Circumdati colony counts varied from 102 to 106 CFU/g. Molecular analysis revealed Aspergillus westerdijkiae (67 %) as the most frequent species, followed by Aspergillus ostianus (22 %), and Aspergillus steynii (11 %). All of these isolates of A. section Circumdati were able to produce OTA in Yeast Extract Sucrose Agar (YESA) at 25 °C/7 days. OTA was found in 22 % of the artisanal cheese samples, ranging from 1.0 to above 1000 µg/kg, but only five samples had OTA higher than 1000 µg/kg. These findings emphasize the significance of ongoing monitoring and quality control in the artisanal cheese production process to minimize potential health risks linked to OTA contamination.


Aspergillus , Cheese , Food Contamination , Food Microbiology , Ochratoxins , Ochratoxins/biosynthesis , Ochratoxins/analysis , Cheese/microbiology , Cheese/analysis , Brazil , Aspergillus/metabolism , Food Contamination/analysis , Colony Count, Microbial
4.
Methods Mol Biol ; 2775: 211-221, 2024.
Article En | MEDLINE | ID: mdl-38758320

The ability of C. neoformans to survive and replicate within host phagocytes enables it to evade the immune system and allows for persistence of the infection. As such, measuring fungal burden of C. neoformans strains-and indeed how drug treatments can influence fungal burden-provides important information about C. neoformans pathogenesis. In this chapter, we describe two methods that may be used to appraise fungal burden: a standard end-point colony-formation assay for calculating the average number of yeast per host cell and a fluorescence microscopy-based method that may be used to measure changes in fungal burden in individual living macrophages in real time.


Cryptococcosis , Cryptococcus neoformans , Macrophages , Microscopy, Fluorescence , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Cryptococcosis/microbiology , Cryptococcosis/immunology , Microscopy, Fluorescence/methods , Animals , Mice , Colony Count, Microbial/methods , Humans
5.
J Appl Oral Sci ; 32: e20230397, 2024.
Article En | MEDLINE | ID: mdl-38695444

Specific products containing natural resources can contribute to the innovation of complete denture hygiene. OBJECTIVE: To conduct an in vitro evaluation of experimental dentifrices containing essential oils of Bowdichia virgilioides Kunth (BvK), Copaifera officinalis (Co), Eucalyptus citriodora (Ec), Melaleuca alternifolia (Ma) and Pinus strobus (Ps) at 1%. METHODOLOGY: The variables evaluated were organoleptic and physicochemical characteristics, abrasiveness (mechanical brushing machine) simulating 2.5 years, and microbial load (Colony Forming Units - CFU/mL), metabolic activity (XTT assay) and cell viability (Live/Dead® BacLight™ kit) of the multispecies biofilm (Streptococcus mutans: Sm, Staphylococcus aureus: Sa, Candida albicans: Ca and Candida glabrata: Cg). Specimens of heat-polymerized acrylic resins (n=256) (n=96 specimens for abrasiveness, n=72 for microbial load count, n=72 for biofilm metabolic activity, n=16 for cell viability and total biofilm quantification) with formed biofilm were divided into eight groups for manual brushing (20 seconds) with a dental brush and distilled water (NC: negative control), Trihydral (PC: positive control), placebo (Pl), BvK, Co, Ec, Ma or Ps. After brushing, the specimens were washed with PBS and immersed in Letheen Broth medium, and the suspension was sown in solid specific medium. The organoleptic characteristics were presented by descriptive analysis. The values of density, pH, consistency and viscosity were presented in a table. The data were analyzed with the Wald test in a generalized linear model, followed by the Kruskal-Wallis test, Dunn's test (mass change) and the Bonferroni test (UFC and XTT). The Wald test in Generalized Estimating Equations and the Bonferroni test were used to analyze cell viability. RESULTS: All dentifrices showed stable organoleptic characteristics and adequate physicochemical properties. CN, Ec, Ps, Pl and PC showed low abrasiveness. There was a significant difference between the groups (p<0.001) for microbial load, metabolic activity and biofilm viability. CONCLUSIONS: It was concluded that the BvK, Ec and Ps dentifrices are useful for cleaning complete dentures, as they have antimicrobial activity against biofilm. The dentifrices containing Bowdichia virgilioides Kunth showed medium abrasiveness and should be used with caution.


Biofilms , Dentifrices , Denture, Complete , Materials Testing , Oils, Volatile , Biofilms/drug effects , Dentifrices/pharmacology , Dentifrices/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Denture, Complete/microbiology , Time Factors , Reproducibility of Results , Toothbrushing , Colony Count, Microbial , Staphylococcus aureus/drug effects , Statistics, Nonparametric , Streptococcus mutans/drug effects , Analysis of Variance , Microbial Viability/drug effects , Candida albicans/drug effects , Reference Values , Acrylic Resins/chemistry , Acrylic Resins/pharmacology
6.
J Dent ; 145: 104997, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621525

OBJECTIVE: To assess the effects of arginine, with or without sodium fluoride (NaF; 1,450 ppm), on saliva-derived microcosm biofilms and enamel demineralization. METHODS: Saliva-derived biofilms were grown on bovine enamel blocks in 0.2 % sucrose-containing modified McBain medium, according to six experimental groups: control (McBain 0.2 %); 2.5 % arginine; 8 % arginine; NaF; 2.5 % arginine with NaF; and 8 % arginine with NaF. After 5 days of growth, biofilm viability was assessed by colony-forming units counting, laser scanning confocal microscopy was used to determine biofilm vitality and extracellular polysaccharide (EPS) production, while biofilm metabolism was evaluated using the resazurin assay and lactic acid quantification. Demineralization was evaluated by measuring pH in the culture medium and calcium release. Data were analyzed by Kruskal-Wallis' and Dunn's tests (p < 0.05). RESULTS: 8 % arginine with NaF showed the strongest reduction in total streptococci and total microorganism counts, with no significant difference compared to arginine without NaF. Neither 2.5 % arginine alone nor NaF alone significantly reduced microbial counts compared to the control, although in combination, a reduction in all microbial groups was observed. Similar trends were found for biofilm vitality and EPS, and calcium released to the growth medium. CONCLUSIONS: 8 % Arginine, with or without NaF, exhibited the strongest antimicrobial activity and reduced enamel calcium loss. Also, NaF enhanced the effects of 2.5 % arginine, yielding similar results to 8 % arginine for most parameters analyzed. CLINICAL SIGNIFICANCE: The results provided further evidence on how arginine, with or without NaF, affects oral microcosm biofilms and enamel mineral loss.


Arginine , Biofilms , Cariostatic Agents , Dental Enamel , Microscopy, Confocal , Saliva , Sodium Fluoride , Tooth Demineralization , Biofilms/drug effects , Arginine/pharmacology , Sodium Fluoride/pharmacology , Dental Enamel/drug effects , Dental Enamel/microbiology , Cattle , Animals , Tooth Demineralization/prevention & control , Tooth Demineralization/microbiology , Cariostatic Agents/pharmacology , Saliva/microbiology , Saliva/metabolism , Saliva/drug effects , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Calcium/analysis , Calcium/metabolism , Streptococcus/drug effects , Xanthenes/pharmacology , Colony Count, Microbial , Oxazines/pharmacology
8.
Open Vet J ; 14(1): 594-603, 2024 Jan.
Article En | MEDLINE | ID: mdl-38633143

Background: The utilization of chemical preservatives holds the promise of effectively controlling microbial growth in soft cheese. Aim: The first trial aimed to compare the effectiveness of lactobionic acid (LBA) and K-Sorbate in controlling the proliferation of Staphylococcus aureus, Escherichia coli, and mold in white soft cheese. The subsequent part of the study explored the inhibitory effects of K-Sorbate, nisin, and LBA on mold populations in cheese whey. Methods: Two sets of soft cheese were produced. One set was contaminated with S. aureus, while the other was with E. coli, each at concentrations of 1 log CFU/ml and 1 log CFU/100 ml. Different concentrations of LBA were incorporated into these sets of cheese. Similar cheese samples were treated with K-Sorbate. For the subsequent part of the study, it was manufactured and divided into groups that inoculated with LBA with different concentrations, K-Sorbate, and nisin. Results: With higher S. aureus inoculation, by day 18, the positive control exhibited growth exceeding 5 log CFU/g. In contrast, the LBA treatment dropped below limit of detection (LOD) and K-Sorbate yielded 4.8 log CFU/g. While with lower S. aureus inoculation, the positive control reached log CFU/g, while LBA treatment fell below LOD by day 14, and K-Sorbate reached 2.9 log CFU/g. For E. coli inoculation, with higher concentrations, by day 18, the positive control exceeded 5 log CFU/g. Conversely, LBA treatment greatly decreased and K-Sorbate treatment measured 5.1 log CFU/g. With lower E. coli concentrations, the positive control surpassed 3 log CFU/g, yet LBA treatment dropped below LOD by day 3. Mold counts indicated some inhibition with the K-Sorbate treatment, while control groups showed growth. LBA treatments exhibit noticeable growth inhibition. About the other part of the study, the outcomes demonstrated that while growth of mold occurred in the control group, inhibitory effects were apparent in the treatment groups, and significant distinctions existed between K-Sorbate, nisin, LBA treatments, and the control group. Conclusion: Our findings suggest that LBA has the potential to effectively control the growth of E. coli, S. aureus, and mold in soft cheese. Moreover, LBA displays greater preservative efficacy compared to K-Sorbate and nisin.


Cheese , Disaccharides , Nisin , Animals , Nisin/pharmacology , Escherichia coli , Staphylococcus aureus , Colony Count, Microbial/veterinary
9.
Open Vet J ; 14(1): 274-283, 2024 Jan.
Article En | MEDLINE | ID: mdl-38633164

Background: Salmonella-related foodborne illnesses are a significant public health concern. Naturally, antibacterial food components have been shown to limit microbial growth proliferation with various degrees of efficacy. Aims: To examine the occurrence, microbial load, and effect of apple vinegar on Salmonella serovars in beef and beef products. Methods: 150 beef and beef products were collected between March and May 2022. Total viable count (TVC), Enterobacteriaceae count (ENT), isolation and identification of Salmonella, and their virulence factors detection by multiplex PCR were determined, and an experimental study of the effect of natural apple vinegar marination on Salmonella spp. Results: TVC was higher in meatballs (3.32 × 106 ± 1.07 × 106) while beef burgers (4.22 × 103 ± 0.71 × 103) had the highest ENT. Concerning the prevalence of Salmonella spp., meatball (46.7%) and beef burger (25.3%) samples were the highest contamination rate. The common serovars detected were Salmonella typhimurium (6%), Salmonella enteritidis (6%), and Salmonella infantis (4%). Based on the results of PCR, 12, 11, and 11 out of 18 samples of Salmonella isolates possess hila, stn, and invA genes. By immersing the inoculated steak meat in apple vinegar at different concentrations (50%, 70%, and 100%), the initial populations of the Salmonella strains after 12 hours were reduced to 0.38 × 102 ± 0.05 × 102 log CFU/ml; however, after 48 hours become the most reduction (0.31 × 102 ± 0.07 × 102 log CFU/ml) at a concentration of 100% apple vinegar. An enhancement in the sensory attributes was noted across all concentrations. Conclusion: The consumed beef and beef products are contaminated with pathogenic bacteria such as Salmonella spp. Marinades made using apple vinegar concentrations of 50%, 75%, and 100% effectively minimized the prevalence of artificially inoculated Salmonella and extended the shelf life of preserved refrigerated beef products to 48 hours.


Acetic Acid , Malus , Cattle , Animals , Food Microbiology , Colony Count, Microbial/veterinary , Anti-Bacterial Agents , Salmonella typhimurium/genetics
10.
Pediatr Dent ; 46(2): 135-141, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38664912

Purpose: To compare surface roughness and bacterial colonization of Streptococcus mutans to 3D printed (3DP), milled (M), and conventional (CV) acrylic resin. Methods: Thirty-six discs (n equals 12 per group) were fabricated from 3DP, M, and CV materials. One surface of sample was polished (Po); the opposite surface was left unpolished (UPo). Surface roughness (µm) was assessed using a contact profilometer. The specimens were placed in S. mutans suspension and incubated at 37 degrees Celsius overnight. The attached colonies were separated using a sonicator, and the resulting solution was diluted to 10-3 to assess colony-forming units per milliliter (CFU/ml) after 48 hours. The colonies were categorized into a quantitative S. mutans (QS) index. Data were analyzed using one-way ANOVA, chi-squares, and multivariate analysis of variance analysis with the least significant difference (LSD) post-hoc test (P<0.05). Results: Roughness average (Ra) values of CV were higher than 3DP and M for UPo surfaces (P<0.001; 3DP=0.10; M=0.13; CV=0.26 µm, respectively). For Po and UPo surfaces, the CV harbored more S. mutans colonies than M and 3DP (P<0.001; 3DP=5.2x10 6 ; M=4.7x10 6 ; CV=1.49x10 7 CFU/ml, respectively). M group had the lowest range of QS scores, while CV had the highest range (P<0.001). Conclusions: Digitally manufactured material provides smoother surfaces than the conventional group, resulting in fewer Streptococcus mutans colonies. However, all the material groups must still be adequately polished to prevent the colonization of S. mutans, regardless of the manufacturing methods, as higher S. mutans counts were observed with an increase in surface roughness values.


Acrylic Resins , Printing, Three-Dimensional , Streptococcus mutans , Surface Properties , Streptococcus mutans/growth & development , In Vitro Techniques , Dental Materials , Materials Testing , Humans , Colony Count, Microbial
11.
J Appl Oral Sci ; 32: e20230326, 2024.
Article En | MEDLINE | ID: mdl-38656049

OBJECTIVE: This study evaluated the surface roughness, wettability and adhesion of multispecies biofilms (Candida albicans, Staphylococcus aureus and Streptococcus mutans) on 3D-printed resins for complete denture bases and teeth compared to conventional resins (heat-polymerized acrylic resin; artificial pre-fabricated teeth). METHODOLOGY: Circular specimens (n=39; 6.0 mm Ø × 2.0 mm) of each group were subjected to roughness (n=30), wettability (n=30) and biofilm adhesion (n=9) tests. Three roughness measurements were taken by laser confocal microscopy and a mean value was calculated. Wettability was evaluated by the contact angle of sessile drop method, considering the mean of the three evaluations per specimen. In parallel, microorganism adhesion to resin surfaces was evaluated using a multispecies biofilm model. Microbial load was evaluated by determining the number of Colony Forming Units (CFU/mL) and by scanning electron microscopy (SEM). Data were subjected to the Wald test in a generalized linear model with multiple comparisons and Bonferroni adjustment, as well as two-way ANOVA (α=5%). RESULTS: The roughness of the conventional base resin (0.01±0.04) was lower than that of the conventional tooth (0.14±0.04) (p=0.023) and 3D-printed base (0.18±0.08) (p<0.001). For wettability, conventional resin (84.20±5.57) showed a higher contact angle than the 3D-printed resin (60.58±6.18) (p<0.001). Higher microbial loads of S. mutans (p=0.023) and S. aureus (p=0.010) were observed on the surface of the conventional resin (S. mutans: 5.48±1.55; S. aureus: 7.01±0.57) compared to the 3D-printed resin (S. mutans: 4.11±1.96; S. aureus: 6.42±0.78). The adhesion of C. albicans was not affected by surface characteristics. The conventional base resin showed less roughness than the conventional dental resin and the printed base resin. CONCLUSION: The 3D-printed resins for base and tooth showed less hydrophobicity and less adhesion of S. mutans and S. aureus than conventional resins.


Acrylic Resins , Bacterial Adhesion , Biofilms , Candida albicans , Denture Bases , Materials Testing , Microscopy, Confocal , Microscopy, Electron, Scanning , Printing, Three-Dimensional , Staphylococcus aureus , Streptococcus mutans , Surface Properties , Wettability , Streptococcus mutans/physiology , Staphylococcus aureus/physiology , Candida albicans/physiology , Denture Bases/microbiology , Acrylic Resins/chemistry , Analysis of Variance , Reproducibility of Results , Denture, Complete/microbiology , Reference Values , Colony Count, Microbial , Linear Models
12.
Microbiology (Reading) ; 170(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38656296

Group B streptococcus (GBS) is a chain-forming commensal bacterium and opportunistic pathogen that resides in the gastrointestinal and genitourinary tract of healthy adults. GBS can cause various infections and related complications in pregnant and nonpregnant women, adults, and newborns. Investigations of the mechanisms by which GBS causes disease pathogenesis often utilize colony count assays to estimate bacterial population size in experimental models. In other streptococci, such as group A streptococcus and pneumococcus, variation in the chain length of the bacteria that can occur naturally or due to mutation can affect facets of pathogenesis, such as adherence to or colonization of a host. No studies have reported a relationship between GBS chain length and pathogenicity. Here, we used GBS strain 874391 and several derivative strains displaying longer chain-forming phenotypes (874391pgapC, 874391ΔcovR, 874391Δstp1) to assess the impact of chain length on bacterial population estimates based on the colony-forming unit (c.f.u.) assay. Disruption of GBS chains via bead beating or sonication in conjunction with fluorescence microscopy was used to compare chaining phenotypes pre- and post-disruption to detect long- and short-chain forms, respectively. We used a murine model of GBS colonization of the female reproductive tract to assess whether chaining may affect bacterial colonization dynamics in the host during chronic infection in vivo. Overall, we found that GBS exhibiting long-chain form can significantly affect population size estimates based on the colony count assay. Additionally, we found that the length of chaining of GBS can affect virulence in the reproductive tract colonization model. Collectively, these findings have implications for studies of GBS that utilize colony count assays to measure GBS populations and establish that chain length can affect infection dynamics and disease pathogenesis for this important opportunistic pathogen.


Streptococcal Infections , Streptococcus agalactiae , Virulence Factors , Streptococcus agalactiae/genetics , Streptococcus agalactiae/pathogenicity , Female , Streptococcal Infections/microbiology , Mice , Animals , Virulence Factors/genetics , Virulence Factors/metabolism , Humans , Colony Count, Microbial , Virulence , Disease Models, Animal , Pregnancy
13.
Food Microbiol ; 121: 104515, 2024 Aug.
Article En | MEDLINE | ID: mdl-38637077

Microbial thermal inactivation in low moisture foods is challenging due to enhanced thermal resistance of microbes and low thermal conductivity of food matrices. In this study, we leveraged the body of previous work on this topic to model key experimental features that determine microbial thermal inactivation in low moisture foods. We identified 27 studies which contained 782 mean D-values and developed linear mixed-effect models to assess the effect of microorganism type, matrix structure and composition, water activity, temperature, and inoculation and recovery methods on cell death kinetics. Intraclass correlation statistics (I2) and conditional R2 values of the linear mixed effects models were: E. coli (R2-0.91, I2-83%), fungi (R2-0.88, I2-85%), L. monocytogenes (R2-0.84, I2-75%), Salmonella (R2-0.69, I2-46%). Finally, global response surface models (RSM) were developed to further study the non-linear effect of aw and temperature on inactivation. The fit of these models varied by organisms from R2 0.88 (E. coli) to 0.35 (fungi). Further dividing the Salmonella data into individual RSM models based on matrix structure improved model fit to R2 0.90 (paste-like products) and 0.48 (powder-like products). This indicates a negative relationship between data diversity and model performance.


Escherichia coli , Food Microbiology , Colony Count, Microbial , Microbial Viability , Salmonella/physiology , Water/analysis , Hot Temperature
14.
Food Microbiol ; 121: 104516, 2024 Aug.
Article En | MEDLINE | ID: mdl-38637078

Oxidation-reduction potential (ORP) is commonly used as a rapid measurement of the antimicrobial potential of free chlorine during industrial fresh produce washing. The current study tested the hypothesis that ORP can act as a "single variable" measurement of bacterial (vegetative and endospores) inactivation effectiveness with free chlorine irrespective of the water pH value. This situation has on occasion been assumed but never confirmed nor disproven. Chlorine-dosed pH 6.5 and 8.5 phosphate buffer solutions were inoculated with Escherichia coli (E. coli), Listeria innocua (L. innocua), or Bacillus subtilis (B. subtilis) endospores. ORP, free chlorine (FC), and log reduction were monitored after 5 s (for E. coli and L. innocua) and up to 30 min (for B. subtilis spores) of disinfection. Logistic and exponential models were developed to describe how bacteria reduction varied as a function of ORP at different pH levels. Validation tests were performed in phosphate buffered pH 6.5 and 8.5 cabbage wash water periodically dosed with FC, cabbage extract and a cocktail of Escherichia coli O157:H7 (E. coli O157:H7) and Listeria monocytogenes (L. monocytogenes). The built logistic and exponential models confirmed that at equal ORP values, the inactivation of the surrogate strains was not consistent across pH 6.5 and pH 8.5, with higher reductions at higher pH. This is the opposite of the well-known free chlorine-controlled bacterial inactivation, where the antibacterial effect is higher at lower pH. The validation test results indicated that in the cabbage wash water, the relationship between disinfection efficiency and ORP was consistent with the oxidant demand free systems. The study suggests that ORP cannot serve as a reliable single variable measurement to predict bacterial disinfection in buffered systems. When using ORP to monitor and control the antibacterial effectiveness of the chlorinated wash water, it is crucial to take into account (and control) the pH.


Escherichia coli O157 , Listeria monocytogenes , Listeria , Disinfection/methods , Chlorine/pharmacology , Chlorine/analysis , Food Contamination/analysis , Food Microbiology , Oxidants , Colony Count, Microbial , Food Handling/methods , Chlorides , Oxidation-Reduction , Water/chemistry , Anti-Bacterial Agents , Hydrogen-Ion Concentration , Phosphates
15.
Food Microbiol ; 121: 104530, 2024 Aug.
Article En | MEDLINE | ID: mdl-38637090

The objective of the present study was to evaluate whether the content of sugar, protein, fat, or fibre in commercially available and specially formulated plant-based beverages (oat, soya and pea) influences the growth rates of Listeria. Beverages were inoculated with a strain cocktail of Listeria (approximately 1 × 103 CFU/mL), and the data demonstrated that Listeria could proliferate in all tested beverages. Moreover, varying concentrations of naturally occurring or added sugar (0-3.3%), protein (3.3-5%), fat (1.1-3.5%) and added fibre (0-1.5%) did not have a statistically significant (p > 0.05) impact on the growth rates of Listeria in the tested plant-based beverages. These data suggest that the wide variety of commercial plant-based beverages serve as an ideal medium for the growth of Listeria irrespective of product composition. All the various products tested provided sufficient nutrients to support at least a 2.6-log increase of Listeria within 16 h at room temperature, with some beverages supporting a 3-log increase. Therefore, these data highlight the importance of careful storage and handling of these increasingly varied and popular products.


Listeria monocytogenes , Listeria , Meat Products , Food Handling , Temperature , Colony Count, Microbial , Beverages , Sugars , Food Microbiology
16.
J Food Sci ; 89(5): 2546-2556, 2024 May.
Article En | MEDLINE | ID: mdl-38578148

2'-Fucosyllactose (2'-FL) is postulated to provide health benefits and promote the growth of probiotics. This work was undertaken to study the effects of 2'-FL on the viability of starter cultures and Bifidobacterium strains of human origin in yogurt during refrigerated storage. Yogurts were produced containing 2'-FL (0 or 2 g/L) and Bifidobacterium strains of human origin (Bifidobacterium longum subsp. longum BB536 or Bifidobacterium longum subsp. infantis ATCC 15697) at a concentration of at least 109 CFU/mL. All yogurts were stored at 4°C for 5 weeks. Results showed that 2'-FL was stable in yogurts for at least 5 weeks of cold storage, and the addition of 2'-FL did not significantly alter yogurt fermentation parameters, associated metabolites, and the viability of mixed yogurt starter cultures and Bifidobacterium strains (p > 0.05). The addition of bifidobacteria had a negative impact (p < 0.05) on the survival rate of starter cultures, Streptococcus thermophilus and Lactobacillus delbureckii subsp. bulgaricus. Meanwhile, it is difficult to maintain a high survival rate of bifidobacteria in final yogurt products, and the addition of 2'-FL could not enhance the viability of bifidobacteria. B. longum BB536 survived at a level higher than 106 CFU/g for 28 days, while B. infantis ATCC15697 maintained this level for only 7 days. In summary, this study has shown the impact of 2'-FL and bifidobacterial species on yogurt properties, and results suggest that it is promising to use 2'-FL in yogurt products as a prebiotic. PRACTICAL APPLICATION: Yogurt is known for its beneficial effects on human health and nutrition. This study reported the production of symbiotic yogurt containing bifidobacteria and 2'-fucosyllactose (2'-FL) as a functional food for specified health uses. The viability of yogurt starter cultures and probiotic bifidobacterial strains was analyzed in this study. Moreover, this research demonstrated that 2'-FL could be added to yogurt without affecting the characteristics of yogurt significantly.


Bifidobacterium , Fermentation , Food Storage , Probiotics , Trisaccharides , Yogurt , Yogurt/microbiology , Trisaccharides/pharmacology , Bifidobacterium/growth & development , Humans , Food Storage/methods , Refrigeration , Streptococcus thermophilus/growth & development , Microbial Viability , Food Microbiology , Colony Count, Microbial
17.
J Food Sci ; 89(5): 2956-2973, 2024 May.
Article En | MEDLINE | ID: mdl-38602050

The objectives of the study were to improve the functionality of fermented salami using probiotics, to evaluate the effects of the addition of probiotics on the physicochemical and microbiological characteristics and sensory acceptance of fermented salami, and to introduce a brand-new probiotic food to the market for meat products. Fermented salami samples were produced using various formulations, including no probiotic (A), non-probiotic starter cultures (B) or probiotic cultures [Lacticaseibacillus rhamnosus LR32 200B (C), Lactiplantibacillus plantarum LP115 400B (D), Bifidobacterium lactis BB12 (E), and L. rhamnosus LR32 200B + L. plantarum LP115 400B (F)]. The samples were kept at 4°C for 60 days, and their probiotic viability as well as their chemical, physical, microbiological, and sensory qualities were assessed at intervals of 0, 15, 30, 45, and 60 days. The probiotic addition enhanced the safety and quality of the product while favorably affecting the microbiological, physical, chemical, and sensory properties of the samples. The sample produced with mixed probiotics (F) had the highest moisture and fat content and the lowest pH. Lactic acid bacteria counts were found above 6.0 log CFU/g in the samples produced with probiotic at the end of the storage. Probiotic added products were rated higher than products without probiotics in terms of color, texture, flavor, and overall acceptance during storage. Consequently, a probiotic fermented salami with high probiotic cell counts and meeting the sensory preferences of the consumers was produced.


Bifidobacterium animalis , Fermentation , Fermented Foods , Lacticaseibacillus rhamnosus , Meat Products , Probiotics , Bifidobacterium animalis/physiology , Meat Products/microbiology , Meat Products/analysis , Humans , Fermented Foods/microbiology , Lactobacillus plantarum , Food Microbiology , Taste , Hydrogen-Ion Concentration , Colony Count, Microbial
18.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article En | MEDLINE | ID: mdl-38684475

Heterotrophic bacteria are commonly found in water samples. While these Heterotrophic Bacterial/Plate Counts (HPC) do not necessarily indicate a health hazard, high counts provide a good indication of the efficiency of water disinfection and integrity of distribution systems. The aim of this study was to compare the PetrifimTM AC method to the pour plate technique for the testing of HPC in water samples. Artificially contaminated (192 samples) and natural water samples (25) were processed using two methods. Both methods accurately detected high, medium and low counts of HPC, producing average Z scores between -2 and +2. Paired-wise student t-test and correlation coefficient showed nonsignificant differences between the results of two methods. Acceptable repeatability and reproducibility was obtained using both the methods. Uncertainty of measurement for PetrifilmTM AC and pour plate method was found to be 2.9% and 5.4%, respectively. PetrifilmTM AC proved to be robust at 33°C and 37°C. In conclusion, PetrifimTM AC, which is easy to process, read, and less time consuming, proved to be comparable to the conventional pour plate method in establishing HPC in water. In addition, PetrifimTM AC requires less space for the processing and incubation, generate small volume of waste for disposal, and requires no equipment, except for the incubator.


Bacterial Load , Water Microbiology , Bacterial Load/methods , Bacteria, Aerobic/isolation & purification , Reproducibility of Results , Colony Count, Microbial/methods , Heterotrophic Processes
19.
Daru ; 32(1): 461-468, 2024 Jun.
Article En | MEDLINE | ID: mdl-38613658

PURPOSE: A pharmacopoeia is a compendium of guidelines and criteria for drug quality. It was established by a national or regional entity and has legal significance. This applies to administration of drugs in a particular nation or region. METHOD: In this study, the differences and similarities of microbiological acceptance criteria, specifications for microbial enumeration of herbal drugs and herbal drug preparations in 14 national and international pharmacopeias were investigated. RESULTS: It was found that 12 pharmacopeias have given separate microbial limits for total aerobic microbial count (TAMC) and total yeast and mold count (TYMC), and a list of specified microorganisms for which acceptance criteria are defined. However, similarities were noticed in Ph.Eur, Ph. Helv and, BP. Salmonella, and Escherichia coli are the most common pathogens specified for herbal preparations in which boiling water is added prior to use and for internal use in all Pharmacopoeias because they serve as indicators of potential contamination. CONCLUSION: From this study, it can be concluded that the differences in microbial limit tests and their acceptance criteria as specified in the various pharmacopoeias need to be harmonized. It will become a more convenient option for global drug manufacturers to import/export herbal drugs, and this would also eliminate the burden of performing various analytical methods and comply with different microbial acceptance criteria set by various pharmacopoeias. The comparative data obtained from this study will be used to develop strategies for revisions of pharmacopoeias in a harmonized manner with respect to microbiological acceptance criteria, specifications for microbial enumeration of herbal drugs and herbal drug preparations.


Drug Contamination , Pharmacopoeias as Topic , Plant Preparations , Plant Preparations/standards , Drug Contamination/prevention & control , Pharmacopoeias as Topic/standards , Colony Count, Microbial , Quality Control , Humans
20.
Compr Rev Food Sci Food Saf ; 23(3): e13345, 2024 05.
Article En | MEDLINE | ID: mdl-38638070

Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.


Carbon Dioxide , Comprehension , Microbial Viability , Carbon Dioxide/chemistry , Carbon Dioxide/pharmacology , Colony Count, Microbial , Food Handling/methods
...