Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125697

RESUMEN

The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.


Asunto(s)
Proteínas del Sistema Complemento , Evolución Molecular , Duplicación de Gen , Filogenia , Animales , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Humanos , Complemento C3/genética , Complemento C3/metabolismo , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química
2.
J Immunol ; 213(5): 718-729, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38995166

RESUMEN

The ancient arm of innate immunity known as the complement system is a blood proteolytic cascade involving dozens of membrane-bound and solution-phase components. Although many of these components serve as regulatory molecules to facilitate controlled activation of the cascade, C1 esterase inhibitor (C1-INH) is the sole canonical complement regulator belonging to a superfamily of covalent inhibitors known as serine protease inhibitors (SERPINs). In addition to its namesake role in complement regulation, C1-INH also regulates proteases of the coagulation, fibrinolysis, and contact pathways. Despite this, the structural basis for C1-INH recognition of its target proteases has remained elusive. In this study, we present the crystal structure of the Michaelis-Menten (M-M) complex of the catalytic domain of complement component C1s and the SERPIN domain of C1-INH at a limiting resolution of 3.94 Å. Analysis of the structure revealed that nearly half of the protein/protein interface is formed by residues outside of the C1-INH reactive center loop. The contribution of these residues to the affinity of the M-M complex was validated by site-directed mutagenesis using surface plasmon resonance. Parallel analysis confirmed that C1-INH-interfacing residues on C1s surface loops distal from the active site also drive affinity of the M-M complex. Detailed structural comparisons revealed differences in substrate recognition by C1s compared with C1-INH recognition and highlight the importance of exosite interactions across broader SERPIN/protease systems. Collectively, this study improves our understanding of how C1-INH regulates the classical pathway of complement, and it sheds new light on how SERPINs recognize their cognate protease targets.


Asunto(s)
Proteína Inhibidora del Complemento C1 , Complemento C1s , Proteína Inhibidora del Complemento C1/metabolismo , Complemento C1s/metabolismo , Complemento C1s/química , Humanos , Cristalografía por Rayos X , Dominio Catalítico , Unión Proteica , Modelos Moleculares , Conformación Proteica
3.
Rev Assoc Med Bras (1992) ; 70(3): e20231027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451587

RESUMEN

OBJECTIVE: Determination of biomolecules that play a role in the etiopathogenesis of preeclampsia and their application as therapeutic targets may increase surveillance in this patient group. The aim of this study was to investigate the relationship between signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1, a marker of endothelial dysfunction and platelet activation, and the development of preeclampsia. METHODS: In this observational cross-sectional study conducted between April 2021 and December 2022, 73 consecutive pregnant women with preeclampsia and 73 healthy pregnant women were included. Blood samples were taken from all patients with preeclampsia to measure signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 levels at the time of hospitalization. Excluded from the study were pregnant women with certain medical conditions or treatments, and the signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 levels of the groups were compared according to the development of preeclampsia. RESULTS: Signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 levels were significantly higher in the preeclampsia group than in the controls (p<0.001). In multivariate analysis, signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 was determined as an independent predictor for preeclampsia (OR: 1.678, 95%CI 1.424-1.979, p<0.001). Receiver operating characteristic curve analysis showed that the best cutoff value of signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 at 3.25 ng/mL predicted the development of preeclampsia with 71% sensitivity and 68% specificity (area under the curve, 0.739; 95% confidence interval (95%CI), 0.681-0.798, p<0.001). CONCLUSION: Signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 is significantly elevated in pregnant women with preeclampsia compared with healthy controls.


Asunto(s)
Dihidropiridinas , Factor de Crecimiento Epidérmico , Oximas , Preeclampsia , Embarazo , Humanos , Femenino , Complemento C1r , Complemento C1s
4.
J Biol Chem ; 300(5): 107236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552741

RESUMEN

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Borrelia burgdorferi , Vía Clásica del Complemento , Humanos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Vía Clásica del Complemento/inmunología , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Unión Proteica
5.
J Immunol ; 212(7): 1172-1177, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372634

RESUMEN

The activation of the CP/LP C3 proconvertase complex is a key event in complement activation and involves cleavage of C4 and C2 by the C1s protease (classical pathway) or the mannose-binding lectin-associated serine protease (MASP)-2 (lectin pathway). Efficient cleavage of C4 by C1s and MASP-2 involves exosites on the complement control protein and serine protease (SP) domains of the proteases. The complement control protein domain exosite is not involved in cleavage of C2 by the proteases, but the role of an anion-binding exosite (ABE) on the SP domains of the proteases has (to our knowledge) never been investigated. In this study, we have shown that the ABE on the SP of both C1s and MASP-2 is crucial for efficient cleavage of C2, with mutant forms of the proteases greatly impaired in their rate of cleavage of C2. We have additionally shown that the site of binding for the ABE of the proteases is very likely to be located on the von Willebrand factor domain of C2, with the precise area differing between the enzymes: whereas C1s requires two anionic clusters on the von Willebrand factor domain to enact efficient cleavage of C2, MASP-2 apparently only requires one. These data provide (to our knowledge) new information about the molecular determinants for efficient activation of C2 by C1s and MASP-2. The enhanced view of the molecular events underlying the early stages of complement activation provides further possible intervention points for control of this activation that is involved in a number of inflammatory diseases.


Asunto(s)
Activación de Complemento , Lectina de Unión a Manosa , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Complemento C1s , Complemento C4/metabolismo , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Dominios Proteicos , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Factor de von Willebrand , Humanos , Células HEK293
6.
Mol Immunol ; 166: 29-38, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218080

RESUMEN

C1s enzyme (active C1s) is a subunit of the complement C1 complex that cleaves low-density lipoprotein receptor-related proteins 5 and 6, leading to Wnt/ß-catenin pathway activation in some cell lines. Macrophages have two major functional polarization states (the classically activated M1 state and the alternatively activated M2 state) and play an essential role in atherosclerosis. An increasing amount of evidence suggests that canonical Wnt signaling is related to macrophage polarization. In this study, we explored the cytoprotective effects of C1s enzyme in macrophages. The results show that C1s enzyme activates canonical Wnt signaling in macrophages, exacerbates macrophage M2 polarization, and inhibits M1 polarization. Moreover, C1s enzyme reduces foam cell formation and simultaneously enhances efferocytosis. This study reveals a novel function of C1s enzyme in macrophages in the context of atherosclerosis.


Asunto(s)
Aterosclerosis , Complemento C1s , Macrófagos , Vía de Señalización Wnt , Humanos , Aterosclerosis/metabolismo , beta Catenina/metabolismo , Células Espumosas/metabolismo , Macrófagos/metabolismo , Complemento C1s/metabolismo
7.
Am J Health Syst Pharm ; 81(9): e220-e225, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38270186

RESUMEN

PURPOSE: Orolingual angioedema (OA) secondary to administration of thrombolytic therapy is a rare, but serious, known adverse effect. Despite the lack of robust evidence for their use, C1 esterase inhibitors are recommended by guidelines for the treatment of refractory thrombolytic-associated OA. This report highlights the use of a C1 esterase inhibitor in a patient with tenecteplase-associated OA unresolved by antihistamine and corticosteroid therapy. SUMMARY: A 67-year-old white male with a history of hypertension managed with lisinopril presented to the emergency department with acute onset of slurred speech and left-sided hemiparesis. Following workup, an outside hospital's neurology stroke team suspected an acute infarct and determined the patient to be a candidate for tenecteplase. Approximately 1 hour after tenecteplase administration, the patient began complaining of dyspnea and mild oral angioedema. Immediate interventions for OA management included intravenous therapy with dexamethasone 10 mg, diphenhydramine 25 mg, and famotidine 20 mg. After an additional 30 minutes, the patient's OA symptoms continued to progress and a C1 esterase inhibitor (Berinert) was administered. Shortly after administration of the C1 esterase inhibitor, the patient's symptoms continued to worsen, ultimately leading to endotracheal intubation. Following intubation, symptom improvement was noted, and the patient was safely extubated after 30 hours. CONCLUSION: Although rare, OA is a potentially life-threatening complication of tenecteplase therapy and requires prompt pharmacological intervention to optimize patient outcomes. Currently, no single agent or treatment algorithm exists that has shown significant efficacy or safety in the setting of thrombolytic-associated OA. Until data are available for C1 esterase inhibitors in this application, these inhibitors should only be considered if there is continued symptom progression after intravenous administration of corticosteroids and antihistamines.


Asunto(s)
Angioedema , Proteína Inhibidora del Complemento C1 , Humanos , Masculino , Anciano , Tenecteplasa/uso terapéutico , Proteína Inhibidora del Complemento C1/uso terapéutico , Complemento C1s , Angioedema/inducido químicamente , Angioedema/tratamiento farmacológico , Fibrinolíticos/efectos adversos , Activador de Tejido Plasminógeno/efectos adversos
8.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149922

RESUMEN

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Asunto(s)
Complemento C1s , Vía Clásica del Complemento , Animales , Ovinos , Péptido Hidrolasas , Complemento C1/metabolismo , Endopeptidasas , Piridinas/farmacología
9.
Front Immunol ; 14: 1151731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180096

RESUMEN

Complement C1s association with the pathogenesis of several diseases cannot be simply explained only by considering its main role in activating the classical complement pathway. This suggests that non-canonical functions are to be deciphered for this protease. Here the focus is on C1s cleavage of HMGB1 as an auxiliary target. HMGB1 is a chromatin non-histone nuclear protein, which exerts in fact multiple functions depending on its location and its post-translational modifications. In the extracellular compartment, HMGB1 can amplify immune and inflammatory responses to danger associated molecular patterns, in health and disease. Among possible regulatory mechanisms, proteolytic processing could be highly relevant for HMGB1 functional modulation. The unique properties of HMGB1 cleavage by C1s are analyzed in details. For example, C1s cannot cleave the HMGB1 A-box fragment, which has been described in the literature as an inhibitor/antagonist of HMGB1. By mass spectrometry, C1s cleavage was experimentally identified to occur after lysine on position 65, 128 and 172 in HMGB1. Compared to previously identified C1s cleavage sites, the ones identified here are uncommon, and their analysis suggests that local conformational changes are required before cleavage at certain positions. This is in line with the observation that HMGB1 cleavage by C1s is far slower when compared to human neutrophil elastase. Recombinant expression of cleavage fragments and site-directed mutagenesis were used to confirm these results and to explore how the output of C1s cleavage on HMGB1 is finely modulated by the molecular environment. Furthermore, knowing the antagonist effect of the isolated recombinant A-box subdomain in several pathophysiological contexts, we wondered if C1s cleavage could generate natural antagonist fragments. As a functional readout, IL-6 secretion following moderate LPS activation of RAW264.7 macrophage was investigated, using LPS alone or in complex with HMGB1 or some recombinant fragments. This study revealed that a N-terminal fragment released by C1s cleavage bears stronger antagonist properties as compared to the A-box, which was not expected. We discuss how this fragment could provide a potent brake for the inflammatory process, opening the way to dampen inflammation.


Asunto(s)
Complemento C1s , Proteína HMGB1 , Humanos , Complemento C4/metabolismo , Lipopolisacáridos , Antiinflamatorios
10.
Clin Immunol ; 252: 109646, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209807

RESUMEN

BACKGROUND: Kikuchi-Fujimoto disease (KFD) is a self-limited inflammatory disease of unknown pathogenesis. Familial cases have been described and defects in classical complement components C1q and C4 have been identified in some patients. MATERIAL AND METHODS: We describe genetic and immune investigations of a 16 years old Omani male, a product of consanguineous marriage, who presented with typical clinical and histological features of KFD. RESULTS: We identified a novel homozygous single base deletion in C1S (c.330del; p. Phe110LeufsTer23) resulting in a defect in the classical complement pathway. The patient was negative for all serological markers of SLE. In contrast, two female siblings (also homozygous for the C1S mutation), one has autoimmune thyroid disease (Hashimoto thyroiditis) and a positive ANA and the other sibling has serology consistent with SLE. CONCLUSION: We report the first association between C1s deficiency and KFD.


Asunto(s)
Linfadenitis Necrotizante Histiocítica , Adolescente , Humanos , Masculino , Complemento C1s/genética , Linfadenitis Necrotizante Histiocítica/genética , Linfadenitis Necrotizante Histiocítica/complicaciones , Linfadenitis Necrotizante Histiocítica/patología , Mutación con Pérdida de Función
11.
Clin Immunol ; 251: 109629, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149117

RESUMEN

The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.


Asunto(s)
Anemia Hemolítica Autoinmune , Complemento C1s , Humanos , Complemento C1s/metabolismo , Activación de Complemento , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Inactivadores del Complemento/uso terapéutico , Vía Clásica del Complemento
12.
Am J Hematol ; 98(8): 1246-1253, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246953

RESUMEN

Cold agglutinin disease (CAD) is a rare, autoimmune, classical complement pathway (CP)-mediated hemolytic anemia. Sutimlimab selectively inhibits C1s of the C1 complex, preventing CP activation while leaving the alternative and lectin pathways intact. In Part A (26 weeks) of the open-label, single-arm, Phase 3 CARDINAL study in patients with CAD and a recent history of transfusion, sutimlimab demonstrated rapid effects on hemolysis and anemia. Results of the CARDINAL study Part B (2-year extension) study, described herein, demonstrated that sutimlimab sustains improvements in hemolysis, anemia, and quality of life over a median of 144 weeks of treatment. Mean last-available on-treatment values in Part B were improved from baseline for hemoglobin (12.2 g/dL on-treatment versus 8.6 g/dL at baseline), bilirubin (16.5 µmol/L on-treatment versus 52.1 µmol/L at baseline), and FACIT-Fatigue scores (40.5 on-treatment versus 32.4 at baseline). In the 9-week follow-up period after sutimlimab cessation, CP inhibition was reversed, and hemolytic markers and fatigue scores approached pre-sutimlimab values. Overall, sutimlimab was generally well tolerated in Part B. All 22 patients experienced ≥1 treatment-emergent adverse event (TEAE); 12 (54.5%) patients experienced ≥1 serious TEAE, including seven (31.8%) with ≥1 serious infection. Three patients discontinued due to a TEAE. No patients developed systemic lupus erythematosus or meningococcal infections. After cessation of sutimlimab, most patients reported adverse events consistent with recurrence of CAD. In conclusion, the CARDINAL 2-year results provide evidence of sustained sutimlimab effects for CAD management, but that disease activity reoccurs after treatment cessation. NCT03347396. Registered November 20, 2017.


Asunto(s)
Anemia Hemolítica Autoinmune , Humanos , Anemia Hemolítica Autoinmune/tratamiento farmacológico , Complemento C1s , Hemólisis , Calidad de Vida , Ensayos Clínicos Fase III como Asunto
13.
J Med Chem ; 66(9): 6354-6371, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37120845

RESUMEN

A novel series of non-amidine-based C1s inhibitors have been explored. Starting from high-throughput screening hit 3, isoquinoline was replaced with 1-aminophthalazine to enhance C1s inhibitory activity while exhibiting good selectivity against other serine proteases. We first disclose a crystal structure of a complex of C1s and a small-molecule inhibitor (4e), which guided structure-based optimization around the S2 and S3 sites to further enhance C1s inhibitory activity by over 300-fold. Improvement of membrane permeability by incorporation of fluorine at the 8-position of 1-aminophthalazine led to identification of (R)-8 as a potent, selective, orally available, and brain-penetrable C1s inhibitor. (R)-8 significantly inhibited membrane attack complex formation induced by human serum in a dose-dependent manner in an in vitro assay system, proving that selective C1s inhibition blocked the classical complement pathway effectively. As a result, (R)-8 emerged as a valuable tool compound for both in vitro and in vivo assessment.


Asunto(s)
Activación de Complemento , Complemento C1s , Humanos , Complemento C1s/química , Complemento C1s/metabolismo , Serina Endopeptidasas/metabolismo , Encéfalo/metabolismo
14.
J Peripher Nerv Syst ; 28(2): 276-285, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119056

RESUMEN

BACKGROUND AND AIMS: Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare immune-mediated disease of the peripheral nerves, with significant unmet treatment needs. Clinical trials in CIDP are challenging; thus, new trial designs are needed. We present design of an open-label phase 2 study (NCT04658472) evaluating efficacy and safety of SAR445088, a monoclonal antibody targeting complement C1s, in CIDP. METHODS: This phase 2, proof-of-concept, multicenter, open-label trial will evaluate the efficacy, and safety of SAR445088 in 90 patients with CIDP across three groups: (1) currently treated with standard-of-care (SOC) therapies, including immunoglobulin or corticosteroids (SOC-Treated); (2) refractory to SOC (SOC-Refractory); and (3) naïve to SOC (SOC-Naïve). Enrolled participants undergo a 24-week treatment period (part A), followed by an optional treatment extension for up to an additional 52 weeks (part B). In part A, the primary endpoint for the SOC-Treated group is the percentage of participants with a relapse after switching from SOC to SAR445088. The primary endpoint for the SOC-Refractory and SOC-Naïve groups is the percentage of participants with a response, compared to baseline. Secondary endpoints include safety, tolerability, immunogenicity, and efficacy of SAR445088 during 12-week overlapping period (SOC-Treated). Part B evaluates long-term safety and durability of efficacy. Data analysis will be performed using Bayesian statistics (predefined efficacy thresholds) and historical data-based placebo assumptions to support program decision-making. INTERPRETATION: This innovative trial design based on patient groups and Bayesian statistics provides an efficient paradigm to evaluate new treatment candidates across the CIDP spectrum and can help accelerate development of new therapies.


Asunto(s)
Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Humanos , Corticoesteroides/uso terapéutico , Anticuerpos Monoclonales , Teorema de Bayes , Complemento C1s , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico , Resultado del Tratamiento , Prueba de Estudio Conceptual
15.
Front Immunol ; 14: 1157421, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960056

RESUMEN

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, lack of attached gingiva and thin and fragile gums leading to gingival recession. Connective tissue abnormalities of pEDS typically include easy bruising, pretibial plaques, distal joint hypermobility, hoarse voice, and less commonly manifestations such as organ or vessel rupture. pEDS is caused by heterozygous missense mutations in C1R and C1S genes of the classical complement C1 complex. Previously we showed that pEDS pathogenic variants trigger intracellular activation of C1r and/or C1s, leading to extracellular presence of activated C1s. However, the molecular link relating activated C1r and C1s proteases to the dysregulated connective tissue homeostasis in pEDS is unknown. Using cell- and molecular-biological assays, we identified activated C1s (aC1s) as an enzyme which degrades collagen I in cell culture and in in vitro assays. Matrix collagen turnover in cell culture was assessed using labelled hybridizing peptides, which revealed fast and comprehensive collagen protein remodeling in patient fibroblasts. Furthermore, collagen I was completely degraded by aC1s when assays were performed at 40°C, indicating that even moderate elevated temperature has a tremendous impact on collagen I integrity. This high turnover is expected to interfere with the formation of a stable ECM and result in tissues with loose compaction a hallmark of the EDS phenotype. Our results indicate that pathogenesis in pEDS is not solely mediated by activation of the complement cascade but by inadequate C1s-mediated degradation of matrix proteins, confirming pEDS as a primary connective tissue disorder.


Asunto(s)
Complemento C1s , Síndrome de Ehlers-Danlos , Humanos , Colágeno Tipo I/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Mutación Missense , Complemento C1s/genética
16.
Front Immunol ; 14: 1081793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761732

RESUMEN

Objectives: C1s activation is associated with the pathogenesis of various diseases, indicating the potential value of C1s activation detection in clinic. Here we aimed to establish fluorescence resonance energy transfer (FRET)-based immunoassay for the quantitative detection of activated C1s in serum. Methods: FRET-based fluorogenic peptides, sensitive to the enzymatic activity of activated C1s, were prepared and labeled with the fluorophore ortho-aminobenzoic acid (Abz) and quencher 2,4-dinitrophenyl (Dnp), and then were further selected depending on its Kcat/Km value. C1s in the samples was captured and separated using anti-C1s-conjugated magnetic microbeads. Next, enzymatic activity of activated C1s in samples and standards was examined using fluorescent quenched substrate assays. Limit of detection (LOD), accuracy, precision, and specificity of FRET-based immunoassay were also investigated. Results: This method presented a linear quantification range for the enzymatic activity of activated C1s up to 10 µmol min-1 mL-1 and LOD of 0.096 µmol·min-1·mL-1 for serum samples. The recovery of the method was in the range of 90% ~ 110%. All CV values of the intra-analysis and inter-analysis of three levels in samples were less than 10%. The cross-reaction rates with C1r enzyme, MASP1, and MASP2 were less than 0.5%. No significant interferences were found with bilirubin (0.2 mg mL-1), Chyle (2000 FTU), and haemoglobin (5 mg mL-1), but anticoagulants (EDTA, citrate and heparin) inhibited the enzymatic ability of activated C1s. Thus, this established method can be used for the determination of active C1s in human serum samples in the concentration interval of 0.096-10.000 µmol min-1 mL-1. Conclusions: One anti-C1s-based FRET immunoassay for activated C1s detection in serum samples were established, and it will be useful to explore the role of C1s activation in the pathogenesis, diagnosis and treatment in complement-related diseases.


Asunto(s)
Complemento C1r , Complemento C1s , Humanos , Transferencia Resonante de Energía de Fluorescencia , Inmunoensayo , Péptidos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa
17.
Ann Pharmacother ; 57(8): 970-977, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36476151

RESUMEN

OBJECTIVE: To review the pharmacology, pharmacokinetics, efficacy, safety, dosing and administration, and place in therapy of sutimlimab for the management of cold agglutinin disease (CAD)-associated hemolysis. DATA SOURCES: A literature search of PubMed (1966-October 2022) was conducted using the keywords sutimlimab, BIVV009, and cold agglutinin. Data were also obtained from prescribing information, meeting abstracts, and clinicaltrials.gov. STUDY SELECTION AND DATA EXTRACTION: All published prospective clinical trials, prescribing information, and meeting abstracts on sutimlimab for the treatment of CAD were reviewed. DATA SYNTHESIS: Sutimlimab is a first-in-class complement C1s inhibitor indicated for the treatment of CAD-associated hemolysis. This approval was based on the phase III CARDINAL trial, which evaluated sutimlimab in patients with CAD-associated hemolysis. The primary endpoint of achieving a hemoglobin of ≥12 g/dL or increase of ≥2 above baseline was achieved by 54% of patients with sutimlimab in the 26-week trial. The phase III CADENZA trial was a placebo-controlled trial in which sutimlimab has demonstrated a significant improvement in the composite endpoint of hemoglobin increase of ≥1.5 g/dL, avoidance of transfusion, and avoidance of additional CAD therapies (73% sutimlimab vs 15% placebo). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS: Sutimlimab rapidly halts hemolysis, improves hemoglobin, and improves quality-of-life in patients with CAD. Safety issues with sutimlimab include infusion-related reactions and risk of serious infections with encapsulated bacteria. CONCLUSIONS: Sutimlimab provides an additional therapeutic option in the treatment of CAD-associated hemolysis that can lead to rapid improvement in hemoglobin and anemia-related symptoms.


Asunto(s)
Anemia Hemolítica Autoinmune , Humanos , Anemia Hemolítica Autoinmune/tratamiento farmacológico , Anemia Hemolítica Autoinmune/diagnóstico , Hemólisis , Complemento C1s , Inactivadores del Complemento/efectos adversos , Estudios Prospectivos
18.
Front Immunol ; 14: 1257525, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469558

RESUMEN

Deficiencies of the early complement components of the classical pathway (CP) are well-documented in association with systemic lupus erythematosus (SLE) or SLE-like syndromes and severe pyogenic infections. Among these, complete C1s deficiency has been reported in nine cases so far. Here, we describe a 34-year-old male patient who presented with severe, recurrent infections since childhood, including meningitides with pneumococci and meningococci, erysipelas, subcutaneous abscess, and recurrent infections of the upper airways. The patient also exhibited adult-onset SLE, meeting 7/11 of the ACR criteria and 34 of the 2019 EULAR/ACR classification criteria, along with class IV-G (A) proliferative lupus nephritis (LN). A screening of the complement cascade showed immeasurably low CH50, while the alternative pathway (AP) function was normal. Subsequent determination of complement components revealed undetectable C1s with low levels of C1r and C1q, normal C3, and slightly elevated C4 and C2 concentrations. The patient had no anti-C1q antibodies. Renal biopsy showed class IV-G (A) LN with complement C1q positivity along the glomerular basement membranes (GBMs) and weak deposition of IgG, IgM, and complement C3 and C4 in the mesangium and GBM. In an ELISA-based functional assay determining C4d deposition, the patient's absent complement activity was fully restored by adding C1s. The genome of the patient was analyzed by whole genome sequencing showing two truncating variants in the C1S gene. One mutation was located at nucleotide 514 in exon 5, caused by a nucleotide substitution from G to T, resulting in a nonsense mutation from Gly172 (p.Gly172*). The other mutation was located at nucleotide 750 in exon 7, where C was replaced by a G, resulting in a nonsense mutation from Tyr250 (p.Tyr250*). Both mutations create a premature stop codon and have not previously been reported in the literature. These genetic findings, combined with the absence of C1s in the circulation, strongly suggest a compound heterozygote C1s deficiency in our patient, without additional defect within the complement cascade. As in a previous C1s deficiency case, the patient responded well to rituximab. The present case highlights unanswered questions regarding the CP's role in SLE etiopathogenesis.


Asunto(s)
Complemento C1s , Enfermedades por Deficiencia de Complemento Hereditario , Lupus Eritematoso Sistémico , Nefritis Lúpica , Adulto , Humanos , Masculino , Codón sin Sentido , Complemento C1q/genética , Complemento C1s/deficiencia , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/genética , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/genética , Nucleótidos , Reinfección
19.
Front Immunol ; 13: 1015128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275687

RESUMEN

The molecules of the complement system connect the effectors of innate and adaptive immunity and play critical roles in maintaining homeostasis. Among them, the C1 complex, composed of C1q, C1r, and C1s (C1qr2s2), is the initiator of the classical complement activation pathway. While deficiency of C1s is associated with early-onset systemic lupus erythematosus and increased susceptibility to bacteria infections, the gain-of- function variants of C1r and C1s may lead to periodontal Ehlers Danlos syndrome. As C1s is activated under various pathological conditions and associated with inflammation, autoimmunity, and cancer development, it is becoming an informative biomarker for the diagnosis and treatment of a variety of diseases. Thus, more sensitive and convenient methods for assessing the level as well as activity of C1s in clinic samples are highly desirable. Meanwhile, a number of small molecules, peptides, and monoclonal antibodies targeting C1s have been developed. Some of them are being evaluated in clinical trials and one of the antibodies has been approved by US FDA for the treatment of cold agglutinin disease, an autoimmune hemolytic anemia. In this review, we will summarize the biological properties of C1s, its association with development and diagnosis of diseases, and recent progress in developing drugs targeting C1s. These progress illustrate that the C1s molecule is an effective biomarker and promising drug target.


Asunto(s)
Complemento C1r , Complemento C1s , Complemento C1s/metabolismo , Complemento C1q/metabolismo , Activación de Complemento/fisiología , Péptidos , Anticuerpos Monoclonales
20.
J Biol Chem ; 298(11): 102557, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183830

RESUMEN

Proteolytic cascades comprise several important physiological systems, including a primary arm of innate immunity called the complement cascade. To safeguard against complement-mediated attack, the etiologic agent of Lyme disease, Borreliella burgdorferi, produces numerous outer surface-localized lipoproteins that contribute to successful complement evasion. Recently, we discovered a pair of B. burgdorferi surface lipoproteins of the OspEF-related protein family-termed ElpB and ElpQ-that inhibit antibody-mediated complement activation. In this study, we investigate the molecular mechanism of ElpB and ElpQ complement inhibition using an array of biochemical and biophysical approaches. In vitro assays of complement activation show that an independently folded homologous C-terminal domain of each Elp protein maintains full complement inhibitory activity and selectively inhibits the classical pathway. Using binding assays and complement component C1s enzyme assays, we show that binding of Elp proteins to activated C1s blocks complement component C4 cleavage by competing with C1s-C4 binding without occluding the active site. C1s-mediated C4 cleavage is dependent on activation-induced binding sites, termed exosites. To test whether these exosites are involved in Elp-C1s binding, we performed site-directed mutagenesis, which showed that ElpB and ElpQ binding require C1s residues in the anion-binding exosite located on the serine protease domain of C1s. Based on these results, we propose a model whereby ElpB and ElpQ exploit activation-induced conformational changes that are normally important for C1s-mediated C4 cleavage. Our study expands the known complement evasion mechanisms of microbial pathogens and reveals a novel molecular mechanism for selective C1s inhibition by Lyme disease spirochetes.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Complemento C1s/química , Complemento C1s/metabolismo , Borrelia burgdorferi/genética , Complemento C4/química , Proteínas del Sistema Complemento/metabolismo , Serina Proteasas , Lipoproteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA