Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26.734
1.
Front Immunol ; 15: 1390468, 2024.
Article En | MEDLINE | ID: mdl-38726006

Introduction: Relapsing fever (RF) remains a neglected human disease that is caused by a number of diverse pathogenic Borrelia (B.) species. Characterized by high cell densities in human blood, relapsing fever spirochetes have developed plentiful strategies to avoid recognition by the host defense mechanisms. In this scenario, spirochetal lipoproteins exhibiting multifunctional binding properties in the interaction with host-derived molecules are known to play a key role in adhesion, fibrinolysis and complement activation. Methods: Binding of CihC/FbpC orthologs to different human proteins and conversion of protein-bound plasminogen to proteolytic active plasmin were examined by ELISA. To analyze the inhibitory capacity of CihC/FbpC orthologs on complement activation, a microtiter-based approach was performed. Finally, AlphaFold predictions were utilized to identified the complement-interacting residues. Results and discussion: Here, we elucidate the binding properties of CihC/FbpC-orthologs from distinct RF spirochetes including B. parkeri, B. hermsii, B. turicatae, and B. recurrentis to human fibronectin, plasminogen, and complement component C1r. All CihC/FbpC-orthologs displayed similar binding properties to fibronectin, plasminogen, and C1r, respectively. Functional studies revealed a dose dependent binding of plasminogen to all borrelial proteins and conversion to active plasmin. The proteolytic activity of plasmin was almost completely abrogated by tranexamic acid, indicating that lysine residues are involved in the interaction with this serine protease. In addition, a strong inactivation capacity toward the classical pathway could be demonstrated for the wild-type CihC/FbpC-orthologs as well as for the C-terminal CihC fragment of B. recurrentis. Pre-incubation of human serum with borrelial molecules except CihC/FbpC variants lacking the C-terminal region protected serum-susceptible Borrelia cells from complement-mediated lysis. Utilizing AlphaFold2 predictions and existing crystal structures, we mapped the putative key residues involved in C1r binding on the CihC/FbpC orthologs attempting to explain the relatively small differences in C1r binding affinity despite the substitutions of key residues. Collectively, our data advance the understanding of the multiple binding properties of structural and functional highly similar molecules of relapsing fever spirochetes proposed to be involved in pathogenesis and virulence.


Bacterial Proteins , Borrelia , Fibrinolysis , Plasminogen , Protein Binding , Relapsing Fever , Humans , Borrelia/immunology , Borrelia/metabolism , Relapsing Fever/microbiology , Relapsing Fever/immunology , Relapsing Fever/metabolism , Plasminogen/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Complement Activation , Immune Evasion , Bacterial Adhesion , Host-Pathogen Interactions/immunology , Fibronectins/metabolism , Fibrinolysin/metabolism , Complement System Proteins/immunology , Complement System Proteins/metabolism
2.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767707

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Complement System Proteins , Disease Models, Animal , Lipopolysaccharides , O Antigens , Salmonella enteritidis , Salmonella enteritidis/immunology , Salmonella enteritidis/pathogenicity , Animals , O Antigens/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Lipopolysaccharides/immunology , Immune Evasion , Microbial Viability , Moths/microbiology , Moths/immunology , Virulence , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Complement Activation , Lepidoptera/immunology , Lepidoptera/microbiology
3.
Clin Immunol ; 263: 110232, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701960

IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.


COVID-19 , Glomerulonephritis, IGA , SARS-CoV-2 , Humans , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/blood , COVID-19/immunology , COVID-19/complications , Female , Male , Adult , SARS-CoV-2/immunology , Middle Aged , Complement Activation/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Immunoglobulin A/blood , Immunoglobulin A/immunology , Kidney Glomerulus/pathology , Kidney Glomerulus/immunology , Complement C5a/immunology , Complement C5a/metabolism
4.
Expert Rev Hematol ; 17(4-5): 107-116, 2024.
Article En | MEDLINE | ID: mdl-38708453

INTRODUCTION: Bystander hemolysis occurs when antigen-negative red blood cells (RBCs) are lysed by the complement system. Many clinical entities including passenger lymphocyte syndrome, hyperhemolysis following blood transfusion, and paroxysmal nocturnal hemoglobinuria are complicated by bystander hemolysis. AREAS COVERED: The review provides data about the role of the complement system in the pathogenesis of bystander hemolysis. Moreover, future perspectives on the understanding and management of this syndrome are described. EXPERT OPINION: Complement system can be activated via classical, alternative, and lectin pathways. Classical pathway activation is mediated by antigen-antibody (autoantibodies and alloantibodies against autologous RBCs, infectious agents) complexes. Alternative pathway initiation is triggered by heme, RBC microvesicles, and endothelial injury that is a result of intravascular hemolysis. Thus, C5b is formed, binds with C6-C9 compomers, and MAC (C5b-9) is formulated in bystander RBCs membranes, leading to cell lysis. Intravascular hemolysis, results in activation of the alternative pathway, establishing a vicious cycle between complement activation and bystander hemolysis. C5 inhibitors have been used effectively in patients with hyperhemolysis syndrome and other entities characterized by bystander hemolysis.


Complement Activation , Complement System Proteins , Erythrocytes , Hemolysis , Humans , Hemolysis/immunology , Erythrocytes/immunology , Erythrocytes/metabolism , Complement System Proteins/immunology , Complement System Proteins/metabolism , Bystander Effect , Hemoglobinuria, Paroxysmal/immunology , Hemoglobinuria, Paroxysmal/therapy
5.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690727

Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.


Complement Activation , Complement System Proteins , Macular Degeneration , Humans , Macular Degeneration/immunology , Macular Degeneration/pathology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Complement Activation/immunology , Animals , Eye/immunology , Eye/pathology
6.
Nat Immunol ; 25(5): 743-754, 2024 May.
Article En | MEDLINE | ID: mdl-38698239

Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.


Autoantibodies , Autoimmunity , Humans , Autoantibodies/immunology , Animals , Cytokines/metabolism , Cytokines/immunology , Neutrophils/immunology , Complement System Proteins/immunology , Autoimmune Diseases/immunology
7.
Mem Inst Oswaldo Cruz ; 119: e230243, 2024.
Article En | MEDLINE | ID: mdl-38775551

BACKGROUND: Leishmania tarentolae is a non-pathogenic species found in lizards representing an important model for Leishmania biology. However, several aspects of this Sauroleishmania remain unknown to explain its low level of virulence. OBJECTIVES: We reported several aspects of L. tarentolae biology including glycoconjugates, proteolytic activities and metabolome composition in comparison to pathogenic species (Leishmania amazonensis, Leishmania braziliensis, Leishmania infantum and Leishmania major). METHODS: Parasites were cultured for extraction and purification of lipophosphoglycan (LPG), immunofluorescence probing with anti-gp63 and resistance against complement. Parasite extracts were also tested for proteases activity and metabolome composition. FINDINGS: Leishmania tarentolae does not express LPG on its surface. It expresses gp63 at lower levels compared to pathogenic species and, is highly sensitive to complement-mediated lysis. This species also lacks intracellular/extracellular activities of proteolytic enzymes. It has metabolic differences with pathogenic species, exhibiting a lower abundance of metabolites including ABC transporters, biosynthesis of unsaturated fatty acids and steroids, TCA cycle, glycine/serine/threonine metabolism, glyoxylate/dicarboxylate metabolism and pentose-phosphate pathways. MAIN CONCLUSIONS: The non-pathogenic phenotype of L. tarentolae is associated with alterations in several biochemical and molecular features. This reinforces the need of comparative studies between pathogenic and non-pathogenic species to elucidate the molecular mechanisms of virulence during host-parasite interactions.


Glycoconjugates , Leishmania , Metabolome , Peptide Hydrolases , Leishmania/enzymology , Peptide Hydrolases/metabolism , Animals , Glycosphingolipids/metabolism , Complement System Proteins
8.
RMD Open ; 10(2)2024 May 15.
Article En | MEDLINE | ID: mdl-38749532

OBJECTIVES: To investigate lectin pathway proteins (LPPs) as biomarkers for axial spondyloarthritis (axSpA) in a cross-sectional cohort with a suspicion of axSpA, comprising newly diagnosed axSpA and chronic low back pain (cLBP) individuals. METHODS: Serum samples from 515 participants within the OptiRef cohort, including 151 axSpA patients and 364 cLBP patients, were measured using immunoassays for LPPs (mannan-binding lectin (MBL), collectin liver-1 (CL-L1), M-ficolin, H-ficolin and L-ficolin, MBL-associated serine proteases (MASP)-1, -2 and -3, MBL-associated proteins (MAp19 and MAp44) and the complement activation product C3dg). RESULTS: Serum levels of L-ficolin, MASP-2 and C3dg were elevated in axSpA patients, whereas levels of MASP-3 and CL-L1 were decreased, and this remained significant for C3dg and MASP-3 after adjustment for C reactive protein (CRP). A univariate regression analysis showed serum levels of CL-L1, MASP-2, MASP-3 and C3dg to predict the diagnosis of axSpA, and MASP-3 and C3dg remained significant in a multivariate logistic regression analysis. Assessment of the diagnostic potential showed that a combination of human leukocyte antigen B27 (HLA-B27) and measurements of L-ficolin, MASP-3 and C3dg increased the diagnostic specificity for axSpA, however, with a concomitant loss of sensitivity. CONCLUSIONS: Serum levels of complement activation, that is, C3dg, and MASP-3 differed significantly between axSpA and cLBP patients after adjustment for CRP. Although combining HLA-B27 with measurements of L-ficolin, MASP-3 and C3dg increased the diagnostic specificity for axSpA, this seems unjustified due to the concomitant loss of sensitivity. However, both C3dg and MASP-3 were associated with axSpA diagnosis in multivariate logistic regression, suggesting an involvement of complement in the inflammatory processes and possibly pathogenesis in axSpA.


Axial Spondyloarthritis , Biomarkers , Complement System Proteins , Humans , Biomarkers/blood , Male , Female , Adult , Middle Aged , Cross-Sectional Studies , Complement System Proteins/metabolism , Complement System Proteins/analysis , Axial Spondyloarthritis/diagnosis , Axial Spondyloarthritis/blood , Axial Spondyloarthritis/etiology , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mannose-Binding Protein-Associated Serine Proteases/analysis , Lectins/blood , Complement Activation
9.
Front Immunol ; 15: 1368322, 2024.
Article En | MEDLINE | ID: mdl-38558821

Introduction: Activation of complement through the alternative pathway (AP) has a key role in the pathogenesis of IgA nephropathy (IgAN). We previously showed, by intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE), C57BL/6 mice develop mild kidney damage in association with glomerular IgA deposition. To further address complement activity in causing glomerular histological alterations as suggested in the pathogenesis of IgAN, here we used mice with factor H mutation (FHW/R) to render AP overactivation in conjunction with LCWE injection to stimulate intestinal production of IgA. Methods: Dose response to LCWE were examined between two groups of FHW/R mice. Wild type (FHW/W) mice stimulated with LCWE were used as model control. Results: The FHW/R mice primed with high dose LCWE showed elevated IgA and IgA-IgG complex levels in serum. In addition to 100% positive rate of IgA and C3, they display elevated biomarkers of kidney dysfunction, coincided with severe pathological lesions, resembling those of IgAN. As compared to wild type controls stimulated by the same high dose LCWE, these FHW/R mice exhibited stronger complement activation in the kidney and in circulation. Discussion: The new mouse model shares many disease features with IgAN. The severity of glomerular lesions and the decline of kidney functions are further aggravated through complement overactivation. The model may be a useful tool for preclinical evaluation of treatment response to complement-inhibitors.


Glomerulonephritis, IGA , Lacticaseibacillus casei , Mice , Animals , Complement Factor H/genetics , Mice, Inbred C57BL , Glomerulonephritis, IGA/pathology , Complement System Proteins/genetics , Immunoglobulin A , Mutation
10.
J Cell Mol Med ; 28(8): e18291, 2024 Apr.
Article En | MEDLINE | ID: mdl-38597412

Natural immunoglobulin M (IgM) antibodies have been shown to recognize post-ischemic neoepitopes following reperfusion of tissues and to activate complement. Specifically, IgM antibodies and complement have been shown to drive hepatic ischemia reperfusion injury (IRI). Herein, we investigate the therapeutic effect of C2 scFv (single-chain antibody construct with specificity of a natural IgM antibody) on hepatic IRI in C57BL/6 mice. Compared with PBS-treated mice, C2 scFv-treated mice displayed almost no necrotic areas, significant reduction in serum ALT, AST and LDH levels, and significantly reduced in the number of TUNEL positive cells. Moreover, C2 scFv-treated mice exhibited a notable reduction in inflammatory cells after hepatic IRI than PBS-treated mice. The serum IL-6, IL-1ß, TNF-α and MPC-1 levels were also severely suppressed by C2 scFv. Interestingly, C2 scFv reconstituted hepatic inflammation and IRI in Rag1-/- mice. We found that C2 scFv promoted hepatic cell death and increased inflammatory cytokines and infiltration of inflammatory cells after hepatic IRI in Rag1-/- mice. In addition, IgM and complement 3d (C3d) were deposited in WT mice and in Rag1-/- mice reconstituted with C2 scFv, indicating that C2 scFv can affect IgM binding and complement activation and reconstitute hepatic IRI. C3d expression was significantly lower in C57BL/6 mice treated with C2 scFv compared to PBS, indicating that excessive exogenous C2 scFv inhibited complement activation. These data suggest that C2 scFv alleviates hepatic IRI by blocking complement activation, and treatment with C2 scFv may be a promising therapy for hepatic IRI.


Liver , Reperfusion Injury , Animals , Mice , Mice, Inbred C57BL , Liver/metabolism , Immunoglobulin M , Complement System Proteins , Homeodomain Proteins/metabolism
11.
J Alzheimers Dis ; 99(1): 291-305, 2024.
Article En | MEDLINE | ID: mdl-38669534

Background: The complement system plays crucial roles in cognitive impairment and acute ischemic stroke (AIS). High levels of complement proteins in plasma astrocyte-derived exosomes (ADEs) were proven to be associated with Alzheimer's disease. We aimed to investigate the relationship of complement proteins in serum ADEs with poststroke cognitive impairment in type 2 diabetes mellitus (T2DM) patients. Methods: This study analyzed 197 T2DM patients who suffered AIS. The Beijing version of the Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. Complement proteins in serum ADEs were quantified using ELISA kits. Results: Mediation analyses showed that C5b-9 and C3b in serum ADEs partially mediate the impact of obstructive sleep apnea (OSA), depression, small vessel disease (SVD), and infarct volume on cognitive function at the acute phase of AIS in T2DM patients. After adjusting for age, sex, time, and interaction between time and complement proteins in serum ADEs, the mixed linear regression showed that C3b and complement protein Factor B in serum ADEs were associated with MoCA scores at three-, six-, and twelve-months after AIS in T2DM patients. Conclusions: Our study suggested that the impact of OSA, depression, SVD, and infarct volume on cognitive impairment in the acute stage of AIS may partially mediate through the complement proteins in serum ADEs. Additionally, the complement proteins in serum ADEs at the acute phase of AIS associated with MoCA scores at three-, six-, twelve months after AIS in T2DM patients.REGISTRATION: URL: http://www.chictr.org.cn/,ChiCTR1900021544.


Astrocytes , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Exosomes , Humans , Male , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/etiology , Exosomes/metabolism , Aged , Middle Aged , Astrocytes/metabolism , Complement System Proteins/metabolism , Ischemic Stroke/blood , Ischemic Stroke/complications , Ischemic Stroke/psychology , Stroke/blood , Stroke/complications , Stroke/psychology
12.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38612857

Endothelial wound-healing processes are fundamental for the maintenance and restoration of the circulatory system and are greatly affected by the factors present in the blood. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) induces the proinflammatory activation of endothelial cells and is able to cooperate with other proinflammatory activators. Our aim was to investigate the combined effect of mechanical wounding and MASP-1 on endothelial cells. Transcriptomic analysis showed that MASP-1 alters the expression of wound-healing-related and angiogenesis-related genes. Both wounding and MASP-1 induced Ca2+ mobilization when applied individually. However, MASP-1-induced Ca2+ mobilization was inhibited when the treatment was preceded by wounding. Mechanical wounding promoted CREB phosphorylation, and the presence of MASP-1 enhanced this effect. Wounding induced ICAM-1 and VCAM-1 expression on endothelial cells, and MASP-1 pretreatment further increased VCAM-1 levels. MASP-1 played a role in the subsequent stages of angiogenesis, facilitating the breakdown of the endothelial capillary network on Matrigel®. Our findings extend our general understanding of endothelial wound healing and highlight the importance of complement MASP-1 activation in wound-healing processes.


Endothelial Cells , Mannose-Binding Protein-Associated Serine Proteases , Mannose-Binding Protein-Associated Serine Proteases/genetics , Vascular Cell Adhesion Molecule-1 , Wound Healing , Complement System Proteins
13.
mBio ; 15(5): e0011924, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587424

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE: Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.


Gonorrhea , N-Acetylneuraminic Acid , Neisseria gonorrhoeae , Neutrophil Activation , Neutrophils , Sialic Acid Binding Immunoglobulin-like Lectins , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Gonorrhea/immunology , Gonorrhea/microbiology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Lipopolysaccharides/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Respiratory Burst , Host-Pathogen Interactions/immunology , Immune Evasion
14.
J Neuroinflammation ; 21(1): 100, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632654

BACKGROUND: Multifocal motor neuropathy (MMN) is a rare, chronic immune-mediated polyneuropathy characterized by asymmetric distal limb weakness. An important feature of MMN is the presence of IgM antibodies against gangliosides, in particular GM1 and less often GM2. Antibodies against GM1 bind to motor neurons (MNs) and cause damage through complement activation. The involvement of Schwann cells (SCs), expressing GM1 and GM2, in the pathogenesis of MMN is unknown. METHODS: Combining the data of our 2007 and 2015 combined cross-sectional and follow-up studies in Dutch patients with MMN, we evaluated the presence of IgM antibodies against GM1 and GM2 in serum from 124 patients with MMN and investigated their binding to SCs and complement-activating properties. We also assessed the relation of IgM binding and complement deposition with clinical characteristics. RESULTS: Thirteen out of 124 patients (10%) had a positive ELISA titer for IgM anti-GM2. Age at onset of symptoms was significantly lower in MMN patients with anti-GM2 IgM. IgM binding to SCs correlated with IgM anti-GM2 titers. We found no correlation between IgM anti-GM2 titers and MN binding or with IgM anti-GM1 titers. IgM binding to SCs decreased upon pre-incubation of serum with soluble GM2, but not with soluble GM1. IgM anti-GM2 binding to SCs correlated with complement activation, as reflected by increased C3 fixation on SCs and C5a formation in the supernatant. CONCLUSION: Circulating IgM anti-GM2 antibodies define a subgroup of patients with MMN that has an earlier onset of disease. These antibodies probably target SCs specifically and activate complement, similarly as IgM anti-GM1 on MNs. Our data indicate that complement activation by IgM antibodies bound to SCs and MNs underlies MMN pathology.


G(M1) Ganglioside , Polyneuropathies , Humans , Cross-Sectional Studies , G(M2) Ganglioside , Immunoglobulin M , Complement System Proteins , Schwann Cells
15.
Front Immunol ; 15: 1383936, 2024.
Article En | MEDLINE | ID: mdl-38638432

In the quest to address the critical shortage of donor organs for transplantation, xenotransplantation stands out as a promising solution, offering a more abundant supply of donor organs. Yet, its widespread clinical adoption remains hindered by significant challenges, chief among them being immunological rejection. Central to this issue is the role of the complement system, an essential component of innate immunity that frequently triggers acute and chronic rejection through hyperacute immune responses. Such responses can rapidly lead to transplant embolism, compromising the function of the transplanted organ and ultimately causing graft failure. This review delves into three key areas of xenotransplantation research. It begins by examining the mechanisms through which xenotransplantation activates both the classical and alternative complement pathways. It then assesses the current landscape of xenotransplantation from donor pigs, with a particular emphasis on the innovative strides made in genetically engineering pigs to evade complement system activation. These modifications are critical in mitigating the discordance between pig endogenous retroviruses and human immune molecules. Additionally, the review discusses pharmacological interventions designed to support transplantation. By exploring the intricate relationship between the complement system and xenotransplantation, this retrospective analysis not only underscores the scientific and clinical importance of this field but also sheds light on the potential pathways to overcoming one of the major barriers to the success of xenografts. As such, the insights offered here hold significant promise for advancing xenotransplantation from a research concept to a viable clinical reality.


Complement Activation , Graft Rejection , Animals , Humans , Swine , Transplantation, Heterologous , Animals, Genetically Modified , Retrospective Studies , Graft Rejection/prevention & control , Complement System Proteins
16.
Ren Fail ; 46(1): 2344658, 2024 Dec.
Article En | MEDLINE | ID: mdl-38644359

Previous studies have highlighted the significant role of complement activation in kidney injuries induced by rhabdomyolysis, intravascular hemolysis, sepsis, and ischemia-reperfusion. Nevertheless, the specific role and mechanism of complement activation in acute kidney injury (AKI) caused by wasp venom remain unclear. The aim of this study was to elucidate the specific complement pathway activated and investigate complement activation in AKI induced by wasp venom. In this study, a complement-depleted mouse model was used to investigate the role of complement in wasp venom-induced AKI. Mice were randomly categorized into control, cobra venom factor (CVF), AKI, and CVF + AKI groups. Compared to the AKI group, the CVF + AKI group showed improved pathological changes in kidneys and reduced blood urea nitrogen (BUN) levels. The expression levels of renal complement 3 (C3), complement 5 (C5), complement 1q (C1q), factor B (FB), mannose-binding lectin (MBL), and C5b-9 in AKI group were upregulated compared with the control group. Conversely, the renal tissue expression levels of C3, C5, C1q, FB, MBL, and C5b-9 were decreased in the CVF + AKI group compared to those in the AKI group. Complement activation occurs through all three pathways in AKI induced by wasp venom. Furthermore, complement depletion by CVF attenuates wasp venom-induced nephrotoxicity, suggesting that complement activation plays a primary role in the pathogenesis of wasp venom-induced AKI.


Acute Kidney Injury , Complement Activation , Disease Models, Animal , Wasp Venoms , Animals , Acute Kidney Injury/immunology , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/chemically induced , Mice , Wasp Venoms/immunology , Wasp Venoms/adverse effects , Male , Kidney/pathology , Elapid Venoms , Blood Urea Nitrogen , Complement C3/metabolism , Complement System Proteins/metabolism
17.
Front Immunol ; 15: 1320094, 2024.
Article En | MEDLINE | ID: mdl-38576611

Background: Myelin oligodendrocyte glycoprotein antibody (MOG) immunoglobulin G (IgG)-associated disease (MOGAD) has clinical and pathophysiological features that are similar to but distinct from those of aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (AQP4-NMOSD). MOG-IgG and AQP4-IgG, mostly of the IgG1 subtype, can both activate the complement system. Therefore, we investigated whether the levels of serum complement components, regulators, and activation products differ between MOGAD and AQP4-NMOSD, and if complement analytes can be utilized to differentiate between these diseases. Methods: The sera of patients with MOGAD (from during an attack and remission; N=19 and N=9, respectively) and AQP4-NMOSD (N=35 and N=17), and healthy controls (N=38) were analyzed for C1q-binding circulating immune complex (CIC-C1q), C1 inhibitor (C1-INH), factor H (FH), C3, iC3b, and soluble terminal complement complex (sC5b-9). Results: In attack samples, the levels of C1-INH, FH, and iC3b were higher in the MOGAD group than in the NMOSD group (all, p<0.001), while the level of sC5b-9 was increased only in the NMOSD group. In MOGAD, there were no differences in the concentrations of complement analytes based on disease status. However, within AQP4-NMOSD, remission samples indicated a higher C1-INH level than attack samples (p=0.003). Notably, AQP4-NMOSD patients on medications during attack showed lower levels of iC3b (p<0.001) and higher levels of C3 (p=0.008), C1-INH (p=0.004), and sC5b-9 (p<0.001) compared to those not on medication. Among patients not on medication at the time of attack sampling, serum MOG-IgG cell-based assay (CBA) score had a positive correlation with iC3b and C1-INH levels (rho=0.764 and p=0.010, and rho=0.629 and p=0.049, respectively), and AQP4-IgG CBA score had a positive correlation with C1-INH level (rho=0.836, p=0.003). Conclusions: This study indicates a higher prominence of complement pathway activation and subsequent C3 degradation in MOGAD compared to AQP4-NMOSD. On the other hand, the production of terminal complement complexes (TCC) was found to be more substantial in AQP4-NMOSD than in MOGAD. These findings suggest a strong regulation of the complement system, implying its potential involvement in the pathogenesis of MOGAD through mechanisms that extend beyond TCC formation.


Neuromyelitis Optica , Humans , Aquaporin 4 , Complement C1q , Complement C3b , Complement System Proteins , Immunoglobulin G , Myelin-Oligodendrocyte Glycoprotein
18.
Invest Ophthalmol Vis Sci ; 65(4): 43, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38683564

Purpose: Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods: We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results: The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions: Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.


Complement Factor H , Haploinsufficiency , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , Macular Degeneration , Muscle Proteins , Retinal Pigment Epithelium , Humans , Complement Factor H/genetics , Complement Factor H/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Macular Degeneration/genetics , Macular Degeneration/metabolism , Male , Female , Induced Pluripotent Stem Cells/metabolism , Complement C3b Inactivator Proteins/genetics , Complement C3b Inactivator Proteins/metabolism , Complement Activation/genetics , Pedigree , Blotting, Western , Complement System Proteins/metabolism , Complement System Proteins/genetics , Retinal Drusen/genetics , Retinal Drusen/metabolism , Middle Aged
19.
Nutrients ; 16(7)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38613116

Small intestinal bacterial overgrowth (SIBO) arises from dysbiosis in the small intestine, manifesting with abdominal symptoms. This study aims to assess the efficacy of combined antibiotic therapy, herbal supplements, probiotics, and dietary modifications in SIBO management. A total of 179 SIBO-diagnosed patients underwent clinical evaluation and breath testing. Patients were categorized into hydrogen (H2-SIBO) and methane (CH4-SIBO) groups. The control group received standard antibiotic therapy and a low-FODMAP diet, while the intervention group received additional herbal antibiotics, probiotics, and prebiotics. After treatment, both groups exhibited reduced gas levels, particularly in CH4-SIBO. Clinical remission rates were higher in the intervention group, especially in CH4-SIBO cases. Logistic regression analysis showed gas concentrations at diagnosis as significant predictors of treatment success. In conclusion, adjunctive herbal supplements and probiotics did not significantly impact gas levels, but showed potential for clinical improvement, especially in CH4-SIBO.


Diet , Probiotics , Humans , Probiotics/therapeutic use , Prebiotics , Complement System Proteins , Anti-Bacterial Agents/therapeutic use
20.
JCI Insight ; 9(9)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38573776

Diagnostic challenges continue to impede development of effective therapies for successful management of alcohol-associated hepatitis (AH), creating an unmet need to identify noninvasive biomarkers for AH. In murine models, complement contributes to ethanol-induced liver injury. Therefore, we hypothesized that complement proteins could be rational diagnostic/prognostic biomarkers in AH. Here, we performed a comparative analysis of data derived from human hepatic and serum proteome to identify and characterize complement protein signatures in severe AH (sAH). The quantity of multiple complement proteins was perturbed in liver and serum proteome of patients with sAH. Multiple complement proteins differentiated patients with sAH from those with alcohol cirrhosis (AC) or alcohol use disorder (AUD) and healthy controls (HCs). Serum collectin 11 and C1q binding protein were strongly associated with sAH and exhibited good discriminatory performance among patients with sAH, AC, or AUD and HCs. Furthermore, complement component receptor 1-like protein was negatively associated with pro-inflammatory cytokines. Additionally, lower serum MBL associated serine protease 1 and coagulation factor II independently predicted 90-day mortality. In summary, meta-analysis of proteomic profiles from liver and circulation revealed complement protein signatures of sAH, highlighting a complex perturbation of complement and identifying potential diagnostic and prognostic biomarkers for patients with sAH.


Biomarkers , Complement System Proteins , Hepatitis, Alcoholic , Proteomics , Humans , Hepatitis, Alcoholic/blood , Hepatitis, Alcoholic/mortality , Hepatitis, Alcoholic/diagnosis , Proteomics/methods , Male , Female , Complement System Proteins/metabolism , Biomarkers/blood , Middle Aged , Adult , Liver/metabolism , Liver/pathology , Alcoholism/blood , Alcoholism/complications , Proteome/metabolism , Prognosis , Aged
...