Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 817
1.
Multivariate Behav Res ; 59(3): 584-598, 2024.
Article En | MEDLINE | ID: mdl-38348654

With clustered data, such as where students are nested within schools or employees are nested within organizations, it is often of interest to estimate and compare associations among variables separately for each level. While researchers routinely estimate between-cluster effects using the sample cluster means of a predictor, previous research has shown that such practice leads to biased estimates of coefficients at the between level, and recent research has recommended the use of latent cluster means with the multilevel structural equation modeling framework. However, the latent cluster mean approach may not always be the best choice as it (a) relies on the assumption that the population cluster sizes are close to infinite, (b) requires a relatively large number of clusters, and (c) is currently only implemented in specialized software such as Mplus. In this paper, we show how using empirical Bayes estimates of the cluster means can also lead to consistent estimates of between-level coefficients, and illustrate how the empirical Bayes estimate can incorporate finite population corrections when information on population cluster sizes is available. Through a series of Monte Carlo simulation studies, we show that the empirical Bayes cluster-mean approach performs similarly to the latent cluster mean approach for estimating the between-cluster coefficients in most conditions when the infinite-population assumption holds, and applying the finite population correction provides reasonable point and interval estimates when the population is finite. The performance of EBM can be further improved with restricted maximum likelihood estimation and likelihood-based confidence intervals. We also provide an R function that implements the empirical Bayes cluster-mean approach, and illustrate it using data from the classic High School and Beyond Study.


Bayes Theorem , Monte Carlo Method , Humans , Cluster Analysis , Computer Simulation/statistics & numerical data , Selection Bias , Data Interpretation, Statistical , Likelihood Functions , Models, Statistical
2.
Multivariate Behav Res ; 59(3): 502-522, 2024.
Article En | MEDLINE | ID: mdl-38348679

In psychology and education, tests (e.g., reading tests) and self-reports (e.g., clinical questionnaires) generate counts, but corresponding Item Response Theory (IRT) methods are underdeveloped compared to binary data. Recent advances include the Two-Parameter Conway-Maxwell-Poisson model (2PCMPM), generalizing Rasch's Poisson Counts Model, with item-specific difficulty, discrimination, and dispersion parameters. Explaining differences in model parameters informs item construction and selection but has received little attention. We introduce two 2PCMPM-based explanatory count IRT models: The Distributional Regression Test Model for item covariates, and the Count Latent Regression Model for (categorical) person covariates. Estimation methods are provided and satisfactory statistical properties are observed in simulations. Two examples illustrate how the models help understand tests and underlying constructs.


Models, Statistical , Humans , Regression Analysis , Reproducibility of Results , Computer Simulation/statistics & numerical data , Poisson Distribution , Psychometrics/methods , Data Interpretation, Statistical
3.
Multivariate Behav Res ; 59(3): 523-542, 2024.
Article En | MEDLINE | ID: mdl-38351542

Student evaluation of teaching (SET) questionnaires are ubiquitously applied in higher education institutions in North America for both formative and summative purposes. Data collected from SET questionnaires are usually item-level data with cross-classified structure, which are characterized by multivariate categorical outcomes (i.e., multiple Likert-type items in the questionnaires) and cross-classified structure (i.e., non-nested students and instructors). Recently, a new approach, namely the cross-classified IRT model, was proposed for appropriately handling SET data. To inform researchers in higher education, in this article, the cross-classified IRT model, along with three existing approaches applied in SET studies, including the cross-classified random effects model (CCREM), the multilevel item response theory (MLIRT) model, and a two-step integrated strategy, was reviewed. The strengths and weaknesses of each of the four approaches were also discussed. Additionally, the new and existing approaches were compared through an empirical data analysis and a preliminary simulation study. This article concluded by providing general suggestions to researchers for analyzing SET data and discussing limitations and future research directions.


Students , Teaching , Humans , Students/statistics & numerical data , Teaching/statistics & numerical data , Surveys and Questionnaires , Models, Statistical , Data Interpretation, Statistical , Educational Measurement/methods , Educational Measurement/statistics & numerical data , Computer Simulation/statistics & numerical data
4.
Multivariate Behav Res ; 59(3): 543-565, 2024.
Article En | MEDLINE | ID: mdl-38351547

Recent years have seen the emergence of an "idio-thetic" class of methods to bridge the gap between nomothetic and idiographic inference. These methods describe nomothetic trends in idiographic processes by pooling intraindividual information across individuals to inform group-level inference or vice versa. The current work introduces a novel "idio-thetic" model: the subgrouped chain graphical vector autoregression (scGVAR). The scGVAR is unique in its ability to identify subgroups of individuals who share common dynamic network structures in both lag(1) and contemporaneous effects. Results from Monte Carlo simulations indicate that the scGVAR shows promise over similar approaches when clusters of individuals differ in their contemporaneous dynamics and in showing increased sensitivity in detecting nuanced group differences while keeping Type-I error rates low. In contrast, a competing approach-the Alternating Least Squares VAR (ALS VAR) performs well when groups were separated by larger distances. Further considerations are provided regarding applications of the ALS VAR and scGVAR on real data and the strengths and limitations of both methods.


Computer Simulation , Models, Statistical , Monte Carlo Method , Humans , Computer Simulation/statistics & numerical data , Data Interpretation, Statistical , Least-Squares Analysis
5.
Multivariate Behav Res ; 59(3): 411-433, 2024.
Article En | MEDLINE | ID: mdl-38379305

Propensity score (PS) analyses are increasingly popular in behavioral sciences. Two issues often add complexities to PS analyses, including missing data in observed covariates and clustered data structure. In previous research, methods for conducting PS analyses with considering either issue alone were examined. In practice, the two issues often co-occur; but the performance of methods for PS analyses in the presence of both issues has not been evaluated previously. In this study, we consider PS weighting analysis when data are clustered and observed covariates have missing values. A simulation study is conducted to evaluate the performance of different missing data handling methods (complete-case, single-level imputation, or multilevel imputation) combined with different multilevel PS weighting methods (fixed- or random-effects PS models, inverse-propensity-weighting or the clustered weighting, weighted single-level or multilevel outcome models). The results suggest that the bias in average treatment effect estimation can be reduced, by better accounting for clustering in both the missing data handling stage (such as with the multilevel imputation) and the PS analysis stage (such as with the fixed-effects PS model, clustered weighting, and weighted multilevel outcome model). A real-data example is provided for illustration.


Computer Simulation , Propensity Score , Humans , Cluster Analysis , Data Interpretation, Statistical , Computer Simulation/statistics & numerical data , Models, Statistical , Multilevel Analysis/methods , Bias
6.
Multivariate Behav Res ; 59(3): 482-501, 2024.
Article En | MEDLINE | ID: mdl-38379320

Accelerated longitudinal designs allow researchers to efficiently collect longitudinal data covering a time span much longer than the study duration. One important assumption of these designs is that each cohort (a group defined by their age of entry into the study) shares the same longitudinal trajectory. Although previous research has examined the impact of violating this assumption when each cohort is defined by a single age of entry, it is possible that each cohort is instead defined by a range of ages, such as groups that experience a particular historical event. In this paper we examined how including cohort membership in linear and quadratic multilevel models performed in detecting and controlling for cohort effects in this scenario. Using a Monte Carlo simulation study, we assessed the performance of this approach under conditions related to the number of cohorts, the overlap between cohorts, the strength of the cohort effect, the number of affected parameters, and the sample size. Our results indicate that models including a proxy variable for cohort membership based on age at study entry performed comparably to using true cohort membership in detecting cohort effects accurately and returning unbiased parameter estimates. This indicates that researchers can control for cohort effects even when true cohort membership is unknown.


Cohort Effect , Computer Simulation , Monte Carlo Method , Multilevel Analysis , Longitudinal Studies , Humans , Multilevel Analysis/methods , Computer Simulation/statistics & numerical data , Models, Statistical , Sample Size , Research Design
7.
Multivariate Behav Res ; 59(3): 461-481, 2024.
Article En | MEDLINE | ID: mdl-38247019

Network analysis has gained popularity as an approach to investigate psychological constructs. However, there are currently no guidelines for applied researchers when encountering missing values. In this simulation study, we compared the performance of a two-step EM algorithm with separated steps for missing handling and regularization, a combined direct EM algorithm, and pairwise deletion. We investigated conditions with varying network sizes, numbers of observations, missing data mechanisms, and percentages of missing values. These approaches are evaluated with regard to recovering population networks in terms of loss in the precision matrix, edge set identification and network statistics. The simulation showed adequate performance only in conditions with large samples (n≥500) or small networks (p = 10). Comparing the missing data approaches, the direct EM appears to be more sensitive and superior in nearly all chosen conditions. The two-step EM yields better results when the ratio of n/p is very large - being less sensitive but more specific. Pairwise deletion failed to converge across numerous conditions and yielded inferior results overall. Overall, direct EM is recommended in most cases, as it is able to mitigate the impact of missing data quite well, while modifications to two-step EM could improve its performance.


Algorithms , Computer Simulation , Humans , Computer Simulation/statistics & numerical data , Data Interpretation, Statistical , Models, Statistical
8.
JAMA ; 329(4): 306-317, 2023 01 24.
Article En | MEDLINE | ID: mdl-36692561

Importance: Stroke is the fifth-highest cause of death in the US and a leading cause of serious long-term disability with particularly high risk in Black individuals. Quality risk prediction algorithms, free of bias, are key for comprehensive prevention strategies. Objective: To compare the performance of stroke-specific algorithms with pooled cohort equations developed for atherosclerotic cardiovascular disease for the prediction of new-onset stroke across different subgroups (race, sex, and age) and to determine the added value of novel machine learning techniques. Design, Setting, and Participants: Retrospective cohort study on combined and harmonized data from Black and White participants of the Framingham Offspring, Atherosclerosis Risk in Communities (ARIC), Multi-Ethnic Study for Atherosclerosis (MESA), and Reasons for Geographical and Racial Differences in Stroke (REGARDS) studies (1983-2019) conducted in the US. The 62 482 participants included at baseline were at least 45 years of age and free of stroke or transient ischemic attack. Exposures: Published stroke-specific algorithms from Framingham and REGARDS (based on self-reported risk factors) as well as pooled cohort equations for atherosclerotic cardiovascular disease plus 2 newly developed machine learning algorithms. Main Outcomes and Measures: Models were designed to estimate the 10-year risk of new-onset stroke (ischemic or hemorrhagic). Discrimination concordance index (C index) and calibration ratios of expected vs observed event rates were assessed at 10 years. Analyses were conducted by race, sex, and age groups. Results: The combined study sample included 62 482 participants (median age, 61 years, 54% women, and 29% Black individuals). Discrimination C indexes were not significantly different for the 2 stroke-specific models (Framingham stroke, 0.72; 95% CI, 0.72-073; REGARDS self-report, 0.73; 95% CI, 0.72-0.74) vs the pooled cohort equations (0.72; 95% CI, 0.71-0.73): differences 0.01 or less (P values >.05) in the combined sample. Significant differences in discrimination were observed by race: the C indexes were 0.76 for all 3 models in White vs 0.69 in Black women (all P values <.001) and between 0.71 and 0.72 in White men and between 0.64 and 0.66 in Black men (all P values ≤.001). When stratified by age, model discrimination was better for younger (<60 years) vs older (≥60 years) adults for both Black and White individuals. The ratios of observed to expected 10-year stroke rates were closest to 1 for the REGARDS self-report model (1.05; 95% CI, 1.00-1.09) and indicated risk overestimation for Framingham stroke (0.86; 95% CI, 0.82-0.89) and pooled cohort equations (0.74; 95% CI, 0.71-0.77). Performance did not significantly improve when novel machine learning algorithms were applied. Conclusions and Relevance: In this analysis of Black and White individuals without stroke or transient ischemic attack among 4 US cohorts, existing stroke-specific risk prediction models and novel machine learning techniques did not significantly improve discriminative accuracy for new-onset stroke compared with the pooled cohort equations, and the REGARDS self-report model had the best calibration. All algorithms exhibited worse discrimination in Black individuals than in White individuals, indicating the need to expand the pool of risk factors and improve modeling techniques to address observed racial disparities and improve model performance.


Black People , Healthcare Disparities , Prejudice , Risk Assessment , Stroke , White People , Female , Humans , Male , Middle Aged , Atherosclerosis/epidemiology , Cardiovascular Diseases/epidemiology , Ischemic Attack, Transient/epidemiology , Retrospective Studies , Stroke/diagnosis , Stroke/epidemiology , Stroke/ethnology , Risk Assessment/standards , Reproducibility of Results , Sex Factors , Age Factors , Race Factors/statistics & numerical data , Black People/statistics & numerical data , White People/statistics & numerical data , United States/epidemiology , Machine Learning/standards , Bias , Prejudice/prevention & control , Healthcare Disparities/ethnology , Healthcare Disparities/standards , Healthcare Disparities/statistics & numerical data , Computer Simulation/standards , Computer Simulation/statistics & numerical data
9.
BMC Anesthesiol ; 22(1): 42, 2022 02 08.
Article En | MEDLINE | ID: mdl-35135495

BACKGROUND: Simulation-based training is a clinical skill learning method that can replicate real-life situations in an interactive manner. In our study, we compared a novel hybrid learning method with conventional simulation learning in the teaching of endotracheal intubation. METHODS: One hundred medical students and residents were randomly divided into two groups and were taught endotracheal intubation. The first group of subjects (control group) studied in the conventional way via lectures and classic simulation-based training sessions. The second group (experimental group) used the hybrid learning method where the teaching process consisted of distance learning and small group peer-to-peer simulation training sessions with remote supervision by the instructors. After the teaching process, endotracheal intubation (ETI) procedures were performed on real patients under the supervision of an anesthesiologist in an operating theater. Each step of the procedure was evaluated by a standardized assessment form (checklist) for both groups. RESULTS: Thirty-four subjects constituted the control group and 43 were in the experimental group. The hybrid group (88%) showed significantly better ETI performance in the operating theater compared with the control group (52%). Further, all hybrid group subjects (100%) followed the correct sequence of actions, while in the control group only 32% followed proper sequencing. CONCLUSIONS: We conclude that our novel algorithm-driven hybrid simulation learning method improves acquisition of endotracheal intubation with a high degree of acceptability and satisfaction by the learners' as compared with classic simulation-based training.


Anesthesiology/education , Clinical Competence/statistics & numerical data , Computer Simulation/statistics & numerical data , Intubation, Intratracheal/methods , Simulation Training/methods , Students, Medical/statistics & numerical data , Adult , Algorithms , Educational Measurement/methods , Educational Measurement/statistics & numerical data , Female , Humans , Internship and Residency , Male , Young Adult
10.
PLoS One ; 17(1): e0260543, 2022.
Article En | MEDLINE | ID: mdl-34990454

In Canadian boreal forests, bryophytes represent an essential component of biodiversity and play a significant role in ecosystem functioning. Despite their ecological importance and sensitivity to disturbances, bryophytes are overlooked in conservation strategies due to knowledge gaps on their distribution, which is known as the Wallacean shortfall. Rare species deserve priority attention in conservation as they are at a high risk of extinction. This study aims to elaborate predictive models of rare bryophyte species in Canadian boreal forests using remote sensing-derived predictors in an Ensemble of Small Models (ESMs) framework. We hypothesize that high ESMs-based prediction accuracy can be achieved for rare bryophyte species despite their low number of occurrences. We also assess if there is a spatial correspondence between rare and overall bryophyte richness patterns. The study area is located in western Quebec and covers 72,292 km2. We selected 52 bryophyte species with <30 occurrences from a presence-only database (214 species, 389 plots in total). ESMs were built from Random Forest and Maxent techniques using remote sensing-derived predictors related to topography and vegetation. Lee's L statistic was used to assess and map the spatial relationship between rare and overall bryophyte richness patterns. ESMs yielded poor to excellent prediction accuracy (AUC > 0.5) for 73% of the modeled species, with AUC values > 0.8 for 19 species, which confirmed our hypothesis. In fact, ESMs provided better predictions for the rarest bryophytes. Likewise, our study revealed a spatial concordance between rare and overall bryophyte richness patterns in different regions of the study area, which have important implications for conservation planning. This study demonstrates the potential of remote sensing for assessing and making predictions on inconspicuous and rare species across the landscape and lays the basis for the eventual inclusion of bryophytes into sustainable development planning.


Biodiversity , Bryophyta/growth & development , Computer Simulation/statistics & numerical data , Ecosystem , Remote Sensing Technology/methods , Taiga , ROC Curve , Sustainable Development
11.
Pathol Res Pract ; 231: 153771, 2022 Mar.
Article En | MEDLINE | ID: mdl-35091177

Mass-forming ductal carcinoma in situ (DCIS) detected on core needle biopsy (CNB) is often a radiology-pathology discordance and thought to represent missed invasive carcinoma. This brief report applied supervised machine learning (ML) for image segmentation to investigate a series of 44 mass-forming DCIS cases, with the primary focus being stromal computational signatures. The area under the curve (AUC) for receiver operator curves (ROC) in relation to upgrade to invasive carcinoma from DCIS were as follows: high myxoid stromal ratio (MSR): 0.923, P = <0.001; low collagenous stromal percentage (CSP): 0.875, P = <0.001; and low proportionated stromal area (PSA): 0.682, P = 0.039. The use of ML in mass-forming DCIS could predict upgraded to invasive carcinoma with high sensitivity and specificity. The findings from this brief report are clinically useful and should be further validated by future studies.


Biopsy, Large-Core Needle/statistics & numerical data , Carcinoma, Intraductal, Noninfiltrating/diagnosis , Computer Simulation/standards , Models, Genetic , Aged , Analysis of Variance , Area Under Curve , Biopsy, Large-Core Needle/methods , Carcinoma, Intraductal, Noninfiltrating/epidemiology , Computer Simulation/statistics & numerical data , Female , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies
13.
J Hepatol ; 76(2): 311-318, 2022 02.
Article En | MEDLINE | ID: mdl-34606915

BACKGROUND & AIMS: Several models have recently been developed to predict risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). Our aims were to develop and validate an artificial intelligence-assisted prediction model of HCC risk. METHODS: Using a gradient-boosting machine (GBM) algorithm, a model was developed using 6,051 patients with CHB who received entecavir or tenofovir therapy from 4 hospitals in Korea. Two external validation cohorts were independently established: Korean (5,817 patients from 14 Korean centers) and Caucasian (1,640 from 11 Western centers) PAGE-B cohorts. The primary outcome was HCC development. RESULTS: In the derivation cohort and the 2 validation cohorts, cirrhosis was present in 26.9%-50.2% of patients at baseline. A model using 10 parameters at baseline was derived and showed good predictive performance (c-index 0.79). This model showed significantly better discrimination than previous models (PAGE-B, modified PAGE-B, REACH-B, and CU-HCC) in both the Korean (c-index 0.79 vs. 0.64-0.74; all p <0.001) and Caucasian validation cohorts (c-index 0.81 vs. 0.57-0.79; all p <0.05 except modified PAGE-B, p = 0.42). A calibration plot showed a satisfactory calibration function. When the patients were grouped into 4 risk groups, the minimal-risk group (11.2% of the Korean cohort and 8.8% of the Caucasian cohort) had a less than 0.5% risk of HCC during 8 years of follow-up. CONCLUSIONS: This GBM-based model provides the best predictive power for HCC risk in Korean and Caucasian patients with CHB treated with entecavir or tenofovir. LAY SUMMARY: Risk scores have been developed to predict the risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B. We developed and validated a new risk prediction model using machine learning algorithms in 13,508 antiviral-treated patients with chronic hepatitis B. Our new model, based on 10 common baseline characteristics, demonstrated superior performance in risk stratification compared with previous risk scores. This model also identified a group of patients at minimal risk of developing HCC, who could be indicated for less intensive HCC surveillance.


Artificial Intelligence/standards , Carcinoma, Hepatocellular/physiopathology , Hepatitis B, Chronic/complications , Adult , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artificial Intelligence/statistics & numerical data , Asian People/ethnology , Asian People/statistics & numerical data , Carcinoma, Hepatocellular/etiology , Cohort Studies , Computer Simulation/standards , Computer Simulation/statistics & numerical data , Female , Follow-Up Studies , Guanine/analogs & derivatives , Guanine/pharmacology , Guanine/therapeutic use , Hepatitis B, Chronic/physiopathology , Humans , Liver Neoplasms/complications , Liver Neoplasms/physiopathology , Male , Middle Aged , Republic of Korea/ethnology , Tenofovir/pharmacology , Tenofovir/therapeutic use , White People/ethnology , White People/statistics & numerical data
14.
JAMA Netw Open ; 4(10): e2129392, 2021 10 01.
Article En | MEDLINE | ID: mdl-34677596

Importance: The possibility of widespread use of a novel effective therapy for Alzheimer disease (AD) will present important clinical, policy, and financial challenges. Objective: To describe how including different patient, caregiver, and societal treatment-related factors affects estimates of the cost-effectiveness of a hypothetical disease-modifying AD treatment. Design, Setting, and Participants: In this economic evaluation, the Alzheimer Disease Archimedes Condition Event Simulator was used to simulate the prognosis of a hypothetical cohort of patients selected from the Alzheimer Disease Neuroimaging Initiative database who received the diagnosis of mild cognitive impairment (MCI). Scenario analyses that varied costs and quality of life inputs relevant to patients and caregivers were conducted. The analysis was designed and conducted from June 15, 2019, to September 30, 2020. Exposures: A hypothetical drug that would delay progression to dementia in individuals with MCI compared with usual care. Main Outcomes and Measures: Incremental cost-effectiveness ratio (ICER), measured by cost per quality-adjusted life-year (QALY) gained. Results: The model included a simulated cohort of patients who scored between 24 and 30 on the Mini-Mental State Examination and had a global Clinical Dementia Rating scale of 0.5, with a required memory box score of 0.5 or higher, at baseline. Using a health care sector perspective, which included only individual patient health care costs, the ICER for the hypothetical treatment was $192 000 per QALY gained. The result decreased to $183 000 per QALY gained in a traditional societal perspective analysis with the inclusion of patient non-health care costs. The inclusion of estimated caregiver health care costs produced almost no change in the ICER, but the inclusion of QALYs gained by caregivers led to a substantial reduction in the ICER for the hypothetical treatment, to $107 000 per QALY gained in the health sector perspective. In the societal perspective scenario, with the broadest inclusion of patient and caregiver factors, the ICER decreased to $74 000 per added QALY. Conclusions and Relevance: The findings of this economic evaluation suggest that policy makers should be aware that efforts to estimate and include the effects of AD treatments outside those on patients themselves can affect the results of the cost-effectiveness analyses that often underpin assessments of the value of new treatments. Further research and debate on including these factors in assessments that will inform discussions on fair pricing for new treatments are needed.


Alzheimer Disease/drug therapy , Computer Simulation/standards , Cost-Benefit Analysis/methods , Alzheimer Disease/economics , Caregivers/economics , Caregivers/psychology , Cohort Studies , Computer Simulation/statistics & numerical data , Cost-Benefit Analysis/statistics & numerical data , Humans , Quality-Adjusted Life Years , Social Norms
15.
Int J Nurs Educ Scholarsh ; 18(1)2021 Sep 10.
Article En | MEDLINE | ID: mdl-34506698

OBJECTIVES: There is limited knowledge about students' experiences with virtual simulation when using a video conferencing system. Therefore, the aim of this study was to explore how second-year undergraduate nursing students experienced learning through virtual simulations during the COVID-19 pandemic. METHODS: The study had an exploratory design with both quantitative and qualitative approaches. In total, 69 nursing students participated in two sessions of virtual simulation during spring 2020, and 33 students answered online questionnaires at session 1. To further explore students' experiences, one focus group interview and one individual interview were conducted using a video conferencing system after session 2. In addition, system information on use during both sessions was collected. RESULTS: Changes in the students' ratings of their experiences of virtual simulation with the Body Interact™ system were statistically significant. The virtual simulation helped them to bridge gaps in both the teaching and learning processes. Four important aspects of learning were identified: 1) learning by self-training, 2) learning from the software (Body Interact™), 3) learning from peers, and 4) learning from faculty. CONCLUSIONS: We conclude that virtual simulation through a video conferencing system can be useful for student learning and feedback from both peers and faculty is important.


Computer Simulation/statistics & numerical data , Computer-Assisted Instruction/methods , Education, Nursing, Baccalaureate/methods , Students, Nursing/statistics & numerical data , Videotape Recording/methods , COVID-19/epidemiology , Humans , User-Computer Interface
16.
PLoS One ; 16(8): e0254620, 2021.
Article En | MEDLINE | ID: mdl-34351931

Estimating parameters accurately in groundwater models for aquifers is challenging because the models are non-explicit solutions of complex partial differential equations. Modern research methods, such as Monte Carlo methods and metaheuristic algorithms, for searching an efficient design to estimate model parameters require hundreds, if not thousands of model calls, making the computational cost prohibitive. One method to circumvent the problem and gain valuable insight on the behavior of groundwater is to first apply a Galerkin method and convert the system of partial differential equations governing the flow to a discrete problem and then use a Proper Orthogonal Decomposition to project the high-dimensional model space of the original groundwater model to create a reduced groundwater model with much lower dimensions. The reduced model can be solved several orders of magnitude faster than the full model and able to provide an accurate estimate of the full model. The task is still challenging because the optimization problem is non-convex, non-differentiable and there are continuous variables and integer-valued variables to optimize. Following convention, heuristic algorithms and a combination is used search to find efficient designs for the reduced groundwater model using various optimality criteria. The main goals are to introduce new design criteria and the concept of design efficiency for experimental design research in hydrology. The two criteria have good utility but interestingly, do not seem to have been implemented in hydrology. In addition, design efficiency is introduced. Design efficiency is a method to assess how robust a design is under a change of criteria. The latter is an important issue because the design criterion may be subjectively selected and it is well known that an optimal design can perform poorly under another criterion. It is thus desirable that the implemented design has relatively high efficiencies under a few criteria. As applications, two heuristic algorithms are used to find optimal designs for a small synthetic aquifer design problem and a design problem for a large-scale groundwater model and assess their robustness properties to other optimality criteria. The results show the proof of concept is workable for finding a more informed and efficient model-based design for a water resource study.


Groundwater/standards , Hydrology/statistics & numerical data , Models, Theoretical , Water Resources , Algorithms , Computer Simulation/statistics & numerical data , Government , Heuristics , Humans , Monte Carlo Method
17.
Sci Rep ; 11(1): 13839, 2021 07 05.
Article En | MEDLINE | ID: mdl-34226646

As the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. The momentary reproduction ratio r(t) of an epidemic is used as a public health guiding tool to evaluate the course of the epidemic, with the evolution of r(t) being the reasoning behind tightening and relaxing control measures over time. Here we investigate critical fluctuations around the epidemiological threshold, resembling new waves, even when the community disease transmission rate [Formula: see text] is not significantly changing. Without loss of generality, we use simple models that can be treated analytically and results are applied to more complex models describing COVID-19 epidemics. Our analysis shows that, rather than the supercritical regime (infectivity larger than a critical value, [Formula: see text]) leading to new exponential growth of infection, the subcritical regime (infectivity smaller than a critical value, [Formula: see text]) with small import is able to explain the dynamic behaviour of COVID-19 spreading after a lockdown lifting, with [Formula: see text] hovering around its threshold value.


COVID-19/epidemiology , Models, Biological , Models, Theoretical , SARS-CoV-2/pathogenicity , Basic Reproduction Number/statistics & numerical data , Communicable Disease Control/methods , Computer Simulation/statistics & numerical data , Epidemics , Humans , Public Health/statistics & numerical data
18.
J Comput Aided Mol Des ; 35(7): 803-811, 2021 07.
Article En | MEDLINE | ID: mdl-34244905

Within the scope of SAMPL7 challenge for predicting physical properties, the Integral Equation Formalism of the Miertus-Scrocco-Tomasi (IEFPCM/MST) continuum solvation model has been used for the blind prediction of n-octanol/water partition coefficients and acidity constants of a set of 22 and 20 sulfonamide-containing compounds, respectively. The log P and pKa were computed using the B3LPYP/6-31G(d) parametrized version of the IEFPCM/MST model. The performance of our method for partition coefficients yielded a root-mean square error of 1.03 (log P units), placing this method among the most accurate theoretical approaches in the comparison with both globally (rank 8th) and physical (rank 2nd) methods. On the other hand, the deviation between predicted and experimental pKa values was 1.32 log units, obtaining the second best-ranked submission. Though this highlights the reliability of the IEFPCM/MST model for predicting the partitioning and the acid dissociation constant of drug-like compounds compound, the results are discussed to identify potential weaknesses and improve the performance of the method.


Computational Biology/statistics & numerical data , Dipeptides/chemistry , Software/statistics & numerical data , Sulfonamides/chemistry , Computer Simulation/statistics & numerical data , Humans , Ligands , Models, Statistical , Octanols/chemistry , Quantum Theory , Solubility , Sulfonamides/therapeutic use , Thermodynamics , Water/chemistry
19.
Molecules ; 26(12)2021 Jun 13.
Article En | MEDLINE | ID: mdl-34199192

The beneficial effects of coffee on human diseases are well documented, but the molecular mechanisms of its bioactive compounds on cancer are not completely elucidated. This is likely due to the large heterogeneity of coffee preparations and different coffee-based beverages, but also to the choice of experimental models where proliferation, differentiation and immune responses are differently affected. The aim of the present study was to investigate the effects of one of the most interesting bioactive compounds in coffee, i.e., caffeine, using a cellular model of melanoma at a defined differentiation level. A preliminary in silico analysis carried out on public gene-expression databases identified genes potentially involved in caffeine's effects and suggested some specific molecular targets, including tyrosinase. Proliferation was investigated in vitro on human melanoma initiating cells (MICs) and cytokine expression was measured in conditioned media. Tyrosinase was revealed as a key player in caffeine's mechanisms of action, suggesting a crucial role in immunomodulation through the reduction in IL-1ß, IP-10, MIP-1α, MIP-1ß and RANTES secretion onto MICs conditioned media. The potent antiproliferative effects of caffeine on MICs are likely to occur by promoting melanin production and reducing inflammatory signals' secretion. These data suggest tyrosinase as a key player mediating the effects of caffeine on melanoma.


Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Computer Simulation/statistics & numerical data , Melanins/metabolism , Melanoma/drug therapy , Monophenol Monooxygenase/metabolism , Cell Differentiation , Cell Line, Tumor , Computational Biology/methods , Databases, Genetic , Gene Expression Regulation , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology
20.
J Comput Aided Mol Des ; 35(7): 771-802, 2021 07.
Article En | MEDLINE | ID: mdl-34169394

The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges focuses the computational modeling community on areas in need of improvement for rational drug design. The SAMPL7 physical property challenge dealt with prediction of octanol-water partition coefficients and pKa for 22 compounds. The dataset was composed of a series of N-acylsulfonamides and related bioisosteres. 17 research groups participated in the log P challenge, submitting 33 blind submissions total. For the pKa challenge, 7 different groups participated, submitting 9 blind submissions in total. Overall, the accuracy of octanol-water log P predictions in the SAMPL7 challenge was lower than octanol-water log P predictions in SAMPL6, likely due to a more diverse dataset. Compared to the SAMPL6 pKa challenge, accuracy remains unchanged in SAMPL7. Interestingly, here, though macroscopic pKa values were often predicted with reasonable accuracy, there was dramatically more disagreement among participants as to which microscopic transitions produced these values (with methods often disagreeing even as to the sign of the free energy change associated with certain transitions), indicating far more work needs to be done on pKa prediction methods.


Computational Biology/statistics & numerical data , Computer Simulation/statistics & numerical data , Software/statistics & numerical data , Sulfonamides/chemistry , Drug Design/statistics & numerical data , Entropy , Humans , Ligands , Models, Chemical , Models, Statistical , Octanols/chemistry , Quantum Theory , Solubility , Solvents/chemistry , Sulfonamides/therapeutic use , Thermodynamics , Water/chemistry
...