Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.114
1.
Sci Prog ; 107(2): 368504241253720, 2024.
Article En | MEDLINE | ID: mdl-38715402

Ecosystems, biodiversity, and the human population all depend on a quality or uncontaminated environment. Quality environment provides people and wildlife access to nutrition, medications, dietary supplements, and other ecosystem services. The conservation of biodiversity-that is, species richness, abundance, heredities, and diversity-as well as the control of climate change are facilitated by such an uncontaminated environment. However, these advantages are jeopardized by newly emerging environmental chemical contaminants (EECCs) brought on by increased industrialization and urbanization. In developing countries, inadequate or poor environmental policies, infrastructure, and national standards concerning the usage, recycling, remediation, control, and management of EECCs hasten their effects. EECCs in these countries negatively affect biodiversity, ecological services and functions, and human health. This review reveals that the most deprived or vulnerable local communities in developing countries are those residing near mining or industrial areas and cultivating their crops and vegetables on contaminated soils, as is wildlife that forages or drinks in EECC-contaminated water bodies. Yet, people in these countries have limited knowledge about EECCs, their threats to human well-being, ecosystem safety, and the environment, as well as remediation technologies. Besides, efforts to efficiently control, combat, regulate, and monitor EECCs are limited. Thus, the review aims to increase public knowledge concerning EECCs in developing countries and present a comprehensive overview of the current status of EECCs. It also explores the sources and advancements in remediation techniques and the threats of EECCs to humans, ecosystems, and biodiversity.


Biodiversity , Conservation of Natural Resources , Environmental Pollutants , Humans , Conservation of Natural Resources/methods , Environmental Pollutants/analysis , Environmental Restoration and Remediation/methods , Animals , Environmental Pollution/prevention & control , Ecosystem
2.
Sci Rep ; 14(1): 10562, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719842

Protected areas are traditionally the foundation of conservation strategy, but land not formally protected is of particular importance for the conservation of large carnivores because of their typically wide-ranging nature. In South Africa, leopard (Panthera pardus) population decreases are thought to be occurring in areas of human development and intense negative interactions, but research is biased towards protected areas, with quantitative information on population sizes and trends in non-protected areas severely lacking. Using Spatially Explicit Capture-Recapture and occupancy techniques including 10 environmental and anthropogenic covariates, we analysed camera trap data from commercial farmland in South Africa where negative human-wildlife interactions are reported to be high. Our findings demonstrate that leopards persist at a moderate density (2.21 /100 km2) and exhibit signs of avoidance from areas where lethal control measures are implemented. This suggests leopards have the potential to navigate mixed mosaic landscapes effectively, enhancing their chances of long-term survival and coexistence with humans. Mixed mosaics of agriculture that include crops, game and livestock farming should be encouraged and, providing lethal control is not ubiquitous in the landscape, chains of safer spaces should permit vital landscape connectivity. However, continuing to promote non-lethal mitigation techniques remains vital.


Agriculture , Conservation of Natural Resources , Panthera , Population Density , South Africa , Animals , Conservation of Natural Resources/methods , Agriculture/methods , Humans , Ecosystem , Animals, Wild
3.
PLoS One ; 19(5): e0302854, 2024.
Article En | MEDLINE | ID: mdl-38722950

For management efforts to succeed in Caribbean fisheries, local fishers must support and be willing to comply with fishing regulations. This is more likely when fishers are included in a stock assessment process that utilizes robust scientific evidence, collected in collaboration with fishers, to evaluate the health of fish stocks. Caribbean parrotfishes are important contributors to coral reef ecosystem health while also contributing to local fisheries. Scientifically robust stock assessments require regional species-specific information on age-based key life history parameters, derived from fish age estimates. Evaluation of the accuracy of age estimation methods for fish species is a critical initial step in managing species for long-term sustainable harvest. The current study resulted from a collaborative research program between fish biologists and local fishers investigating age, growth, and reproductive biology of the seven parrotfish species landed in U.S. Caribbean fisheries; specifically, we validated age estimation for stoplight parrotfish Sparisoma viride and queen parrotfish Scarus vetula. This is the first study to directly validate age estimation for any parrotfish species through analysis of Δ14C from eye lens cores. Our age estimation validation results show that enumeration of opaque zones from thin sections of sagittal otoliths for a Sparisoma and a Scarus species provides accurate age estimates. The oldest stoplight parrotfish and queen parrotfish in the Δ14C age estimation validation series were 14 y and 16 y; while the oldest stoplight parrotfish and queen parrotfish we aged to-date using the Δ14C validated age estimation method were 20 y and 21 y, respectively. Fish longevity (maximum age attained/life span) is a key life history parameter used for estimation of natural mortality, survivorship, and lifetime reproductive output. Past reviews on parrotfishes from the Pacific and Atlantic concluded that most Caribbean/western Atlantic parrotfish species are relatively short-lived with estimated maximum ages ranging from 3-9 y. However, information from our collaborative research in the U.S. Caribbean combined with recently published age estimates for Brazilian parrotfish species indicate that many western Atlantic parrotfishes are relatively long-lived with several species attaining maximum ages in excess of 20 y.


Fisheries , Longevity , Animals , Perciformes/growth & development , Perciformes/physiology , Conservation of Natural Resources/methods , Caribbean Region , Radiometric Dating/methods , Atlantic Ocean
4.
PLoS One ; 19(5): e0301689, 2024.
Article En | MEDLINE | ID: mdl-38728315

Acoustic methods are often used for fisheries resource surveys to investigate fish stocks in a wide area. Commercial fisheries echo sounders, which are installed on most small fishing vessels, are used to record a large amount of data during fishing trips. Therefore, it can be used to collect the basic information necessary for stock assessment for a wide area and frequently. To carry out the quantification for the fisheries echo sounder, we devised a simple method using the backscattering strength of the seabed to perform calibration periodically and easily. In this study, seabed secondary reflections were used instead of primary reflection because the fisheries echo sounders were not equipped with a time-varied gain (TVG) function, and the primary backscattering strength of the seabed was saturated. It was also necessary to use standard values of seabed backscattering strength averaged over a certain area for calibration to eliminate some of the effects of differences in seabed sediment and vessel motions. By using standard values of the seabed secondary reflections, the fisheries echo sounder was calibrated accurately. Our study can provide a reliable framework to calibrate commercial fisheries echo sounders, to improve the estimation and management of fishery resources.


Fisheries , Calibration , Animals , Acoustics/instrumentation , Fishes/physiology , Conservation of Natural Resources/methods
5.
PLoS One ; 19(5): e0303341, 2024.
Article En | MEDLINE | ID: mdl-38728347

The field of landscape architecture has placed significant emphasis on low-carbon landscapes due to the increasing challenges posed by global warming and environmental deterioration in recent years. The soil ecological conditions in saline-alkaline areas are characterized by poor quality, resulting in suboptimal growth conditions for trees. This, in turn, hampers their ability to effectively sequester carbon, thereby diminishing the potential benefits of carbon sinks. Additionally, the maintenance of tree landscapes in such areas generates more carbon emissions than does conventional green land, making it difficult to reap the benefits of tree-based carbon. A comprehensive evaluation of trees in green park spaces in saline-alkaline areas is conducted from a low-carbon perspective; by identifying the dominant tree species that are well suited to greening, we can offer a precise scientific foundation for implementing low-carbon greening initiatives in cities situated in saline-alkaline environments. Therefore, as a case study, this study investigates Tianjin Qiaoyuan Park, a typical saline park in the Bohai Bay region. The hierarchical analysis method (AHP) was used to evaluate 50 species of trees and shrubs in the park from a low-carbon perspective. The results show that the evaluation system consists of four criterion layers and 15 indicator factors. The relative weight of the criterion layer followed the order of habitat adaptability (B2) > carbon sequestration capacity (B1) > low-carbon management and conservation (B3) > landscape aesthetics (B4). The indicator layer assigned greater weight values to net assimilation (C1), saline and alkaline adaptability (C3), drought tolerance (C4), irr igation and fertilization needs (C8), growth rate (C2), and adaptability to barrenness (C5). The trees were classified into five distinct categories, with each exhibiting significant variation in terms of the strengths and weaknesses of the indicators. According to the comprehensive score, the trees were categorized into three levels. The Grade I plants exhibited the best carbon efficiency performance, comprising a total of 12 species (e.g. Sabina chinensis, Fraxinus chinensis 'Aurea' and Hibiscus syriacu), and demonstrated superior performance in all aspects. Grade II trees, consisting of 26 species (e.g Pinus tabuliformis, Paulownia fortunei, Ligustrum × vicaryi), had the second-highest comprehensive score. Moreover, Grade III trees, encompassing 12 species (e.g Acer mono, Cedrus deodara, Magnolia denudata), exhibited lower comprehensive scores. The extensive use of Grade I and II tree species is recommended in the implementation of low-carbon greening projects in the Bohai Bay region, while Grade III tree species should be judiciously utilized. The findings of this research can serve as a valuable resource for the scientific identification of tree species that are suitable for urban park green spaces in the Bohai Bay region, which is characterized by predominantly saline and alkaline soil. Additionally, the development of an evaluation system can guide the selection of low-carbon tree species when evaluating other types of saline and alkaline lands.


Carbon , Carbon/analysis , Carbon/metabolism , China , Trees/growth & development , Parks, Recreational , Conservation of Natural Resources/methods , Ecosystem , Soil/chemistry , Carbon Sequestration
6.
Sci Rep ; 14(1): 10721, 2024 05 10.
Article En | MEDLINE | ID: mdl-38729962

Drainage and deforestation of tropical peat swamp forests (PSF) in Southeast Asia cause carbon emissions and biodiversity loss of global concern. Restoration efforts to mitigate these impacts usually involve peatland rewetting by blocking canals. However, there have been no studies to date of the optimal rewetting approach that will reduce carbon emission whilst also promoting PSF regeneration. Here we present results of a large-scale restoration trial in Sumatra (Indonesia), monitored for 7.5 years. Water levels in a former plantation were raised over an area of 4800 ha by constructing 257 compacted peat dams in canals. We find peat surface subsidence rates in the rewetted restoration area and adjoining PSF to be halved where water tables were raised from ~ - 0.6 m to ~ - 0.3 m, demonstrating the success of rewetting in reducing carbon emission. A total of 57 native PSF tree species were found to spontaneously grow in the most rewetted conditions and in high densities, indicating that forest regrowth is underway. Based on our findings we propose that an effective PSF restoration strategy should follow stepwise rewetting to achieve substantial carbon emission reduction alongside unassisted regrowth of PSF, thereby enabling the peat, forest and canal vegetation to establish a new nature-based ecosystem balance.


Conservation of Natural Resources , Forests , Soil , Wetlands , Conservation of Natural Resources/methods , Tropical Climate , Indonesia , Trees/growth & development , Biodiversity
7.
Sci Rep ; 14(1): 10712, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730080

Landraces are important genetic resources that have a significant role in maintaining the long-term sustainability of traditional agro-ecosystems, food, nutrition, and livelihood security. In an effort to document landraces in the on-farm conservation context, Central Western Ghat region in India was surveyed. A total of 671 landraces belonging to 60 crops were recorded from 24 sites. The custodian farmers were found to conserve a variety of crops including vegetables, cereals and pulses, perennial fruits, spices, tuber and plantation crops. The survey indicated a difference in the prevalence of landraces across the sites. A significant difference with respect to the Shannon-diversity index, Gini-Simpson index, evenness, species richness, and abundance was observed among the different survey sites. Computation of a prevalence index indicated the need for immediate intervention in the form of collecting and ex situ conservation of landraces of some crops as a back-up to on-farm conservation. The study also identified the critical determinants of on-farm conservation, including (i) suitability to regional conditions, (ii) relevance in regional cuisine and local medicinal practices, (iii) cultural and traditional significance, and (iv) economic advantage. The information documented in this study is expected to promote the collection and conservation of landraces ex situ. The National Genebank housed at ICAR-NBPGR, New Delhi conserves around 550 accessions of landraces collected from the Central Western Ghats region surveyed in this report. Information collected from custodian farmers on specific uses will be helpful to enhance the utilization of these accessions.


Biodiversity , Conservation of Natural Resources , Crops, Agricultural , Farms , India , Crops, Agricultural/growth & development , Conservation of Natural Resources/methods , Agriculture , Humans , Ecosystem
8.
BMC Psychol ; 12(1): 261, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730471

BACKGROUND: The global issue of ecological resource scarcity, worsened by climate change, necessitates effective methods to promote resource conservation. One commonly used approach is presenting ecological resource scarcity information. However, the effectiveness of this method remains uncertain, particularly in an unpredictable world. This research aims to examine the role of perceived environmental unpredictability in moderating the impact of ecological resource scarcity information on pro-environmental behavior (PEB). METHODS: We conducted three studies to test our hypothesis on moderation. Study 1 (N = 256) measured perceived general environmental unpredictability, perceived resource scarcity and daily PEB frequencies in a cross-sectional survey. Study 2 (N = 107) took it a step further by manipulating resource scarcity. Importantly, to increase ecological validity, Study 3 (N = 135) manipulated the information on both ecological resource scarcity and nature-related environmental unpredictability, and measured real water and paper consumption using a newly developed washing-hands paradigm. RESULTS: In Study 1, we discovered that perceived resource scarcity positively predicted PEB, but only when individuals perceive the environment as less unpredictable (interaction effect: 95% CI = [-0.09, -0.01], ΔR2 = 0.018). Furthermore, by manipulating scarcity information, Study 2 revealed that only for individuals with lower levels of environmental unpredictability presenting ecological resource scarcity information could decrease forest resource consumption intention (interaction effect: 95%CI = [-0.025, -0.031], ΔR2 = .04). Moreover, Study 3 found that the negative effect of water resource scarcity information on actual water and (interaction effect: 95%CI = [3.037, 22.097], ηp2 = .050) paper saving behaviors (interaction effect: 95%CI = [0.021, 0.275], ηp2 = .040), as well as hypothetical forest resource consumption (interaction effect: 95%CI = [-0.053, 0.849], ηp2 = .023) emerged only for people who receiving weaker environmental unpredictability information. CONCLUSION: Across three studies, we provide evidence to support the moderation hypothesis that environmental unpredictability weakens the positive effect of ecological resource scarcity information on PEB, offering important theoretical and practical implications on the optimal use of resource scarcity to enhance PEB.


Conservation of Natural Resources , Humans , Adult , Male , Female , Cross-Sectional Studies , Conservation of Natural Resources/methods , Young Adult , Environment , Middle Aged , Climate Change
9.
Curr Biol ; 34(9): R371-R379, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714168

The global restoration agenda can help solve the biodiversity extinction crisis by regenerating biodiversity-rich ecosystems, maximising conservation benefits using natural regeneration. Yet, conservation is rarely the core objective of restoration, and biodiversity is often neglected in restoration projects targeted towards carbon sequestration or enhancing ecosystem services for improved local livelihoods. Here, we synthesise evidence to show that promoting biodiversity in restoration planning and delivery is integral to delivering other long-term restoration aims, such as carbon sequestration, timber production, enhanced local farm yields, reduced soil erosion, recovered hydrological services and improved human health. For each of these restoration goals, biodiversity must be a keystone objective to the entire process. Biodiversity integration requires improved evidence and action, delivered via a socio-ecological process operating at landscape scales and backed by supportive regulations and finance. Conceiving restoration and biodiversity conservation as synergistic, mutually reinforcing partners is critical for humanity's bids to tackle the global crises of climate change, land degradation and biodiversity extinction.


Biodiversity , Conservation of Natural Resources , Conservation of Natural Resources/methods , Climate Change , Ecosystem , Environmental Restoration and Remediation/methods , Carbon Sequestration
10.
Curr Biol ; 34(9): R379-R387, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714169

For decades, China has implemented restoration programs on a large scale, thanks to its capacity to set policy and mobilize funding resources. An understanding of China's restoration achievements and remaining challenges will help to guide future efforts to restore 30% of its diverse ecosystems under the Kunming-Montreal Global Biodiversity Framework. Here we summarize the major transitions in China's approach to ecosystem restoration since the 1970s, with a focus on the underlying motivations for restoration, approaches to ecosystem management, and financing mechanisms. Whereas China's restoration efforts were predominantly guided by the delivery of certain ecosystem functions and services in earlier decades, more recently it has come to emphasize the restoration of biodiversity and ecosystem integrity. Accordingly, the focal ecosystems, approaches, and financing mechanisms of restoration have also been considerably diversified. This evolution is largely guided by the accumulation of scientific evidence and past experiences. We highlight the key challenges facing China's restoration efforts and propose future directions to improve restoration effectiveness, with regard to goal setting, monitoring, stakeholder involvement, adaptive management, resilience under climate change, and financing.


Biodiversity , Climate Change , Conservation of Natural Resources , Ecosystem , China , Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods
11.
Curr Biol ; 34(9): R387-R393, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714170

The global decade of restoration brings into sharp focus the need to rehabilitate lands damaged by mining, to provide safe, stable, and productive landscapes. For the majority of mines, the required final land use is some form of natural, semi-natural or managed ecosystem, such as agriculture, aquaculture or forestry. Mining activities lead to new highly altered landscapes that require rehabilitation. These comprise various on-land stores of waste material and mined land itself. The repair of damaged ecosystems is described by many terms including restoration, rehabilitation, revegetation, ecological restoration, and reclamation. These terms overlap in meaning, have regional biases, and all fall short of what is really required: ecosystem reconstruction. This requires a highly multidisciplinary approach drawing on many disciplines including geotechnical engineering, social science, soil science, law, hydrology, botany, geology, pollination biology, financial planning, alongside ecology. Ideally, mine rehabilitation should be progressive, start early in the life of the mine, and employ a strict regime of characterising and tracking waste materials for use in creating safe and stable post-mining landscapes. These actions will limit risks and optimise outcomes, especially when waste materials contain toxic metals or have high levels of acidity, alkalinity or salinity. Some mine sites are appropriate for the restoration of native ecosystems and biodiversity that existed pre-mining, but many, including landscape features created from waste materials, are not. Criteria for successful land rehabilitation are complex, multivariate, and highly contingent on the agreed final land use. Future advances in mine rehabilitation include the use of geomorphic landscape design and emerging thinking on cradle-to-cradle mining. This primer will discuss the complex factors that need to be considered in ecosystem reconstruction after mining and outlines approaches for optimising land rehabilitation outcomes.


Conservation of Natural Resources , Ecosystem , Mining , Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods
12.
Curr Biol ; 34(9): R356-R359, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714165

The successful restoration of the river that used to be the dirtiest in Europe shows that any water course can be brought back to life. Around the world, different approaches and different goals are being pursued in a multitude of river restoration projects, with barrier removals showing a growing trend.


Rivers , Europe , Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods
13.
Curr Biol ; 34(9): R365-R371, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714167

As land use leaves massive tracts of land vacant for recovery, restoration must undergo a substantial shift to incorporate a complexity perspective beyond the traditional community, biodiversity or functional views. With an interaction-function perspective, we may be able to achieve ecosystems with better chances to adapt to current environmental changes and, especially, to climate change. We explore combined approaches that include still unused and underexplored techniques that will soon go mainstream and produce massive amounts of information to address the complexity gap. As we understand how complexity reassembles after the end of agriculture, we will be able to design actions to restore or enhance it at unprecedented spatial scales while increasing its adaptability to environmental changes.


Climate Change , Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Biodiversity , Agriculture/methods
14.
Curr Biol ; 34(9): R407-R412, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714173

Many of the world's ecosystems are under unprecedented stress as human pressures have escalated to be a dominant driver of ecosystem composition and condition. Direct impacts such as agriculture, extraction, and development are impacting vast swathes of land and ocean, while the effects of human-caused climate change are felt even in the most remote parts of marine and terrestrial wildernesses. These impacts are resulting in changes ranging from ecosystem collapse or replacement to novel mixes of species due to temperature-driven range shifts. While reducing human pressures is paramount for the future viability of vulnerable ecosystems, much attention is now also focused on whether degraded areas can be restored. Indeed, the UN has declared 2021-2030 the Decade on Ecosystem Restoration, which aims to "prevent, halt and reverse the degradation of ecosystems on every continent and in every ocean".


Climate Change , Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Animals , Biodiversity
15.
Curr Biol ; 34(9): R412-R417, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714174

The global community has outlined ambitious ecosystem restoration targets. Yet implementation is slow, and a lack of funding is a key barrier to upscaling restoration activities. Most restoration projects are funded by public institutions and recent high-level initiatives have emphasised the need to scale private finance in restoration. Private finance can be channelled into restoration through various financial mechanisms but is held back by a lack of return-making investment opportunities. Various institutions have now been created to commodify previously non-market ecosystem services and make them investable, most prominently voluntary carbon markets and biodiversity compliance market-like mechanisms, such as biodiversity-offsetting systems targeting the achievement of 'no net loss' of biodiversity for a given regulated sector. However, attracting private finance into restoration comes with risks, as private finance objectives in restoration often are misaligned with wider social and ecological objectives. Private finance mechanisms to date have tended to underinvest in monitoring and impact evaluation mechanisms and to favour investments in cost-effective nature-based solutions such as plantation monocultures over naturally regenerated ecosystems. Many technological and institutional solutions have been proposed, but these cannot mitigate all risks. Therefore, scaling of ecosystem restoration through market-like mechanisms requires substantial fundamental investments in governance and civil society oversight to ensure that ecological integrity and social equity is safeguarded. Here, we outline the high-level policy landscape driving restoration finance and explore the roles and potential of both public and private investment in restoration. We explain how some common mechanisms for drawing private investment into restoration work in practice. Then, we discuss some of the shortcomings of past private finance initiatives for ecosystem restoration and highlight essential lessons for how to safeguard the ecological and social outcomes of private investments in ecosystem restoration.


Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/economics , Conservation of Natural Resources/methods , Biodiversity , Environmental Restoration and Remediation/economics , Environmental Restoration and Remediation/methods
16.
Curr Biol ; 34(9): R418-R434, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714175

Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.


Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Ecology/methods , Environmental Restoration and Remediation/methods , Biodiversity , Climate Change
17.
Curr Biol ; 34(9): R435-R451, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714176

Rewilding is a restoration approach that aims to promote self-regulating complex ecosystems by restoring non-human ecological processes while reducing human control and pressures. Rewilding is forward-looking in that it aims to enhance functionality for biodiversity, accepting and indeed promoting the dynamic nature of ecosystems, rather than fixating on static composition or structure. Rewilding is thus especially relevant in our epoch of increasingly novel biosphere conditions, driven by strong human-induced global change. Here, we explore this hypothesis in the context of trophic rewilding - the restoration of trophic complexity mediated by wild, large-bodied animals, known as 'megafauna'. This focus reflects the strong ecological impacts of large-bodied animals, their widespread loss during the last 50,000 years and their high diversity and ubiquity in the preceding 50 million years. Restoring abundant, diverse, wild-living megafauna is expected to promote vegetation heterogeneity, seed dispersal, nutrient cycling and biotic microhabitats. These are fundamental drivers of biodiversity and ecosystem function and are likely to gain importance for maintaining a biodiverse biosphere under increasingly novel ecological conditions. Non-native megafauna species may contribute to these effects as ecological surrogates of extinct species or by promoting ecological functionality within novel assemblages. Trophic rewilding has strong upscaling potential via population growth and expansion of wild fauna. It is likely to facilitate biotic adaptation to changing climatic conditions and resilience to ecosystem collapse, and to curb some negative impacts of globalization, notably the dominance of invasive alien plants. Finally, we discuss the complexities of realizing the biodiversity benefits that trophic rewilding offers under novel biosphere conditions in a heavily populated world.


Biodiversity , Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Animals
18.
Curr Biol ; 34(9): R393-R398, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714171

Soil health is crucial for all terrestrial life, supporting, among other processes, food production, water purification and carbon sequestration. Soil biodiversity - the variety of life within soils - is key to these processes and thus key to soil restoration. Human activities that degrade ecosystems threaten soil biodiversity and associated ecosystem processes. Indeed, 75% of the world's soils are affected by degradation - a figure that could rise to 90% by 2050 if deforestation, overgrazing, urbanisation and other harmful practices persist. Restoring soil biodiversity is a prerequisite for planetary health, and it comes with many challenges and opportunities. Soil directly supports around 60% of all species on Earth, and land degradation poses a major problem for this biodiversity and the ecosystem services that sustain human populations. Indeed, 98% of human calories come from soil, and earthworms alone underpin 6.5% of the world's grain production. Moreover, the total carbon in terrestrial ecosystems is around 3,170 gigatons (1 gigaton (Gt) = 1 billion metric tons), of which approximately 80% (2,500 Gt) is found in soil. Therefore, restoring soil biodiversity is not just a human need but an ecological and Earth-system imperative. It is pivotal for maintaining ecosystem resilience, sustaining agricultural productivity and mitigating climate change impacts.


Biodiversity , Conservation of Natural Resources , Soil , Soil/chemistry , Conservation of Natural Resources/methods , Ecosystem , Agriculture/methods
19.
Curr Biol ; 34(9): R399-R406, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714172

Coral reefs provide food and livelihoods for hundreds of millions of coastal people in over 100 countries. Recent global estimates for the total value of goods and services that they can generate indicate around US$ 105,000-350,000 per hectare per year, but local estimates of current total economic value can be one to two orders of magnitude lower. Unfortunately, coral reefs are under threat both from local human stressors (for example, sediment and nutrient run-off from agriculture, sewage discharges, dredging, destructive fishing, land 'reclamation', overfishing) and, increasingly, from stressors related to global climate change (not only El Niño Southern Oscillation-related marine heatwaves, which cause mass bleaching and mortality of corals, but also more frequent and powerful tropical cyclones and ocean acidification). Four successive mass-bleaching events on Australia's iconic Great Barrier Reef between 2016 and 2022 (plus another one currently underway) have focused world attention on the need for urgent action to protect coral reefs. It is clear that coral reef ecosystems will continue to decline unless anthropogenic greenhouse gas emissions are reduced and innovative management strategies are developed to assist adaptation.


Climate Change , Conservation of Natural Resources , Coral Reefs , Conservation of Natural Resources/methods , Animals , Anthozoa/physiology , Australia , Humans , Environmental Restoration and Remediation/methods
20.
Curr Biol ; 34(9): R452-R472, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714177

Forest restoration is being scaled up globally, carrying major expectations of environmental and societal benefits. Current discussions on ensuring the effectiveness of forest restoration are predominantly focused on the land under restoration per se. But this focus neglects the critical issue that land use and its drivers at larger spatial scales have strong implications for forest restoration outcomes, through the influence of landscape context and, importantly, potential off-site impacts of forest restoration that must be accounted for in measuring its effectiveness. To ensure intended restoration outcomes, it is crucial to integrate forest restoration into land-use planning at spatial scales large enough to account for - and address - these larger-scale influences, including the protection of existing native ecosystems. In this review, we highlight this thus-far neglected issue in conceptualizing forest restoration for the delivery of multiple desirable benefits regarding biodiversity and ecosystem services. We first make the case for the need to integrate forest restoration into large-scale land-use planning, by reviewing current evidence on the landscape-level influences and off-site impacts pertaining to forest restoration. We then discuss how science can guide the integration of forest restoration into large-scale land-use planning, by laying out key features of methodological frameworks required, reviewing the extent to which existing frameworks carry these features, and identifying methodological innovations needed to bridge the potential shortfall. Finally, we critically review the status of existing methods and data to identify future research efforts needed to advance these methodological innovations and, more broadly, the effective integration of forest restoration design into large-scale land-use planning.


Conservation of Natural Resources , Forests , Conservation of Natural Resources/methods , Forestry/methods , Biodiversity , Ecosystem , Environmental Restoration and Remediation/methods
...