Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.624
Filtrar
1.
J Nucl Med ; 65(10): 1548-1556, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353648

RESUMEN

Neoadjuvant therapy in patients with locally advanced rectal cancer (LARC) has achieved good pathologic complete response (pCR) rates, potentially eliminating the need for surgical intervention. This study investigated preoperative methods for predicting pCR after neoadjuvant short-course radiotherapy (SCRT) combined with immunochemotherapy. Methods: Treatment-naïve patients with histologically confirmed LARC were enrolled from February 2023 to July 2023. Before surgery, the patients received neoadjuvant SCRT followed by 2 cycles of capecitabine and oxaliplatin plus camrelizumab. 68Ga-labeled fibroblast activation protein inhibitor ([68Ga]Ga-FAPI-04) PET/MRI, [18F]FDG PET/CT, and contrast-enhanced MRI were performed before treatment initiation and before surgery in each patient. PET and MRI features and the size and number of lesions were also collected from each scan. Each parameter's sensitivity, specificity, and diagnostic cutoff were derived via receiver-operating-characteristic curve analysis. Results: Twenty eligible patients (13 men, 7 women; mean age, 60.2 y) were enrolled and completed the entire trial, and all patients had proficient mismatch repair or microsatellite-stable LARC. A postoperative pCR was achieved in 9 patients (45.0%). In the visual evaluation, both [68Ga]Ga-FAPI-04 PET/MRI and [18F]FDG PET/CT were limited to forecasting pCR. Contrast-enhanced MRI had a low sensitivity of 55.56% to predict pCR. In the quantitative evaluation, [68Ga]Ga-FAPI-04 change in SULpeak percentage, where SULpeak is SUVpeak standardized by lean body mass, had the largest area under the curve (0.929) with high specificity (sensitivity, 77.78%; specificity, 100.0%; cutoff, 63.92%). Conclusion: [68Ga]Ga-FAPI-04 PET/MRI is a promising imaging modality for predicting pCR after SCRT combined with immunochemotherapy. The SULpeak decrease exceeding 63.92% may provide valuable guidance in selecting patients who can forgo surgery after neoadjuvant therapy.


Asunto(s)
Medios de Contraste , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Neoplasias del Recto , Humanos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Medios de Contraste/química , Tomografía de Emisión de Positrones , Resultado del Tratamiento , Terapia Neoadyuvante , Adulto , Tomografía Computarizada por Tomografía de Emisión de Positrones , Respuesta Patológica Completa , Quinolinas
2.
Sci Adv ; 10(40): eadq4082, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365870

RESUMEN

Magnetic resonance angiography (MRA) is pivotal for diagnosing panvascular diseases. However, single-modality MRA falls short in diagnosing diverse vascular abnormalities. Thus, contrast agents combining T1 and T2 effects are sought for multiparameter MRA with clinical promise, yet achieving a balance in T1 and T2 contrast enhancement effects remains a scientific challenge. Herein, we developed a hypersensitive multiparameter MRA strategy using dual-modality NaGdF4 nanoparticles. Because of the longer tumbling time (τR), NaGdF4 nanoparticles can improve the longitudinal relaxivity (r1), brightening vessels in T1-weighted sequences. Simultaneously, the regular arrangement of Gd3+ in the crystal induces magnetic anisotropy, creating local static magnetic field heterogeneity and generating negative signals in T2-weighted sequences. Consequently, the efficacy of NaGdF4-enhanced high-resolution multiparameter MRA has been validated in diagnosing ischemic stroke and Alzheimer's disease in rodent models. In addition, the dual-contrast imaging has been realized on swine with a clinical 3.0-T magnetic resonance imaging scanner, highly emphasizing the clinical translation prospect.


Asunto(s)
Medios de Contraste , Angiografía por Resonancia Magnética , Angiografía por Resonancia Magnética/métodos , Animales , Medios de Contraste/química , Humanos , Porcinos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico , Ratones , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Vasos Sanguíneos/diagnóstico por imagen , Modelos Animales de Enfermedad , Ratas , Gadolinio/química
3.
J Vis Exp ; (211)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39345114

RESUMEN

The brain has a highly selective semipermeable blood barrier, termed the blood-brain barrier (BBB), which prevents the delivery of therapeutic macromolecular agents to the brain. The integration of MR-guided low-intensity pulsed focused ultrasound (FUS) with microbubble pre-injection is a promising technique for non-invasive and non-toxic BBB modulation. MRI can offer superior soft-tissue contrast and various quantitative assessments, such as vascular permeability, perfusion, and the spatial-temporal distribution of MRI contrast agents. Notably, contrast-enhanced MRI techniques with gadolinium-based MR contrast agents have been shown to be the gold standard for detecting BBB openings. This study outlines a comprehensive methodology involving MRI protocols and animal procedures for monitoring BBB opening in a rat model. The rat model provides the added benefit of jugular vein catheter utilization, which facilitates rapid medication administration. A stereotactic-guided preclinical FUS transducer facilitates the refinement and streamlining of animal procedures and MRI protocols. The resulting methods are characterized by reproducibility and simplicity, eliminating the need for specialized surgical expertise. This research endeavors to contribute to the optimization of preclinical procedures with rat models and encourage further investigation into the modulation of the BBB to enhance therapeutic interventions in neurological disorders.


Asunto(s)
Barrera Hematoencefálica , Imagen por Resonancia Magnética , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Ratas , Imagen por Resonancia Magnética/métodos , Microburbujas , Medios de Contraste/química , Ratas Sprague-Dawley , Ultrasonografía/métodos , Masculino
4.
Commun Biol ; 7(1): 1197, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342051

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) are characterized by their exceptional susceptibility and relaxivity at ultra-low field (ULF) regimes, make them a promising contrast agent (CA) for ULF MRI. Despite their distinct advantages, the translation of these properties into clinically valuable image contrast in ULF MRI remains underexplored. In this study, we investigate the use of SPIONs to generate in vivo MRI contrast at 6.5 mT within the organs and vascular system of rodents. This investigation includes comprehensive SPION characterization and phantom imaging experiments to validate the utility of SPIONs to produce positive image contrast and to facilitate phase-sensitive imaging at ULF. Optimized balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) MRI sequences are used to generate in vivo contrast by leveraging the distinctive properties of SPIONs at ULF. Imaging studies in rodents reveal positive organ contrast attainable in magnitude images, and MRI phase maps can be used to visualize the vascular system. This work demonstrates the effectiveness of SPIONs in enhancing preclinical organ and vascular imaging at ULF; it bridges the gap between the study of the distinctive physical properties of SPIONs and the demonstration of in vivo image contrast.


Asunto(s)
Medios de Contraste , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética , Fantasmas de Imagen , Animales , Imagen por Resonancia Magnética/métodos , Medios de Contraste/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Ratas , Ratones , Masculino , Ratas Sprague-Dawley
5.
J Biomed Opt ; 29(10): 106001, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39347012

RESUMEN

Significance: Although the lymphatic system is the second largest circulatory system in the body, there are limited techniques available for characterizing lymphatic vessel function. We report shortwave-infrared (SWIR) imaging for minimally invasive in vivo quantification of lymphatic circulation with superior contrast and resolution compared with near-infrared first window imaging. Aim: We aim to study the lymphatic structure and function in vivo via SWIR fluorescence imaging. Approach: We evaluated subsurface lymphatic circulation in healthy, adult immunocompromised salt-sensitive Sprague-Dawley rats using two fluorescence imaging modalities: near-infrared first window (NIR-I, 700 to 900 nm) and SWIR (900 to 1800 nm) imaging. We also compared two fluorescent imaging probes: indocyanine green (ICG) and silver sulfide quantum dots (QDs) as SWIR lymphatic contrast agents following intradermal footpad delivery in these rats. Results: SWIR imaging exhibits reduced scattering and autofluorescence background relative to NIR-I imaging. SWIR imaging with ICG provides 1.7 times better resolution and sensitivity than NIR-I, and SWIR imaging with QDs provides nearly two times better resolution and sensitivity with enhanced vessel distinguishability. SWIR images thus provide a more accurate estimation of in vivo vessel size than conventional NIR-I images. Conclusions: SWIR imaging of silver sulfide QDs into the intradermal footpad injection provides superior image resolution compared with conventional imaging techniques using NIR-I imaging with ICG dye.


Asunto(s)
Verde de Indocianina , Vasos Linfáticos , Ratas Sprague-Dawley , Espectroscopía Infrarroja Corta , Animales , Ratas , Vasos Linfáticos/diagnóstico por imagen , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Espectroscopía Infrarroja Corta/métodos , Puntos Cuánticos/química , Imagen Óptica/métodos , Colorantes Fluorescentes/química , Medios de Contraste/química
6.
Molecules ; 29(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39339291

RESUMEN

In this research, resorbable phosphate-based glass (PBG) compositions were developed using varying modifier oxides including iron (Fe2O3), copper (CuO), and manganese (MnO2), and then processed via a rapid single-stage flame spheroidisation process to manufacture dense (i.e., solid) and highly porous microspheres. Solid (63-200 µm) and porous (100-200 µm) microspheres were produced and characterised via SEM, XRD, and EDX to investigate their surface topography, structural properties, and elemental distribution. Complementary NMR investigations revealed the formation of Q2, Q1, and Q0 phosphate species within the porous and solid microspheres, and degradation studies performed to evaluate mass loss, particle size, and pH changes over 28 days showed no significant differences among the microspheres (63-71 µm) investigated. The microspheres produced were then investigated using clinical (1.5 T) and preclinical (7 T) MRI systems to determine the R1 and R2 relaxation rates. Among the compositions investigated, manganese-based porous and solid microspheres revealed enhanced levels of R2 (9.7-10.5 s-1 for 1.5 T; 17.1-18.9 s-1 for 7 T) and R1 (3.4-3.9 s-1 for 1.5 T; 2.2-2.3 s-1 for 7 T) when compared to the copper and iron-based microsphere samples. This was suggested to be due to paramagnetic ions present in the Mn-based microspheres. It is also suggested that the porosity in the resorbable PBG porous microspheres could be further explored for loading with drugs or other biologics. This would further advance these materials as MRI theranostic agents and generate new opportunities for MRI contrast-enhancement oral-delivery applications.


Asunto(s)
Medios de Contraste , Vidrio , Imagen por Resonancia Magnética , Microesferas , Fosfatos , Imagen por Resonancia Magnética/métodos , Medios de Contraste/química , Vidrio/química , Fosfatos/química , Porosidad , Tamaño de la Partícula , Cobre/química , Compuestos Férricos/química
7.
Int J Nanomedicine ; 19: 9213-9226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263631

RESUMEN

Introduction: Targeting, imaging, and treating tumors represent major clinical challenges. Developing effective theranostic agents to address these issues is an urgent need. Methods: We introduce an "all-in-one" tumor-targeted theranostic platform using CuFeSe2-based composite nanoparticles (CuFeSe2@PA) for magnetic resonance (MR) and computed tomography (CT) dual model imaging-guided hyperthermia tumor ablation. Plerixafor (AMD3100) is bonded to the surface of CuFeSe2 as a targeting unit. Due to the robust interaction between AMD3100 and the overexpressed Chemokine CXC type receptor 4 (CXCR4) on the membrane of 4T1 cancer cells, CuFeSe2@PA specifically recognizes 4T1 cancer cells, enriching the tumor region. Results: CuFeSe2@PA serves as a contrast agent for T2-weighted MR imaging (relaxivity value of 1.61 mM-1 s-1) and CT imaging. Moreover, it effectively suppresses tumor growth through photothermal therapy (PTT) owing to its high photothermal conversion capability and stability, with minimized side effects demonstrated both in vitro and in vivo. Discussion: CuFeSe2@PA nanoparticles show potential as dual-mode imaging contrast agents for MR and CT and provide an effective means of tumor treatment through photothermal therapy. The surface modification with Plerixafor enhances the targeting ability of the nanoparticles, performing more significant efficacy and biocompatibility in the 4T1 cancer cell model. The study demonstrates that CuFeSe2@PA is a promising multifunctional theranostic platform with clinical application potential.


Asunto(s)
Cobre , Imagen por Resonancia Magnética , Terapia Fototérmica , Receptores CXCR4 , Nanomedicina Teranóstica , Tomografía Computarizada por Rayos X , Animales , Receptores CXCR4/metabolismo , Nanomedicina Teranóstica/métodos , Terapia Fototérmica/métodos , Línea Celular Tumoral , Imagen por Resonancia Magnética/métodos , Ratones , Cobre/química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Ratones Endogámicos BALB C , Femenino , Humanos , Medios de Contraste/química , Nanopartículas/química , Ciclamas/farmacología , Ciclamas/química , Bencilaminas/química
8.
Phys Med Biol ; 69(19)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39231474

RESUMEN

Objective.The objective of this study is to explore the capabilities of photon-counting computed tomography (PCCT) in simultaneously imaging and differentiating materials with close atomic numbers, specifically barium (Z= 56) and iodine (Z= 53), which is challenging for conventional computed tomography (CT).Approach.Experiments were conducted using a bench-top PCCT system equipped with a cadmium zinc telluride detector. Various phantom setups and contrast agent concentrations (1%-5%) were employed, along with a biological sample. Energy thresholds were tuned to the K-edge absorption energies of barium (37.4 keV) and iodine (33.2 keV) to capture multi-energy CT images. K-edge decomposition was performed using K-edge subtraction and principal component analysis (PCA) techniques to differentiate and quantify the contrast agents.Main results.The PCCT system successfully differentiated and accurately quantified barium and iodine in both phantom combinations and a biological sample, achieving high correlations (R2≈1) between true and reconstructed concentrations. PCA outperformed K-edge subtraction, particularly in the presence of calcium, by providing superior differentiation between barium and iodine.Significance.This study demonstrates the potential of PCCT for reliable, detailed imaging in both clinical and research settings, particularly for contrast agents with similar atomic numbers. The results suggest that PCCT could offer significant improvements in imaging quality over conventional CT, especially in applications requiring precise material differentiation.


Asunto(s)
Bario , Yodo , Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X , Yodo/química , Tomografía Computarizada por Rayos X/métodos , Bario/química , Procesamiento de Imagen Asistido por Computador/métodos , Medios de Contraste/química , Análisis de Componente Principal
9.
Nat Commun ; 15(1): 8036, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271701

RESUMEN

Molecular imaging holds the potential for noninvasive and accurate grading of liver fibrosis. It is limited by the lack of biomarkers that strongly correlate with liver fibrosis grade. Here, we discover the grading potential of fibroblast activation protein alpha (FAPα) for liver fibrosis through transcriptional analysis and biological assays on clinical liver samples. The protein and mRNA expression of FAPα are linearly correlated with fibrosis grade (R2 = 0.89 and 0.91, respectively). A FAPα-responsive MRI molecular nanoprobe is prepared for quantitatively grading liver fibrosis. The nanoprobe is composed of superparamagnetic amorphous iron nanoparticles (AFeNPs) and paramagnetic gadoteric acid (Gd-DOTA) connected by FAPα-responsive peptide chains (ASGPAGPA). As liver fibrosis worsens, the increased FAPα cut off more ASGPAGPA, restoring a higher T1-MRI signal of Gd-DOTA. Otherwise, the signal remains quenched due to the distance-dependent magnetic resonance tuning (MRET) effect between AFeNPs and Gd-DOTA. The nanoprobe identifies F1, F2, F3, and F4 fibrosis, with area under the curve of 99.8%, 66.7%, 70.4%, and 96.3% in patients' samples, respectively. This strategy exhibits potential in utilizing molecular imaging for the early detection and grading of liver fibrosis in the clinic.


Asunto(s)
Endopeptidasas , Cirrosis Hepática , Imagen por Resonancia Magnética , Proteínas de la Membrana , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Humanos , Imagen por Resonancia Magnética/métodos , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Gelatinasas/metabolismo , Compuestos Organometálicos/química , Masculino , Hígado/diagnóstico por imagen , Hígado/patología , Hígado/metabolismo , Femenino , Compuestos Heterocíclicos/química , Persona de Mediana Edad , Animales , Medios de Contraste/química
10.
Sci Rep ; 14(1): 20648, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232217

RESUMEN

Atherosclerosis is a chronic inflammatory condition of the arteries and represents the primary cause of various cardiovascular diseases. Despite ongoing progress, finding effective anti-inflammatory therapeutic strategies for atherosclerosis remains a challenge. Here, we assessed the potential of molecular magnetic resonance imaging (MRI) to visualize the effects of 01BSUR, an anti-interleukin-1ß monoclonal antibody, for treating atherosclerosis in a murine model. Male apolipoprotein E-deficient mice were divided into a therapy group (01BSUR, 2 × 0.3 mg/kg subcutaneously, n = 10) and control group (no treatment, n = 10) and received a high-fat diet for eight weeks. The plaque burden was assessed using an elastin-targeted gadolinium-based contrast probe (0.2 mmol/kg intravenously) on a 3 T MRI scanner. T1-weighted imaging showed a significantly lower contrast-to-noise (CNR) ratio in the 01BSUR group (pre: 3.93042664; post: 8.4007067) compared to the control group (pre: 3.70679168; post: 13.2982156) following administration of the elastin-specific MRI probe (p < 0.05). Histological examinations demonstrated a significant reduction in plaque size (p < 0.05) and a significant decrease in plaque elastin content (p < 0.05) in the treatment group compared to control animals. This study demonstrated that 01BSUR hinders the progression of atherosclerosis in a mouse model. Using an elastin-targeted MRI probe, we could quantify these therapeutic effects in MRI.


Asunto(s)
Aterosclerosis , Elastina , Interleucina-1beta , Animales , Masculino , Ratones , Anticuerpos Monoclonales , Apolipoproteínas E/deficiencia , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Medios de Contraste/química , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Elastina/metabolismo , Gadolinio/química , Gadolinio/farmacología , Interleucina-1beta/metabolismo , Imagen por Resonancia Magnética/métodos , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/tratamiento farmacológico
11.
J Nanobiotechnology ; 22(1): 528, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218888

RESUMEN

Molecular ultrasound imaging with actively targeted microbubbles (MB) proved promising in preclinical studies but its clinical translation is limited. To achieve this, it is essential that the actively targeted MB can be produced with high batch-to-batch reproducibility with a controllable and defined number of binding ligands on the surface. In this regard, poly (n-butyl cyanoacrylate) (PBCA)-based polymeric MB have been used for US molecular imaging, however, ligand coupling was mostly done via hydrolysis and carbodiimide chemistry, which is a multi-step procedure with poor reproducibility and low MB yield. Herein, we developed a single-step coupling procedure resulting in high MB yields with minimal batch-to-batch variation. Actively targeted PBCA-MB were generated using an aminolysis protocol, wherein amine-containing cRGD was added to the MB using lithium methoxide as a catalyst. We confirmed the successful conjugation of cRGD on the MB surface, while preserving their structure and acoustic signal. Compared to the conventional hydrolysis protocol, aminolysis resulted in higher MB yields and better reproducibility of coupling efficiency. Optical imaging revealed that under flow conditions, cRGD- and rhodamine-labelled MB, generated by aminolysis, specifically bind to tumor necrosis factor-alpha (TNF-α) activated endothelial cells in vitro. Furthermore, US molecular imaging demonstrated a markedly higher binding of the cRGD-MB than of control MB in TNF-α activated mouse aortas and 4T1 tumors in mice. Thus, using the aminolysis based conjugation approach, important refinements on the production of cRGD-MB could be achieved that will facilitate the production of clinical-scale formulations with excellent binding and ultrasound imaging performance.


Asunto(s)
Enbucrilato , Microburbujas , Imagen Molecular , Ultrasonografía , Animales , Enbucrilato/química , Ratones , Imagen Molecular/métodos , Ultrasonografía/métodos , Humanos , Medios de Contraste/química , Femenino , Células Endoteliales de la Vena Umbilical Humana , Ratones Endogámicos BALB C , Línea Celular Tumoral , Factor de Necrosis Tumoral alfa/metabolismo
12.
Nano Lett ; 24(37): 11738-11746, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39229926

RESUMEN

Fluoride-based lanthanide-doped nanoparticles (LDNPs) featuring second near-infrared (NIR-II, 1000-1700 nm) downconversion emission for bioimaging have attracted extensive attention. However, conventional LDNPs cannot be degraded and eliminated from organisms because of an inert lattice, which obstructs bioimaging applications. Herein, the core-shell LDNPs of Na3HfF7:Yb,Er@CaF2:Ce,Zr(Hf) [labeled as Zr(Hf)Ce-HC] with pH-selective and tunable degradability were synthesized for dual-modal bioimaging. Notably, the "softening" lattice of the Na3HfF7 matrix and different Zr4+(Hf4+) doping amounts in the shell enable Zr(Hf)Ce-HC with acidity-dependent and tunable degradability. After coating of an optimized Ce3+-doped CaF2:Zr shell, the near-infrared-IIb (NIR-IIb, 1500-1700 nm) luminescence intensity of ZrCe-HC is enhanced by 5.2 times compared with that of Na3HfF7:Yb,Er. The Hf element with high X-ray attenuation allows ZrCe-HC as the contrast agent for computed tomography (CT) bioimaging. The modification of oxidized sodium alginate endows ZrCe-HC with satisfying biocompatibility for NIR-IIb/CT dual-modal bioimaging. These findings would benefit the bioimaging applications of degradable fluoride-based LDNPs.


Asunto(s)
Fluoruros , Hafnio , Circonio , Circonio/química , Humanos , Hafnio/química , Fluoruros/química , Nanopartículas/química , Tomografía Computarizada por Rayos X/métodos , Animales , Medios de Contraste/química
13.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273647

RESUMEN

Adipose tissue-derived adult stem (ADAS) cells and extracellular vesicle (EV) therapy offer promising avenues for treating neurodegenerative diseases due to their accessibility and potential for autologous cell transplantation. However, the clinical application of ADAS cells or EVs is limited by the challenge of precisely identifying them in specific regions of interest. This study compares two superparamagnetic iron oxide nanoparticles, differing mainly in size, to determine their efficacy for allowing non-invasive ADAS tracking via MRI/MPI and indirect labeling of EVs. We compared a USPIO (about 5 nm) with an SPIO (Resovist®, about 70 nm). A physicochemical characterization of nanoparticles was conducted using DLS, TEM, MRI, and MPI. ADAS cells were labeled with the two nanoparticles, and their viability was assessed via MTT assay. MRI detected labeled cells, while TEM and Prussian Blue staining were employed to confirm cell uptake. The results revealed that Resovist® exhibited higher transversal relaxivity value than USPIO and, consequently, allows for detection with higher sensitivity by MRI. A 200 µgFe/mL concentration was identified as optimal for ADAS labeling. MPI detected only Resovist®. The findings suggest that Resovist® may offer enhanced detection of ADAS cells and EVs, making it suitable for multimodal imaging. Preliminary results obtained by extracting EVs from ADAS cells labeled with Resovist® indicate that EVs retain the nanoparticles, paving the way to an efficient and multimodal detection of EVs.


Asunto(s)
Tejido Adiposo , Células Madre Adultas , Vesículas Extracelulares , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética , Nanopartículas de Magnetita , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Tejido Adiposo/citología , Humanos , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Imagen Multimodal/métodos , Dextranos/química , Medios de Contraste/química , Células Cultivadas
14.
Molecules ; 29(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274923

RESUMEN

The present study explores the synthesis and bio-safety evaluation of gadolinium-doped carbon quantum dots (GCQDs) as a potential dual-contrast agent for diagnostic imaging. GCQDs exhibit both fluorescent and magnetic properties, making them suitable for UV-Vis and magnetic resonance imaging (MRI). The synthesis of GCQDs was achieved via hydrothermal treatment, incorporating gadolinium into the carbon quantum dot matrix. The magnetic properties of GCQDs were analyzed, showing significantly enhanced values compared to gadobutrol, a common MRI contrast agent. However, synthesis constraints limit the gadolinium content achievable in nanodots. To assess the safety of GCQDs, their effects on the embryonic development of zebrafish (Danio rerio) were examined. Various concentrations of GCQDs were tested, observing mortality rates, hatchability, malformations, heartbeats, spontaneous movement, and GCQDs uptake. Dialysis studies indicated that gadolinium ions are incorporated into the internal structure of the carbon nanodots. Zebrafish toxicity tests revealed that while survival rates were comparable to control groups, hatchability decreased significantly with higher gadolinium concentrations in GCQDs. Fluorescence microscopy showed no statistical differences in the fluorescence intensity between groups. These findings suggest that GCQDs could serve as an effective dual-contrast agent, combining the optical imaging capabilities of CQDs with the enhanced MRI contrast provided by gadolinium. This study underscores the need for further research on the synthesis methods and biological interactions of GCQDs to ensure their safety and efficacy in medical applications.


Asunto(s)
Carbono , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética , Puntos Cuánticos , Pez Cebra , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Gadolinio/química , Medios de Contraste/química , Medios de Contraste/síntesis química , Animales , Pez Cebra/embriología , Carbono/química , Imagen por Resonancia Magnética/métodos , Diagnóstico por Imagen/métodos
15.
Sci Rep ; 14(1): 22613, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349687

RESUMEN

Magnetic resonance imaging (MRI) relies on appropriate contrast agents, especially for visualizing transplanted cells within host tissue. In recent years, compounds containing fluorine-19 have gained significant attention as MRI probe, particularly in dual 1H/19F-MR imaging. However, various factors affecting probe sensitivity, such as fluorine content and the equivalency of fluorine atoms, must be considered. In this study, we synthesized fluorinated micelles with adjustable surface positive charge density and investigated their physicochemical properties and MRI efficacy in phantoms and labeled cells. While the micelles exhibited clear signals in 19F-MR spectra and imaging, the concentrations required for MRI visualization of labeled cells were relatively high, adversely affecting cell viability. Despite their favourable physicochemical properties, achieving higher labeling rates without compromising cell viability during labeling remains a challenge for potential in vivo applications.


Asunto(s)
Cationes , Supervivencia Celular , Micelas , Humanos , Cationes/química , Supervivencia Celular/efectos de los fármacos , Flúor/química , Imagen por Resonancia Magnética con Fluor-19/métodos , Medios de Contraste/química , Animales , Imagen por Resonancia Magnética/métodos , Halogenación , Fantasmas de Imagen , Coloración y Etiquetado/métodos , Ratones
16.
Phys Med Biol ; 69(20)2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39312948

RESUMEN

Objective.In proton therapy, range uncertainties prevent optimal benefit from the superior depth-dose characteristics of proton beams over conventional photon-based radiotherapy. To reduce these uncertainties we recently proposed the use of phase-change ultrasound contrast agents as an affordable and effective range verification tool. In particular, superheated nanodroplets can convert into echogenic microbubbles upon proton irradiation, whereby the resulting ultrasound contrast relates to the proton range with high reproducibility. Here, we provide a firstin vivoproof-of-concept of this technology.Approach.First, thein vitrobiocompatibility of radiation-sensitive poly(vinyl alcohol) perfluorobutane nanodroplets was investigated using several colorimetric assays. Then,in vivoultrasound contrast was characterized using acoustic droplet vaporization (ADV) and later using proton beam irradiations at varying energies (49.7 MeV and 62 MeV) in healthy Sprague Dawley rats. A preliminary evaluation of thein vivobiocompatibility was performed using ADV and a combination of physiology monitoring and histology.Main results.Nanodroplets were non-toxic over a wide concentration range (<1 mM). In healthy rats, intravenously injected nanodroplets primarily accumulated in the organs of the reticuloendothelial system, where the lifetime of the generated ultrasound contrast (<30 min) was compatible with a typical radiotherapy fraction (<5 min). Spontaneous droplet vaporization did not result in significant background signals. Online ultrasound imaging of the liver of droplet-injected rats demonstrated an energy-dependent proton response, which can be tuned by varying the nanodroplet concentration. However, caution is warranted when deciding on the exact nanodroplet dose regimen as a mild physiological response (drop in cardiac rate, granuloma formation) was observed after ADV.Significance.These findings underline the potential of phase-change ultrasound contrast agents forin vivoproton range verification and provide the next step towards eventual clinical applications.


Asunto(s)
Medios de Contraste , Ratas Sprague-Dawley , Ultrasonografía , Medios de Contraste/química , Animales , Ratas , Fluorocarburos/química , Terapia de Protones/métodos , Protones , Nanopartículas/química , Alcohol Polivinílico/química
17.
ACS Appl Mater Interfaces ; 16(40): 53393-53404, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39324588

RESUMEN

Small organic dye-based fluorescent agents are highly potent in solid tumor imaging but face challenges such as poor photostability, nonspecific distribution, low circulation, and weak tumor binding. Nanocarriers overcome these issues with better physicochemical and biological performance, particularly in cancer imaging. Among the various nanosized carriers, lipid formulations are clinically approved but yet to be designed as bright nanocontrast agents for solid tumor diagnosis without affecting surrounding tissues. Herein, indocyanine green (ICG) encapsulated targetable lipid nanoparticles (698 ICG/LNPs) as safe contrast agents (∼200 nm) have been developed and tested for solid tumor imaging and biodistribution. Our findings reveal that nanoprecipitation produces ICG-LNPs with a unique assembly, which contributes to their high brightness with improved quantum yield (3.5%) in aqueous media. The bright, optically stable (30 days) biophotonic agents demonstrate rapid accumulation (within 1 h) and prolonged retention (for up to 168 h) at the primary tumor site, with better signal intensity following a one-time dose administration (17.7 × 109 LNP per dose). Incorporated folic acid (735 folic acid/LNPs) helps in selective tumor binding and the specific biodistribution of intravenously injected nanoparticles without affecting healthy tissues. Designed targetable ICG-LNP (634 MESF) demonstrates high-contrast fluorescence and resolution from the tumor area as compared to the targetable ICG-liposomal nanoparticles (532 MESF). Various in vitro and in vivo findings reveal that the cancer diagnostic efficacy elicited by designed bright lipid nanoparticles are comparable to reported clinically accepted imaging agents. Thus, such LNPs hold translational potential for cancer diagnosis at an early stage.


Asunto(s)
Medios de Contraste , Verde de Indocianina , Nanopartículas , Medios de Contraste/química , Medios de Contraste/farmacocinética , Animales , Nanopartículas/química , Ratones , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Humanos , Lípidos/química , Distribución Tisular , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Femenino , Imagen Óptica , Ratones Endogámicos BALB C , Ácido Fólico/química , Ácido Fólico/farmacocinética , Liposomas
18.
Phys Med ; 126: 104824, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39326287

RESUMEN

PURPOSE: This study aimed to develop a photon-counting detector (PCD) based micro-CT simulation platform for assessing the performance of three different PCD sensor materials: cadmium telluride (CdTe), gallium arsenide (GaAs), and silicon (Si). The evaluation encompasses the components of primary and scatter signals, performance of imaging contrast agents, and detector efficiency. METHODS: Simulations were performed using the Geant4 Monte Carlo toolkit, and a micro-PCD-CT system was meticulously modeled based on realistic geometric parameters. RESULTS: The simulation can obtain HU values consistent with measured results for iodine and calcium hydroxyapatite contrast agents. The two major components of scatter signals for CdTe and GaAs based PCD are fluorescent X-ray photons and photoelectrons, whereas for Si, the components are photoelectrons and Compton electrons. Scattering counts of CdTe and GaAs sensors can be effectively reduced by using energy thresholds, whereas those of Si sensor are insensitive to the applied threshold. The optimal threshold values for CdTe and GaAs are 30 and 15 keV, respectively. For contrast agent imaging, GaAs exhibits enhanced sensitivity to low photon energies compared to CdTe, while it's contrast-to-noise ratio (CNR) values are slightly lower than those of CdTe at the same contrast agent concentration. Among the three sensor materials, Si has the lowest CNR and detector efficiency; CdTe exhibits the highest efficiency, except in low-energy ranges (< 45 keV), where GaAs has superior efficiency. CONCLUSIONS: The proposed methods are expected to benefit PCD optimization and applications, including energy threshold selection, scattering correction, and may reduce the need for large-scale experiments.


Asunto(s)
Compuestos de Cadmio , Galio , Método de Montecarlo , Fotones , Silicio , Telurio , Microtomografía por Rayos X , Galio/química , Microtomografía por Rayos X/instrumentación , Arsenicales , Medios de Contraste/química , Dispersión de Radiación
19.
J Biomed Opt ; 29(Suppl 3): S33306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39247899

RESUMEN

Significance: The arterial input function (AIF) plays a crucial role in correcting the time-dependent concentration of the contrast agent within the arterial system, accounting for variations in agent injection parameters (speed, timing, etc.) across patients. Understanding the significance of the AIF can enhance the accuracy of tissue vascular perfusion assessment through indocyanine green-based dynamic contrast-enhanced fluorescence imaging (DCE-FI). Aim: We evaluate the impact of the AIF on perfusion assessment through DCE-FI. Approach: A total of 144 AIFs were acquired from 110 patients using a pulse dye densitometer. Simulation and patient intraoperative imaging were conducted to validate the significance of AIF for perfusion assessment based on kinetic parameters extracted from fluorescence images before and after AIF correction. The kinetic model accuracy was evaluated by assessing the variability of kinetic parameters using individual AIF versus population-based AIF. Results: Individual AIF can reduce the variability in kinetic parameters, and population-based AIF can potentially replace individual AIF for estimating wash-out rate ( k ep ), maximum intensity ( I max ), ingress slope with lower differences compared with those in estimating blood flow, volume transfer constant ( K trans ), and time to peak. Conclusions: Individual AIF can provide the most accurate perfusion assessment compared with assessment without AIF or based on population-based AIF correction.


Asunto(s)
Verde de Indocianina , Imagen Óptica , Humanos , Imagen Óptica/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Femenino , Persona de Mediana Edad , Anciano , Masculino , Medios de Contraste/química , Adulto , Arterias/diagnóstico por imagen , Imagen de Perfusión/métodos , Simulación por Computador
20.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273264

RESUMEN

The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical absorption and scattering abilities. These features make GNPs advantageous contrast agents, enhancing the precision and quality of various imaging modalities, including photoacoustic imaging, optical coherence tomography, and fluorescence imaging. This paper analyzes the unique properties and corresponding mechanisms based on the morphological features of GNPs, highlighting the potential of GNPs in retinal disease diagnosis and management. Given the limitations currently encountered in clinical applications of GNPs, the approaches and strategies to overcome these limitations are also discussed. These findings suggest that the properties and efficacy of GNPs have innovative applications in retinal disease imaging.


Asunto(s)
Oro , Nanopartículas del Metal , Imagen Óptica , Retina , Tomografía de Coherencia Óptica , Oro/química , Nanopartículas del Metal/química , Humanos , Imagen Óptica/métodos , Retina/diagnóstico por imagen , Retina/metabolismo , Tomografía de Coherencia Óptica/métodos , Enfermedades de la Retina/diagnóstico por imagen , Enfermedades de la Retina/diagnóstico , Animales , Imagen Molecular/métodos , Medios de Contraste/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA