Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.525
Filtrar
1.
Int J Med Mushrooms ; 26(11): 65-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39241164

RESUMEN

Cordycepin (3'-deoxyadenosine) is a bioactive nucleoside analog synthesized by Cordyceps militaris. Liquid fermentation of C. militaris by addition in different concentrations of five additives singly was evaluated. Glycine at 15.00 g/L after 20 d enhanced the cordycepin of 1773.33 mg/L (15-fold increment over control). Adenine at 4.00 g/L and 6.00 g/L in the liquid media showed significantly higher cordycepin i.e.1596.66 mg/L and 1550.00 mg/L (3-fold increment over control) after 40 d. Tryptone supplementation 14.00 g/L significantly higher cordycepin 784.33 mg/L (6.70-fold increment over control) and 912.66 mg/L production after 20 and 40 d of inoculation. Peanut oil at 10.00 g/L produced 585.66 mg/L (5-fold increment over control) cordycepin after 20 d and after 40 d, also addition of peanut oil at 20.00 g/L and 30.00 g/L in the media showed 631.66 and 624.31 mg/L cordycepin content. Supplementation of mono-sodium glutamate at 0.30 g/L produced significantly highest cordycepin i.e. 614 mg/L and 635.00 mg/L cordycepin after 20 and 40 d, respectively.


Asunto(s)
Cordyceps , Medios de Cultivo , Desoxiadenosinas , Fermentación , Desoxiadenosinas/biosíntesis , Desoxiadenosinas/metabolismo , Cordyceps/metabolismo , Cordyceps/química , Cordyceps/crecimiento & desarrollo , Medios de Cultivo/química , Aceite de Cacahuete , Adenina/metabolismo , Peptonas/metabolismo
2.
Sci Rep ; 14(1): 21907, 2024 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300166

RESUMEN

Integrating immunotherapy with natural compounds holds promise in enhancing the immune system's ability to eliminate cancer cells. Cordyceps militaris, a traditional Chinese medicine, emerges as a promising candidate in this regard. This study investigates the effects of cordycepin and C. militaris ethanolic extract (Cm-EE) on sensitizing cancer cells and regulating immune responses against breast cancer (BC) and hepatocellular carcinoma (HCC) cells. Cordycepin, pentostatin and adenosine were identified in Cm-EE. Cordycepin treatment decreased HLA-ABC-positive cells in pre-treated cancer cells, while Cm-EE increased NKG2D ligand and death receptor expression. Additionally, cordycepin enhanced NKG2D receptor and death ligand expression on CD3-negative effector immune cells, particularly on natural killer (NK) cells, while Cm-EE pre-treatment stimulated IL-2, IL-6, and IL-10 production. Co-culturing cancer cells with effector immune cells during cordycepin or Cm-EE incubation resulted in elevated cancer cell death. These findings highlight the potential of cordycepin and Cm-EE in improving the efficacy of cancer immunotherapy for BC and HCC.


Asunto(s)
Cordyceps , Desoxiadenosinas , Inmunoterapia , Humanos , Desoxiadenosinas/farmacología , Cordyceps/química , Inmunoterapia/métodos , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/terapia , Femenino , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/tratamiento farmacológico
3.
Pestic Biochem Physiol ; 204: 106076, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277389

RESUMEN

Cordyceps javanica has been registered as a fungal insecticide in several countries. However, little is known about whether metabolic toxins are involved in the insecticidal process. In this research, we assessed the insecticidal activity of the fermentation broth of C. javanica. Myzus persicae mortality differed when exposed to the metabolized C. javanica broths at 3 days post fermentation (DPF) and 5 DPF. Comparison of the metabolic fluid at 3 DPF and 5 DPF revealed a key alkaloid, heteratisine, which was found to have insecticidal activity and acetylcholinesterase (AChE) inhibitory activity. Heteratisine has high insecticidal activity against adult M. persicae, the absolute 50% lethal concentration (LC50) was only 0.2272 mg/L. Heteratisine showed high inhibitory activity on AChE with the 50% maximal inhibitory concentration (IC50) of 76.69 µM. Molecular docking and dynamic simulations showed that heteratisine conjugation occurs at the peripheral anionic site (PAS) of the AChE of M. persicae, leading to suppression of enzyme activity. Heteratisine was rarely found in fungal metabolites, which helps us to understand the complex and elaborate insecticidal mechanism of C. javanica.


Asunto(s)
Acetilcolinesterasa , Áfidos , Inhibidores de la Colinesterasa , Cordyceps , Insecticidas , Simulación del Acoplamiento Molecular , Cordyceps/metabolismo , Insecticidas/química , Insecticidas/farmacología , Insecticidas/metabolismo , Insecticidas/toxicidad , Animales , Áfidos/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Acetilcolinesterasa/metabolismo , Alcaloides/química , Metabolismo Secundario
4.
Carbohydr Polym ; 345: 122577, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227109

RESUMEN

This study was to investigate the antibacterial effects and metabolites derived from bifidobacterial fermentation of an exopolysaccharide EPS-LM produced by a medicinal fungus Cordyceps sinensis, Cs-HK1. EPS-LM was a partially purified polysaccharide fraction which was mainly composed of Man, Glc and Gal at 7.31:12.95:1.00 mol ratio with a maximum molecular weight of 360 kDa. After fermentation of EPS-LM in two bifidobacterial cultures, B. breve and B. longum, the culture digesta showed significant antibacterial activities, inhibiting the proliferation and biofilm formation of Escherichia coli. Based on untargeted metabolomic profiling of the digesta, the levels of short chain fatty acids, carboxylic acids, benzenoids and their derivatives were all increased significantly (p < 0.01), which probably contributed to the enhanced antibacterial activity by EPS-LM. Since EPS-LM was only slightly consumed for the bifidobacterial growth, it mainly stimulated the biosynthesis of bioactive metabolites in the bifidobacterial cells. The results also suggested that EPS-LM polysaccharide may have a regulatory function on the bifidobacterial metabolism leading to production of antibacterial metabolites, which may be of significance for further exploration.


Asunto(s)
Antibacterianos , Cordyceps , Escherichia coli , Fermentación , Polisacáridos Bacterianos , Antibacterianos/farmacología , Antibacterianos/química , Cordyceps/metabolismo , Cordyceps/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Biopelículas/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Pruebas de Sensibilidad Microbiana
5.
Int J Biol Macromol ; 277(Pt 4): 134607, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127294

RESUMEN

Cordyceps guangdongensis, a novel edible mushroom in China, has shown many positive health effects. In this study, we extracted the C. guangdongensis polysaccharides (CGP) from the fruiting bodies, and investigated the mechanism for CGP improved high-fat diet-induced (HFDI) metabolic diseases. We found that CGP notably reduced fat mass, improved blood lipid levels and hepatic damage, and restored the gut microbiota dysbiosis induced by high-fat diet (HFD). Metabolome analyses showed that CGP changed the composition of bile acids, and regulated HFDI metabolic disorder in hepatic tissue. Transcriptome comparison showed that the improvement of hepatic steatosis for CGP was mainly related to lipid and carbohydrate metabolism. Association analysis result revealed that Odoribacter, Bifidobacterium and Bi. pseudolongum were negatively correlated to fat and blood lipid indicators, and were significantly associated with genes and metabolites related to carbohydrate and lipid metabolism. Collectively, these results indicate that CGP may be a promising supplement for the treatment of obesity and related metabolic diseases.


Asunto(s)
Cordyceps , Dieta Alta en Grasa , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Cordyceps/química , Ratones , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/metabolismo , Metaboloma/efectos de los fármacos , Ratones Endogámicos C57BL , Polisacáridos/farmacología , Polisacáridos/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Disbiosis
6.
J Chromatogr A ; 1734: 465279, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39197362

RESUMEN

Cordyceps genus is entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries. Nucleosides (Ns), nucleotide(Nt), Nucleobases (Nb) and their analogues play a critically physiological role and have a great potential in drug development, such as pentostatin and cordycepin (COR). Due to their significance bioactivity, several Nt/Ns were used as markers for quality evaluation for medicinal Cordyceps, including adenosine, inosine, guanosine, uridine and COR. Among them, COR is the most considerable adenosine analogue, exhibiting significant therapeutic potential and has many intracellular targets. Nt/Ns contains polar compounds and the phosphate groups of Nt deprotonate and carry negative charges with a broad range of pH values. Recent years, various advanced methods of extraction and separation, and nanomaterials have been developed to extract, isolate and determine these molecules, such as ultrasound-assisted extraction (UAE), Supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) for the extraction, the solid phase extraction (SPE) methods (microextraction SPE (SPME), magnetic SPE (MSPE), and unique SPE materials based on the boronate affinity for the separation, and chromatography methods employing ultraviolet (UV), fluorescence, MS detection and electrospray ionization (ESI), along with matrix-assisted laser desorption/ ionization (MALDI) for the determination. COR derived from adenosine and its structure is very similar to that of 2'-deoxyadenosine (2'-dA) and adenosine, resulting in an incorrect identification, which will influence its therapeutic effects. Therefore, this review primarily focused on the characteristics of Nt/Ns, the advanced methods, strategies, nanomaterials for extracting and determining Nt/Ns (COR in particular) in Cordyceps spp, as well as the methods for distinguishing COR from its structure analogs.


Asunto(s)
Cordyceps , Nucleósidos , Nucleótidos , Cordyceps/química , Nucleósidos/análisis , Nucleósidos/aislamiento & purificación , Nucleótidos/análisis , Nucleótidos/aislamiento & purificación , Nucleótidos/química , Desoxiadenosinas
7.
Int J Biol Macromol ; 278(Pt 2): 134784, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151863

RESUMEN

Six Cordyceps militaris polysaccharides (named CMP-1, CMP-2, CMP-3, CMP-4, CMP-9, and CMP-A) were obtained by fractional alcohol precipitation. The experimental results showed that the six Cordyceps militaris polysaccharides had similar chemical composition and spectral features, and different molecular weights, monosaccharide compositions and anti-tumor activities. Purification of CMP-9 yielded the small molecule polysaccharide LMW-CMP (3.06 kDa). Structural experiments showed that LMW-CMP is an α-glucan with (1 â†’ 4)-α-D-Glcp as the main chain and a glucose branched chain attached at the O-6 position. The results of cell experiments showed that LMW-CMP could effectively inhibit the growth and proliferation of HepG2 cells, activate the downstream NF-κB signaling pathway through the MAPK pathway to induce apoptosis of HepG2 cells, and block apoptosis at the G1 phase. Animal experiments showed that LMW-CMP inhibited the proliferation of tumor cells in H22 tumor-bearing mice by improving the state of immune organs, increasing the activity of immune cells and cytokine levels in the body, and regulating the distribution of lymphocyte subpopulations, with a tumor inhibition rate of 45.70 % (200 mg/kg).


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Cordyceps , Etanol , Polisacáridos Fúngicos , Cordyceps/química , Animales , Humanos , Ratones , Etanol/química , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Polisacáridos/farmacología , Polisacáridos/química , Peso Molecular , FN-kappa B/metabolismo , Monosacáridos/análisis
8.
Int J Med Mushrooms ; 26(10): 19-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171629

RESUMEN

Cordyceps militaris, Chinese traditional medicinal fungus, has many bioactive properties. Cordycepin (3'-deoxyadenosine) is a major bioactive component of C. militaris. Various methods can significantly elevate cordycepin production, which suggests a diverse set of metabolic regulatory mechanisms. Thus, we aimed to identify transcription factors that regulate cordycepin biosynthesis pathways. Transcriptome analysis of wild-type C. militaris, C. militaris GYS60, a cordycepin high-producing strain, and C. militaris GYS80, a low-producing strain, were used to measure expression and function of genes related to cordycepin biosynthesis. The transcriptome expression data were confirmed by quantitative real-time polymerase chain reaction. We identified 155 relevant transcription factors in 19 families that included Fork head/winged helix factors, other C4 zinc finger-type factors, C2H2 zinc finger factors, tryptophan cluster factors, nuclear receptors with C4 zinc fingers, homeodomain factors, and Rel homology region factors. Energy generation and amino acid conversion pathways were activated in GYS60 so that abundance of cordycepin precursors was increased. Genes and transcription factors for rate-limiting enzymes in these pathways were identified. Overexpression of two key transcription factors, Kruppel-like factor 4 (Klf4) and Retinoid X receptor alpha (Rxra), promoted high cordycepin production in GYS60. In GYS60, Klf4 and Rxra were responsible for upregulation of genes in cordycepin biosynthesis, namely an oxidoreductase, 3',5'-cyclic AMP phosphodiesterase, a transferase, and adenylate cyclase. Upregulation of these genes increased 3'-AMP content, thereby elevating cordycepin synthesis.


Asunto(s)
Cordyceps , Desoxiadenosinas , Factor 4 Similar a Kruppel , Desoxiadenosinas/biosíntesis , Cordyceps/genética , Cordyceps/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Regulación Fúngica de la Expresión Génica , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vías Biosintéticas
9.
Int J Med Mushrooms ; 26(10): 41-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171630

RESUMEN

The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Redes Reguladoras de Genes , Regulación Fúngica de la Expresión Génica , Cordyceps/genética , Cordyceps/crecimiento & desarrollo , Cordyceps/metabolismo , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Hypocreales/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pueblos del Este de Asia
10.
PeerJ ; 12: e17648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006009

RESUMEN

The rapid degeneration of Cordyceps militaris strains during subculture represents a bottleneck problem that affects production stability. This study explored the mechanism underlying this degeneration in three production and three wild-type strains of Cordyceps militaris, isolating single-conidium strains from each. The effects of subculturing on fructification in both original and single mating-type strains were compared. Changes in the ratio of the two mating types were analyzed in both original and degenerated strains. Based on these findings, the two mating strains were paired in different ratios to determine their effects on fruiting. The resulting five strains were heterokaryotic strains with both MAT1-1 and MAT1-2 mating-type genes. Strain jb-2 was a single mating type (MAT1-1) mutant strain that produced stable fruiting bodies but failed to produce ascospores. It was found that the loss of or imbalance in mating types was the main reason for the rapid degeneration of fruiting traits during subculture and that this occurred randomly in the MAT1-1 and MAT1-2 types. The strains differed significantly in their stability during subculture. Fruiting was stable in the single mating-type Jb-2 strain, and the eleventh-generation fruited normally. There were differences in yield between the production and wild strains after inoculation with spawn containing different proportions of mating types. The production strain was more stable when inoculated with strains with mating-type ratios of 1:9 to 9:1 without affecting the yield. However, the yield of the wild-type strain xf-1 was positively correlated with the proportion of the MAT1-2 type, while the other two strains showed no correlations. Subculturing single mating-type mycelia separately and mixing them before production effectively mitigated degeneration during subculture. For Cordyceps militaris breeding, selecting strains containing both mating types, which are insensitive to the proportion of mating-type genes, enhanced stability in subculture and reduced the risk of mating-type loss. Direct breeding of specific single-mating type strains to induce fruiting is thus an effective breeding strategy.


Asunto(s)
Cordyceps , Genes del Tipo Sexual de los Hongos , Cordyceps/genética , Genes del Tipo Sexual de los Hongos/genética , Cuerpos Fructíferos de los Hongos
11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 435-446, 2024 Mar 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38970518

RESUMEN

OBJECTIVES: Farfarae Flos has the effect of cough suppression and phlegm elimination, with cough suppression as the main function. Studies have revealed that certain components of Farfarae Flos may be related to its cough suppressant effect, and some components have been confirmed to have cough suppressant activity. However, the antitussive material basis of Farfarae Flos has not been systematically elucidated. This study aims to elucidate the group of active ingredients in Farfarae Flos with cough suppressant activity by correlating the high performance liquid chromatography (HPLC) fingerprint of Farfarae Flos extract with its cough suppressant activity. METHODS: HPLC was used to establish the fingerprint profiles of 10 batches of Farfarae Flos extract and obtain their chemical composition data. Guinea pigs were selected as experimental animals and the citric acid-induced cough model was used to evaluate the antitussive efficacy data of 10 batches of Farfarae Flos extract. SPF-grade healthy male Hartley guinea pigs were randomly divided into the S1 to S10 groups, a positive control group, and a blank control group (12 groups in total), with 10 guinea pigs in each group. The S1 to S10 groups were respectively administered Farfarae Flos extract S1 to S10 (4 g/kg), the positive control group was administered pentoverine citrate (10 mg/kg), and the blank control group was administered purified water. Each group received continuous oral administration for 5 days. The guinea pigs were placed in 5 L closed wide-mouth bottles, and 17.5% citric acid was sprayed into the bottle with an ultrasonic atomizer at the maximum spray intensity for 0.5 minutes. The cough latency period and cough frequency in 5 minutes were recorded for each guinea pig. Grey relational analysis (GRA) and partial least squares regression (PLSR) were used to conduct spectral-effect correlation analysis of the chemical composition data of Farfarae Flos extract and the antitussive efficacy data, and predict the group of active ingredients in Farfarae Flos with antitussive activity. The bioequivalence verification was conducted to verify the predicted group of active ingredients in Farfarae Flos with antitussive activity: SPF-grade healthy male Hartley guinea pigs were randomly divided into a S9 group, an active ingredient group, a positive control group, and a blank control group (4 groups in total), with 10 guinea pigs in each group. The S9 group was administered Farfarae Flos extract S9 (4 g/kg), the active ingredient group was administered the predicted combination of antitussive active ingredients (dose equivalent to 4 g/kg of Farfarae Flos extract S9), the positive control group was administered pentoverine citrate (10 mg/kg), and the blank control group was administered purified water. Each group received continuous oral administration for 5 days, and animal modeling and observation of efficacy indicators were the same as above. RESULTS: The HPLC fingerprint of 10 batches of Farfarae Flos extract was established, and the peak area data of 14 main common peaks were obtained. The antitussive effect data of 10 batches of Farfarae Flos extract were obtained. Compared with the blank control group, the cough latence in the positive control group and S1, S2, S3, S4, S6, S7, S8, S9, S10 groups was prolonged (all P<0.01), while the cough frequency in 5 minutes in the positive control group and S1, S2, S4, S6, S8, S9, S10 groups was decreased (all P<0.05). The analysis of spectrum-effect relationship revealed that isochlorogenic acid C, isochlorogenic acid A, chlorogenic acid, isochlorogenic acid B, isoquercitrin, and rutin had high contribution to the antitussive effect of Farfarae Flos, and the 6 components were predicted to be the antitussive component group of Farfarae Flos. The verification of bioequivalence showed that there were no statistically significant differences in the antitussive effect between the S9 group and the antitussive component composition group(all P>0.05), which confirmed that isochlorogenic acid C, isochlorogenic acid A, chlorogenic acid, isochlorogenic acid B, isoquercetin, and rutin were the antitussive component group of Farfarae Flos. CONCLUSIONS: The analysis of spectrum-effect relationship combined with the verification of bioequivalence could be used to study the antitussive material basis of Farfarae Flos. The antitussive effect of Farfarae Flos is the result of the joint action of many components.


Asunto(s)
Antitusígenos , Tos , Medicamentos Herbarios Chinos , Flores , Animales , Antitusígenos/uso terapéutico , Antitusígenos/farmacología , Cobayas , Flores/química , Masculino , Tos/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Cordyceps/química
12.
Molecules ; 29(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39064986

RESUMEN

Polysaccharide is one of the principal bioactive components found in medicinal mushrooms and has been proven to enhance host immunity. However, the possible mechanism of immunomodulatory activity of Cordyceps militaris polysaccharide is not fully understood. Hot water extraction and alcohol precipitation, DEAE-Sephadex A-25 chromatography, and Sephadex G-100 chromatography were used to isolate polysaccharide from C. militaris. A high-molecular-weight polysaccharide isolated from C. militaris was designated as HCMP, which had an Mw of 6.18 × 105 Da and was composed of arabinose, galactose, glucose, mannose, and xylose in a mole ratio of 2.00:8.01:72.54:15.98:1.02. The polysaccharide content of HCMP was 91.2% ± 0.16. The test in vitro showed that HCMP activated mouse macrophage RAW 264.7 cells by enhancing phagocytosis and NO production, and by regulating mRNA expressions of inflammation-related molecules in RAW 264.7 cells. Western blotting revealed that HCMP induced the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, using inhibitors of MAPKs decreased the mRNA levels of inflammation-related molecules induced by HCMP. These data evidenced that the immunomodulatory effect of HCMP on RAW 264.7 macrophages was mediated via the MAPK signaling pathway. These findings suggested that HCMP could be developed as a potent immunomodulatory agent for use in functional foods and dietary supplements.


Asunto(s)
Cordyceps , Sistema de Señalización de MAP Quinasas , Macrófagos , Fagocitosis , Animales , Ratones , Cordyceps/química , Células RAW 264.7 , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fagocitosis/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/aislamiento & purificación , Óxido Nítrico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo
13.
Int J Med Mushrooms ; 26(8): 59-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967211

RESUMEN

Cordyceps militaris, a medicinal fungus rich in cordycepin, shows promise in treating diseases such as cancer, respiratory issues, and COVID-19. This study examines the impact of different Taiwanese rice varieties on its solid-state fermentation, focusing on optimizing cordycepin production. The results indicated that the cordycepin yield was indeed affected by the type of rice used. In terms of the fruiting bodies, germ rice resulted in the highest yield (13.1 ± 0.36 mg/g), followed by brown rice (11.9 ± 0.26 mg/g). In the rice culture medium (RCM), brown rice led to the highest yield (4.77 ± 0.06 mg/g). Using gas chromatography-mass spectrometry and untargeted metabolomics, the study identifies four key volatile components linked to cordycepin, providing insights into developing functional rice porridge products. These findings are significant for advancing cordycepin mass production and offering dietary options for older individuals.


Asunto(s)
Cordyceps , Desoxiadenosinas , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Oryza , Desoxiadenosinas/análisis , Desoxiadenosinas/metabolismo , Oryza/química , Oryza/microbiología , Cordyceps/metabolismo , Cordyceps/química , Cordyceps/crecimiento & desarrollo , Medios de Cultivo/química , Cuerpos Fructíferos de los Hongos/química , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Taiwán
14.
Sci Rep ; 14(1): 15259, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956259

RESUMEN

Greenhouse whitefly (Trialeurodes vaporariorum) is a major global pest, causing direct damage to plants and transmitting viral plant diseases. Management of T. vaporariorum is problematic because of widespread pesticide resistance, and many greenhouse growers rely on biological control agents to regulate T. vaporariorum populations. However, these are often slow and vary in efficacy, leading to subsequent application of chemical insecticides when pest populations exceed threshold levels. Combining chemical and biological pesticides has great potential but can result in different outcomes, from positive to negative interactions. In this study, we evaluated co-applications of the entomopathogenic fungi (EPF) Beauveria bassiana and Cordyceps farinosa and the chemical insecticide spiromesifen in laboratory bioassays. Complex interactions between the EPFs and insecticide were described using an ecotoxicological mixtures model, the MixTox analysis. Depending on the EPF and chemical concentrations applied, mixtures resulted in additivity, synergism, or antagonism in terms of total whitefly mortality. Combinations of B. bassiana and spiromesifen, compared to single treatments, increased the rate of kill by 5 days. Results indicate the potential for combined applications of EPF and spiromesifen as an effective integrated pest management strategy and demonstrate the applicability of the MixTox model to describe complex mixture interactions.


Asunto(s)
Beauveria , Hemípteros , Insecticidas , Control Biológico de Vectores , Animales , Hemípteros/efectos de los fármacos , Hemípteros/microbiología , Insecticidas/farmacología , Beauveria/fisiología , Control Biológico de Vectores/métodos , Cordyceps , Compuestos de Espiro/farmacología
15.
Molecules ; 29(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999153

RESUMEN

BACKGROUND: Ophiocordyceps sinensis has long been recognized as a mysterious and valuable traditional Chinese medicine but there has been little research on quality markers for O. sinensis. PURPOSE: This study looked into the potential of using powder X-ray diffractometry (PXRD) to analyze polysaccharides as a quality marker for O. sinensis. STUDY DESIGN: There were 16 different habitats of O. sinensis collected in Qinghai, Gansu, Sichuan, Yunnan, and Tibet. In addition, five different types of Cordyceps species were collected. The characteristic diffraction peaks of O. sinensis were determined and then matched with the characteristic diffraction peaks of intracellular polysaccharides obtained from O. sinensis to determine the attribution relationship of the characteristic diffraction peaks. METHODS: O. sinensis powder's X-ray diffraction pattern is determined by its composition, microcrystalline crystal structure, intramolecular bonding mechanism, and molecular configuration. After fractionation and alcohol precipitation of crude intracellular polysaccharide, mycelium crude intracellular polysaccharide (MCP) and fruiting body crude intracellular polysaccharide (FCP) were obtained and the fingerprint of O. sinensis was identified by the specific characteristic peaks of the X-ray diffraction pattern from intracellular polysaccharide. RESULTS: The results indicated that the PXRD patterns of different populations of O. sinensis were overlaid well with 18 characteristic diffraction peaks obtained by microcrystalline diffraction. Moreover, the powder diffractograms as a fingerprint provided a practical identification of O. sinensis from other Cordyceps species. In addition, we detected that the powder diffractograms of intracellular polysaccharide MCP and MCP75 could be coupled with the PXRD of O. sinensis. Specifically, 18 characteristic diffraction peaks were identified as coming from MCP and MCP75 according to those interplanar crystal spacing, which matched well with those of PXRD of O. sinensis. CONCLUSIONS: PXRD spectra combined with an updated multivariable discriminant model were found to be an efficient and sensitive method for O. sinensis quality control. According to the findings of this study, PXRD should be further investigated for quality control assessments and plant extract selection trials.


Asunto(s)
Cordyceps , Polisacáridos , Difracción de Rayos X , Cordyceps/química , Polisacáridos/química , Polisacáridos/análisis , Medicina Tradicional China , Hypocreales/química
16.
J Nat Prod ; 87(8): 2110-2119, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39052090

RESUMEN

The development of tuberculosis (TB) therapy has been marked by the discovery of natural-product-derived streptomycin, followed by the introduction of NP-derived rifampicin, representing a significant milestone in the history of TB management. However, TB remains a global challenge, with the emergence of multidrug-resistant Mycobacterium tuberculosis highlighting the need for novel therapeutic agents. In this study, a bioinformatic approach was employed to investigate d-amino acid-activating adenylation domains, leading to the identification of cordysetin A (1), a novel trans-decalin tetramic acid antibiotic from the ascomycete fungi Cordyceps militaris. Cordysetin A (1) exhibits considerable activity against M. tuberculosis in vitro and in vivo while maintaining low cytotoxicity. These results reveal that the d-configuration of the amino acid within this hybrid polyketide-nonribosomal antibiotic is crucial for preserving its anti-tuberculosis efficacy. These findings emphasize the significant translational potential of cordysetin A as a promising candidate for TB treatment, furthering our understanding of bioinformatic approaches in the development of effective anti-tuberculosis agents.


Asunto(s)
Antituberculosos , Biología Computacional , Cordyceps , Mycobacterium tuberculosis , Cordyceps/química , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Pruebas de Sensibilidad Microbiana , Aminoácidos/química , Aminoácidos/farmacología , Animales , Humanos , Estructura Molecular , Antibacterianos/farmacología , Antibacterianos/química , Tuberculosis/tratamiento farmacológico
17.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39001695

RESUMEN

To explore the effects of cordyceps militaris (CM) on growth performance and intestinal epithelium functions, 180 weaned pigs were randomly assigned into 5 treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs were fed with basal diet (control) or basal diet supplemented with 100, 200, 400, and 800 mg/kg CM. The trial lasted for 42 d, and pigs from the control and optimal-dose groups (based on growth performance) were picked for blood and tissue collection (n = 6). Results showed that CM elevated the average daily gain (ADG) and decreased the ratio of feed intake to gain (F:G) in the weaned pigs (P < 0.05). CM supplementation at 100 mg/kg improved the digestibilities of dry matter (DM), crude protein (CP), and gross energy (GE) (P < 0.05). CM not only increased the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) but also increased the concentration of interleukin-10 (IL-10) in serum (P < 0.05). The serum concentrations of malondialdehyde (MDA), d-lactate, and diamine oxidase (DAO) were reduced by CM (P < 0.05). Interestingly, CM elevated the villus height and the ratio of villus height to crypt depth in the duodenum and jejunum and increased the activities of duodenal sucrase and maltase (P < 0.05). Moreover, CM elevated the expression levels of tight-junction proteins ZO-1, claudin-1, and occluding, as well as critical functional genes such as the fatty acid transport protein (FATP1), cationic amino acid transporter 1 (CAT1), and NF-E2-related factor 2 (Nrf2) in the duodenum and jejunum (P < 0.05). Importantly, CM increased the concentrations of acetic acid and butyric acid, and elevated the abundances of Bacillus and Lactobacillus in the cecum and colon, respectively (P < 0.05). These results indicated potential benefits of CM in improving the growth of weaned pigs, and such effect may be tightly associated with improvement in antioxidant capacity and intestinal epithelium functions.


In last decades, antibiotics have been widely used as growth-promoting agents to relieve weaning stress and prevent intestinal injury. However, overdose and misuse of antibiotics led to bacterial resistance and drug residues in animal products. Therefore, the development of healthy alternatives for pork production has attracted considerable research interest worldwide. Cordyceps militaris (CM) is an entomopathogenic fungus with various biological effects, including anti-inflammatory, lipid-lowering, and antioxidant activities. This study was conducted to investigate the effects of dietary CM supplementation on growth performance, antioxidant capacity, and intestinal epithelium functions in weaned pigs. Our results showed that CM supplementation could enhance the growth performance by improving antioxidant capacity and intestinal epithelium functions.


Asunto(s)
Alimentación Animal , Antioxidantes , Cordyceps , Dieta , Mucosa Intestinal , Animales , Cordyceps/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Antioxidantes/metabolismo , Porcinos/crecimiento & desarrollo , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Destete , Fenómenos Fisiológicos Nutricionales de los Animales , Distribución Aleatoria , Masculino
18.
Int J Biol Macromol ; 277(Pt 2): 134281, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084447

RESUMEN

Cordyceps sinensis, a traditionally prized medicinal fungus, contains polysaccharides as one of its main bioactive constituents, known for their significant immunomodulatory properties. In this study, we systematically investigated the composition and structure of Cordyceps sinensis polysaccharide, followed by an evaluation of its therapeutic effect on depression using a chronic restraint stress-induced depression model. The polysaccharide CSWP-2, extracted via hot water, precipitated with ethanol, and purified using DEAE-cellulose column chromatography from Cordyceps sinensis, is primarily composed of glucose, mannose, and galactose, with α-1,4-D-glucan as its major structural component. Behavioral tests, immunological profiling, metabolomics, and gut microbiota analyses indicated a notable ameliorative effect of CSWP-2 on depressive-like symptoms in mice. Furthermore, the action of CSWP-2 may be attributed to the modulation of the gut microbiome's abundance and its metabolic impacts, thereby transmitting signals to the host immune system and exerting immunomodulatory activity, ultimately contributing to its antidepressant effects.


Asunto(s)
Antidepresivos , Cordyceps , Depresión , Microbioma Gastrointestinal , Cordyceps/química , Animales , Antidepresivos/farmacología , Antidepresivos/química , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Depresión/tratamiento farmacológico , Masculino , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos
19.
Int J Biol Macromol ; 276(Pt 2): 134013, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032883

RESUMEN

Lipase with unique regioselectivity is an attractive biocatalyst for elaborate lipid modification. However, the excavation of novel sn-2 regioselective lipases is difficult due to their scarcity in nature, with Candida antarctica lipase A (CALA) being the pronouncedly reported one. Here, we identified a novel CALA-like lipase from Cordyceps militaris (CACML7) via in silico mining. Through chiral-phase high-performance liquid chromatography, we determined that CACML7 displays sn-2 regioselectivity (>68 %) as does CALA, but exhibits distinctive chain length selectivity and bias against unsaturated fats. Notably, the curvature of the acyl-binding tunnel was expected to contribute to the 2.2-fold higher preference for cis-fatty acid (C18:1, cis-Δ9) over trans-fatty acid (C18:1, trans-Δ9) unlike trans-active CALA. Random pose docking of trioleoylglycerol (TOG) into the active site of a lid-truncated mutant of CACML7 revealed that TOG accepts a tuning fork conformation, of which the precise positioning of the reactive ester group towards the catalytic center was only favorable via sn-2 binding mode. The unique active site morphology, which we refer to as an "acyl-binding tunnel with a narrow entrance," may contribute to the sn-2 regioselectivity of CACML7. Our data provide an attractive model to better understand the mechanism underlying sn-2 regioselectivity.


Asunto(s)
Cordyceps , Ácidos Grasos , Lipasa , Lipasa/química , Lipasa/metabolismo , Lipasa/genética , Cordyceps/enzimología , Cordyceps/química , Cordyceps/metabolismo , Especificidad por Sustrato , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Estereoisomerismo , Simulación del Acoplamiento Molecular , Dominio Catalítico , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
20.
Arch Virol ; 169(8): 159, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972922

RESUMEN

In this study, we identified a novel partitivirus, named "Cordyceps militaris partitivirus 1" (CmPV1), in Cordyceps militaris strain RCEF7506. The complete genome of CmPV1 comprises two segments, dsRNA1 and dsRNA2, each encoding a single protein. dsRNA1 (2,206 bp) encodes an RNA-dependent RNA polymerase (RdRp), and dsRNA2 (2,256 bp) encodes a coat protein (CP). Sequence analysis revealed that dsRNA1 has the highest similarity to that of Bipolaris maydis partitivirus 2 (BmPV2), whereas dsRNA2 shows the highest similarity to human blood-associated partitivirus (HuBPV). Phylogenetic analysis based on RdRp sequences suggests that CmPV1 is a new member of the genus Betapartitivirus of the family Partitiviridae. This is the first documentation of a betapartitivirus infecting the entomopathogenic fungus C. militaris.


Asunto(s)
Cordyceps , Virus Fúngicos , Genoma Viral , Filogenia , Virus ARN , Cordyceps/genética , Cordyceps/virología , Cordyceps/aislamiento & purificación , Genoma Viral/genética , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Sistemas de Lectura Abierta , Proteínas Virales/genética , Proteínas de la Cápside/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA