Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomed Res Int ; 2021: 8856018, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239932

RESUMEN

Coronaviruses (CoVs) are enveloped nonsegmented positive-sense RNA viruses belonging to the family Coronaviridae that contain the largest genome among RNA viruses. Their genome encodes 4 major structural proteins, and among them, the Spike (S) protein plays a crucial role in determining the viral tropism. It mediates viral attachment to the host cell, fusion to the membranes, and cell entry using cellular proteases as activators. Several in vitro models have been developed to study the CoVs entry, pathogenesis, and possible therapeutic approaches. This article is aimed at summarizing the current knowledge about the use of relevant methodologies and cell lines permissive for CoV life cycle studies. The synthesis of this information can be useful for setting up specific experimental procedures. We also discuss different strategies for inhibiting the binding of the S protein to the cell receptors and the fusion process which may offer opportunities for therapeutic intervention.


Asunto(s)
Antivirales , Coronaviridae , Modelos Biológicos , Tropismo Viral , Internalización del Virus , Antivirales/química , Antivirales/farmacología , COVID-19 , Células Cultivadas , Coronaviridae/efectos de los fármacos , Coronaviridae/metabolismo , Coronaviridae/patogenicidad , Coronaviridae/fisiología , Infecciones por Coronaviridae , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Nat Rev Immunol ; 20(11): 709-713, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33024281

RESUMEN

Immunity is a multifaceted phenomenon. For T cell-mediated memory responses to SARS-CoV-2, it is relevant to consider their impact both on COVID-19 disease severity and on viral spread in a population. Here, we reflect on the immunological and epidemiological aspects and implications of pre-existing cross-reactive immune memory to SARS-CoV-2, which largely originates from previous exposure to circulating common cold coronaviruses. We propose four immunological scenarios for the impact of cross-reactive CD4+ memory T cells on COVID-19 severity and viral transmission. For each scenario, we discuss its implications for the dynamics of herd immunity and on projections of the global impact of SARS-CoV-2 on the human population, and assess its plausibility. In sum, we argue that key potential impacts of cross-reactive T cell memory are already incorporated into epidemiological models based on data of transmission dynamics, particularly with regard to their implications for herd immunity. The implications of immunological processes on other aspects of SARS-CoV-2 epidemiology are worthy of future study.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Betacoronavirus/inmunología , Infecciones por Coronaviridae/prevención & control , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Betacoronavirus/efectos de los fármacos , Betacoronavirus/patogenicidad , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , COVID-19 , Vacunas contra la COVID-19 , Coronaviridae/efectos de los fármacos , Coronaviridae/inmunología , Infecciones por Coronaviridae/epidemiología , Infecciones por Coronaviridae/inmunología , Infecciones por Coronaviridae/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Reacciones Cruzadas , Humanos , Inmunidad Colectiva/efectos de los fármacos , Memoria Inmunológica , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Neumonía Viral/virología , Rhinovirus/efectos de los fármacos , Rhinovirus/inmunología , SARS-CoV-2 , Vacunas Virales/administración & dosificación , Vacunas Virales/biosíntesis
3.
Clin Immunol ; 220: 108588, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32905851

RESUMEN

Though recent reports link SARS-CoV-2 infections with hyper-inflammatory states in children, most children experience no/mild symptoms, and hospitalization and mortality rates are low in the age group. As symptoms are usually mild and seroconversion occurs at low frequencies, it remains unclear whether children significantly contribute to community transmission. Several hypotheses try to explain age-related differences in disease presentation and severity. Possible reasons for milder presentations in children as compared to adults include frequent contact to seasonal coronaviruses, presence of cross-reactive antibodies, and/or co-clearance with other viruses. Increased expression of ACE2 in young people may facilitate virus infection, while limiting inflammation and reducing the risk of severe disease. Further potential factors include recent vaccinations and a more diverse memory T cell repertoire. This manuscript reviews age-related host factors that may protect children from COVID-19 and complications associated, and addresses the confusion around seropositivity and immunity.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/patogenicidad , Infecciones por Coronaviridae/prevención & control , Coronaviridae/patogenicidad , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Inmunidad Adaptativa/efectos de los fármacos , Adolescente , Enfermedades Asintomáticas , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , COVID-19 , Niño , Coronaviridae/efectos de los fármacos , Coronaviridae/inmunología , Infecciones por Coronaviridae/epidemiología , Infecciones por Coronaviridae/inmunología , Infecciones por Coronaviridae/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Protección Cruzada , Femenino , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inmunidad Innata/efectos de los fármacos , Masculino , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/virología , Reino Unido/epidemiología , Vacunación , Adulto Joven
4.
Chem Biol Interact ; 328: 109211, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735799

RESUMEN

In terms of public health, the 21st century has been characterized by coronavirus pandemics: in 2002-03 the virus SARS-CoV caused SARS; in 2012 MERS-CoV emerged and in 2019 a new human betacoronavirus strain, called SARS-CoV-2, caused the unprecedented COVID-19 outbreak. During the course of the current epidemic, medical challenges to save lives and scientific research aimed to reveal the genetic evolution and the biochemistry of the vital cycle of the new pathogen could lead to new preventive and therapeutic strategies against SARS-CoV-2. Up to now, there is no cure for COVID-19 and waiting for an efficacious vaccine, the development of "savage" protocols, based on "old" anti-inflammatory and anti-viral drugs represents a valid and alternative therapeutic approach. As an alternative or additional therapeutic/preventive option, different in silico and in vitro studies demonstrated that small natural molecules, belonging to polyphenol family, can interfere with various stages of coronavirus entry and replication cycle. Here, we reviewed the capacity of well-known (e.g. quercetin, baicalin, luteolin, hesperetin, gallocatechin gallate, epigallocatechin gallate) and uncommon (e.g. scutellarein, amentoflavone, papyriflavonol A) flavonoids, secondary metabolites widely present in plant tissues with antioxidant and anti-microbial functions, to inhibit key proteins involved in coronavirus infective cycle, such as PLpro, 3CLpro, NTPase/helicase. Due to their pleiotropic activities and lack of systemic toxicity, flavonoids and their derivative may represent target compounds to be tested in future clinical trials to enrich the drug arsenal against coronavirus infections.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Flavonoides/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Animales , Antivirales/química , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Betacoronavirus/genética , Betacoronavirus/fisiología , COVID-19 , Simulación por Computador , Coronaviridae/efectos de los fármacos , Coronaviridae/fisiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos , Flavonoides/química , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , SARS-CoV-2 , Proteínas Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
5.
Biomolecules ; 10(7)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645994

RESUMEN

Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.


Asunto(s)
Antivirales/química , Organismos Acuáticos/química , Productos Biológicos/química , Antivirales/farmacología , Organismos Acuáticos/clasificación , Productos Biológicos/farmacología , Coronaviridae/efectos de los fármacos
6.
Evid. actual. práct. ambul ; 23(2): e002053, 2020.
Artículo en Español | LILACS | ID: biblio-1103669

RESUMEN

En este artículo, el autor reflexiona sobre las expectativas de los profesionales de la salud acerca de la evidencia para recomendar tratamiento farmacológico a los pacientes con COVID-19. (AU)


In this article, the author reflects on the expectations of health professionals regarding the evidence to recommend pharmacological treatment to patients with COVID-19. (AU)


Asunto(s)
Humanos , Neumonía Viral/tratamiento farmacológico , Comunicación en Salud , Inhibidores de Proteasas/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Azitromicina/uso terapéutico , Medición de Riesgo , Ritonavir/uso terapéutico , Medicina Basada en la Evidencia/tendencias , Coronaviridae/efectos de los fármacos , Difusión de la Información , Pandemias , Lopinavir/uso terapéutico , Betacoronavirus/efectos de los fármacos , Hidroxicloroquina/uso terapéutico
7.
Virus Res ; 246: 28-34, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29337162

RESUMEN

Recently, a novel antiviral compound (K22) that inhibits replication of a broad range of animal and human coronaviruses was reported to interfere with viral RNA synthesis by impairing double-membrane vesicle (DMV) formation (Lundin et al., 2014). Here we assessed potential antiviral activities of K22 against a range of viruses representing two (sub)families of the order Nidovirales, the Arteriviridae (porcine reproductive and respiratory syndrome virus [PRRSV], equine arteritis virus [EAV] and simian hemorrhagic fever virus [SHFV]), and the Torovirinae (equine torovirus [EToV] and White Bream virus [WBV]). Possible effects of K22 on nidovirus replication were studied in suitable cell lines. K22 concentrations significantly decreasing infectious titres of the viruses included in this study ranged from 25 to 50 µM. Reduction of double-stranded RNA intermediates of viral replication in nidovirus-infected cells treated with K22 confirmed the anti-viral potential of K22. Collectively, the data show that K22 has antiviral activity against diverse lineages of nidoviruses, suggesting that the inhibitor targets a critical and conserved step during nidovirus replication.


Asunto(s)
Antivirales/farmacología , Arterivirus/efectos de los fármacos , Benzamidas/farmacología , Coronaviridae/efectos de los fármacos , Equartevirus/efectos de los fármacos , Piperidinas/farmacología , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Torovirus/efectos de los fármacos , Animales , Arterivirus/genética , Arterivirus/crecimiento & desarrollo , Arterivirus/metabolismo , Carpas , Línea Celular , Chlorocebus aethiops , Coronaviridae/genética , Coronaviridae/crecimiento & desarrollo , Coronaviridae/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Equartevirus/genética , Equartevirus/crecimiento & desarrollo , Equartevirus/metabolismo , Mesocricetus , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/crecimiento & desarrollo , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , ARN Bicatenario/antagonistas & inhibidores , ARN Bicatenario/biosíntesis , ARN Bicatenario/genética , ARN Viral/antagonistas & inhibidores , ARN Viral/biosíntesis , ARN Viral/genética , Torovirus/genética , Torovirus/crecimiento & desarrollo , Torovirus/metabolismo , Replicación Viral/efectos de los fármacos
8.
Virology ; 497: 185-197, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27479465

RESUMEN

Coronavirus spike proteins mediate host-cell-attachment and virus entry. Virus replication takes place within the host cell cytosol, whereas assembly and budding occur at the endoplasmic reticulum-Golgi intermediate compartment. In this study we demonstrated that the last 39 amino acid stretches of Alphacoronavirus spike cytoplasmic domains of the human coronavirus 229E, NL63, and the porcine transmissible gastroenteritis virus TGEV interact with tubulin alpha and beta chains. In addition, a partial co-localization of TGEV spike proteins with authentic host cell ß-tubulin was observed. Furthermore, drug-induced microtubule depolymerization led to changes in spike protein distribution, a reduction in the release of infectious virus particles and less amount of spike protein incorporated into virions. These data demonstrate that interaction of Alphacoronavirus spike proteins with tubulin supports S protein transport and incorporation into virus particles.


Asunto(s)
Infecciones por Coronaviridae/metabolismo , Infecciones por Coronaviridae/virología , Coronaviridae/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tubulina (Proteína)/metabolismo , Ensamble de Virus , Replicación Viral , Animales , Línea Celular , Coronaviridae/efectos de los fármacos , Gastroenteritis Porcina Transmisible/metabolismo , Gastroenteritis Porcina Transmisible/virología , Humanos , Espacio Intracelular/metabolismo , Espacio Intracelular/virología , Nocodazol/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Glicoproteína de la Espiga del Coronavirus/química , Porcinos , Ensamble de Virus/efectos de los fármacos , Liberación del Virus , Replicación Viral/efectos de los fármacos
9.
Viruses ; 6(7): 2531-50, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24967693

RESUMEN

RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines.


Asunto(s)
Genoma Viral , Infecciones por Virus ARN/prevención & control , Genética Inversa/métodos , Vacunas Virales/genética , Animales , Coronaviridae/efectos de los fármacos , Coronaviridae/genética , Coronaviridae/inmunología , Flaviviridae/efectos de los fármacos , Flaviviridae/genética , Flaviviridae/inmunología , Ingeniería Genética , Humanos , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/genética , Orthomyxoviridae/inmunología , Paramyxoviridae/efectos de los fármacos , Paramyxoviridae/genética , Paramyxoviridae/inmunología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Vacunas Virales/administración & dosificación , Vacunas Virales/biosíntesis
10.
J Virol ; 88(12): 7045-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24719424

RESUMEN

UNLABELLED: Prophylactic and therapeutic strategies are urgently needed to combat infections caused by the newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have developed a neutralizing monoclonal antibody (MAb), designated Mersmab1, which potently blocks MERS-CoV entry into human cells. Biochemical assays reveal that Mersmab1 specifically binds to the receptor-binding domain (RBD) of the MERS-CoV spike protein and thereby competitively blocks the binding of the RBD to its cellular receptor, dipeptidyl peptidase 4 (DPP4). Furthermore, alanine scanning of the RBD has identified several residues at the DPP4-binding surface that serve as neutralizing epitopes for Mersmab1. These results suggest that if humanized, Mersmab1 could potentially function as a therapeutic antibody for treating and preventing MERS-CoV infections. Additionally, Mersmab1 may facilitate studies of the conformation and antigenicity of MERS-CoV RBD and thus will guide rational design of MERS-CoV subunit vaccines. IMPORTANCE: MERS-CoV is spreading in the human population and causing severe respiratory diseases with over 40% fatality. No vaccine is currently available to prevent MERS-CoV infections. Here, we have produced a neutralizing monoclonal antibody with the capacity to effectively block MERS-CoV entry into permissive human cells. If humanized, this antibody may be used as a prophylactic and therapeutic agent against MERS-CoV infections. Specifically, when given to a person (e.g., a patient's family member or a health care worker) either before or after exposure to MERS-CoV, the humanized antibody may prevent or inhibit MERS-CoV infection, thereby stopping the spread of MERS-CoV in humans. This antibody can also serve as a useful tool to guide the design of effective MERS-CoV vaccines.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Infecciones por Coronaviridae/virología , Coronaviridae/fisiología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Coronaviridae/química , Coronaviridae/efectos de los fármacos , Coronaviridae/genética , Infecciones por Coronaviridae/enzimología , Infecciones por Coronaviridae/genética , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Mapeo Epitopo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Estructura Terciaria de Proteína , Receptores Virales/genética , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
11.
J Gen Virol ; 95(Pt 3): 571-577, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24323636

RESUMEN

The Middle East respiratory syndrome coronavirus (MERS-CoV) presents a novel emerging threat to public health worldwide. Several treatments for infected individuals have been suggested including IFN, ribavirin and passive immunotherapy with convalescent plasma. Administration of IFN-α2b and ribavirin has improved outcomes of MERS-CoV infection in rhesus macaques when administered within 8 h post-challenge. However, detailed and systematic evidence on the activity of other clinically available drugs is limited. Here we compared the susceptibility of MERS-CoV with different IFN products (IFN-α2b, IFN-γ, IFN-universal, IFN-α2a and IFN-ß), as well as with two antivirals, ribavirin and mycophenolic acid (MPA), against MERS-CoV (Hu/Jordan-N3/2012) in vitro. Of all the IFNs tested, IFN-ß showed the strongst inhibition of MERS-CoV in vitro, with an IC50 of 1.37 U ml(-1), 41 times lower than the previously reported IC50 (56.08 U ml(-1)) of IFN-α2b. IFN-ß inhibition was confirmed in the virus yield reduction assay, with an IC90 of 38.8 U ml(-1). Ribavirin did not inhibit viral replication in vitro at a dose that would be applicable to current treatment protocols in humans. In contrast, MPA showed strong inhibition, with an IC50 of 2.87 µM. This drug has not been previously tested against MERS-CoV and may provide an alternative to ribavirin for treatment of MERS-CoV. In conclusion, IFN-ß, MPA or a combination of the two may be beneficial in the treatment of MERS-CoV or as a post-exposure intervention in high-risk patients with known exposures to MERS-CoV.


Asunto(s)
Infecciones por Coronaviridae/virología , Coronaviridae/efectos de los fármacos , Interferones/farmacología , Ácido Micofenólico/farmacología , Animales , Línea Celular , Chlorocebus aethiops , Coronaviridae/fisiología , Infecciones por Coronaviridae/tratamiento farmacológico , Humanos , Células Vero , Replicación Viral/efectos de los fármacos
12.
J Virol ; 87(24): 13892-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24067970

RESUMEN

We identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also significantly inhibited infection. These findings indicate that both 2F9 and YS110 are potential therapeutic agents for MERS-CoV infection. YS110, in particular, is a good candidate for immediate testing as a therapeutic modality for MERS.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Coronaviridae/enzimología , Infecciones por Coronaviridae/virología , Coronaviridae/fisiología , Dipeptidil Peptidasa 4/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/farmacología , Coronaviridae/efectos de los fármacos , Coronaviridae/genética , Infecciones por Coronaviridae/tratamiento farmacológico , Infecciones por Coronaviridae/inmunología , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/genética , Mapeo Epitopo , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
13.
J Virol ; 84(5): 2511-21, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20032190

RESUMEN

Viruses of the family Coronaviridae have recently emerged through zoonotic transmission to become serious human pathogens. The pathogenic agent responsible for severe acute respiratory syndrome (SARS), the SARS coronavirus (SARS-CoV), is a member of this large family of positive-strand RNA viruses that cause a spectrum of disease in humans, other mammals, and birds. Since the publicized outbreaks of SARS in China and Canada in 2002-2003, significant efforts successfully identified the causative agent, host cell receptor(s), and many of the pathogenic mechanisms underlying SARS. With this greater understanding of SARS-CoV biology, many researchers have sought to identify agents for the treatment of SARS. Here we report the utility of the potent antiviral protein griffithsin (GRFT) in the prevention of SARS-CoV infection both in vitro and in vivo. We also show that GRFT specifically binds to the SARS-CoV spike glycoprotein and inhibits viral entry. In addition, we report the activity of GRFT against a variety of additional coronaviruses that infect humans, other mammals, and birds. Finally, we show that GRFT treatment has a positive effect on morbidity and mortality in a lethal infection model using a mouse-adapted SARS-CoV and also specifically inhibits deleterious aspects of the host immunological response to SARS infection in mammals.


Asunto(s)
Proteínas Algáceas , Antivirales , Infecciones por Coronaviridae/tratamiento farmacológico , Coronaviridae/efectos de los fármacos , Lectinas , Proteínas Algáceas/farmacología , Proteínas Algáceas/uso terapéutico , Secuencia de Aminoácidos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Calorimetría , Línea Celular , Coronaviridae/genética , Coronaviridae/inmunología , Coronaviridae/patogenicidad , Infecciones por Coronaviridae/inmunología , Infecciones por Coronaviridae/mortalidad , Infecciones por Coronaviridae/prevención & control , Citocinas/inmunología , Femenino , Humanos , Lectinas/farmacología , Lectinas/uso terapéutico , Pulmón/patología , Pulmón/virología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , Lectinas de Plantas , Unión Proteica , Conformación Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/metabolismo , Zoonosis
14.
Avian Dis ; 44(2): 426-33, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10879923

RESUMEN

Stunting syndrome is an enteric disease of turkeys causing diarrhea, reduced weight gain, poor feed efficiency, and maldigestion. The etiologic agent is a newly identified, but unclassified, virus termed the stunting syndrome agent (SSA). The SSA is a pleomorphic, enveloped virus ranging from 60 to 95 nm in diameter. The objectives of this study were to characterize the physicochemical properties of SSA. SSA hemagglutinated rat erythrocytes at 4 C and room temperature. Treatment of SSA with ether resulted in loss of infectivity. SSA was resistant to pH changes between pH 3.0 and pH 9.0 at 37 C for 1 hr. The virus was inactivated at pH > or = 10. SSA was resistant to treatment with trypsin, chymotrypsin, pancreatin, phospholipase C, and sodium deoxycholate. Treatment of SSA with trypsin, chymotrypsin, and pancreatin resulted in enhanced viral infectivity. The viral genome extracted from purified SSA was sensitive to RNAse treatment. Using oligo d(T)16-18 and random hexamers as primers, the SSA genome was amplified using the reverse transcription-polymerase chain reaction conditions but was not amplified using polymerase chain reaction conditions. The enrichment of viral genome was achieved following poly-A+ selection. These studies provide evidence that the SSA is a positive-sense, single-stranded RNA virus having many characteristics (stability at acidic pH, resistant to proteolytic enzymes and bile salt) consistent with other enveloped enteric viruses.


Asunto(s)
Coronaviridae/química , Trastornos del Crecimiento/veterinaria , Enfermedades de las Aves de Corral/virología , Animales , Coronaviridae/efectos de los fármacos , Coronaviridae/genética , Detergentes/farmacología , Diarrea/veterinaria , Diarrea/virología , Huevos , Éter/farmacología , Genoma Viral , Trastornos del Crecimiento/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/análisis , Concentración de Iones de Hidrógeno , Temperatura , Pavos
15.
J Biol Chem ; 267(20): 14094-101, 1992 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-1629209

RESUMEN

It has previously been shown that the M (E1) glycoprotein of mouse hepatitis virus strain A59 (MHV-A59) contains only O-linked oligosaccharides and localizes to the Golgi region when expressed independently. A detailed pulse-chase analysis was made of the addition of O-linked sugars to the M protein; upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, three different electrophoretic forms could be distinguished that corresponded to the sequential acquisition of N-acetylgalactosamine (GalNAc), galactose (Gal), and sialic acid (SA). A fourth and fifth form could also be detected which we were unable to identify. Following Brefeldin A treatment, the M protein still acquired GalNAc, Gal, and SA, but the fourth and fifth forms were absent, suggesting that these modifications occur in the trans-Golgi network (TGN). In contrast, in the presence of BFA, the G protein of vesicular stomatitis virus (VSV), which contains N-linked oligosaccharides, acquired Gal and fucose but not SA. These results are consistent with earlier published data showing that Golgi compartments proximal to the TGN, but not the TGN itself, relocate to the endoplasmatic reticulum/intermediate compartment. More importantly, our data argue that, whereas addition of SA to N-linked sugars occurs in the TGN the acquisition of both SA on O-linked sugars and the addition of fucose to N-linked oligosaccharides must occur in Golgi compartments proximal to the TGN. The glycosylation of the M protein moreover indicates that it is transported to trans-Golgi and TGN. This was confirmed by electron microscopy immunocytochemistry, showing that the protein is targeted to cisternae on the trans side of the Golgi and co-localizes, at least in part, with TGN 38, a marker of the TGN, as well as with a lectin specific for sialic acid.


Asunto(s)
Coronaviridae/metabolismo , Oligosacáridos/biosíntesis , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Animales , Antivirales/farmacología , Brefeldino A , Línea Celular , Coronaviridae/efectos de los fármacos , Coronaviridae/ultraestructura , Ciclopentanos/farmacología , Fucosa/metabolismo , Galactosa/metabolismo , Glucosamina/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Cinética , Metionina/metabolismo , Ácido N-Acetilneuramínico , Neuraminidasa , Oligosacáridos/aislamiento & purificación , Radioisótopos de Azufre , Tritio , Proteínas de la Matriz Viral/biosíntesis , Proteínas de la Matriz Viral/aislamiento & purificación
16.
Arch Virol ; 125(1-4): 193-204, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-1642550

RESUMEN

Hemagglutinating and acetylesterase functions as well as the 124 kDa glycoprotein were present in the highly cell-culture adapted, avirulent bovine coronavirus strain BCV-L9, in the Norden vaccine strain derived from it, and in 5 wild-type, virulent strains that multiplied in HRT-18 cells but were restricted in several types of cultured bovine cells. The BCV-L9 and the wild-type strain BCV-LY-138 agglutinated chicken and mouse erythrocytes. The acetylesterase facilitated break-down of the BCV-erythrocyte complex with chicken but only to a minimal extent with mouse erythrocytes in the receptor-destroying enzyme test. Purified preparations of the vaccine and the wild-type strains agglutinated chicken erythrocytes at low titers and mouse erythrocytes at 128 to 256 times higher titers whereas receptor destroying enzyme activity was detectable only with chicken erythrocytes. When wild-type strains were propagated in HRT cells at low passage levels, they produced 5 x 10(5) to 4.5 x 10(6) plaque forming units per 50 microliters which agglutinated erythrocytes from mice but not from chickens. Diisopropylfluoro-phosphate moderately increased the hemagglutination titers, but completely inhibited the receptor destroying enzyme of purified virus of all strains. It had virtually no influence on the plaque-forming infectivity of the different BCV strains. The acetylesterase of strain BCV-L9 reacting in the receptor-destroying enzyme test was stable for 3 h at 37 and 42 degrees C. It was inactivated within 30 min at 56 degrees C while the hemagglutinin function of this strain was stable for 3 h at 37, 42, and 56 degrees C, but it was inactivated at 65 degrees C within 1 h.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Coronaviridae/patogenicidad , Hemaglutinación , Hemaglutininas Virales/metabolismo , Proteínas Virales de Fusión , Proteínas Virales/metabolismo , Acetilesterasa , Animales , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Bovinos , Pollos , Coronaviridae/efectos de los fármacos , Coronaviridae/enzimología , Hemaglutininas Virales/efectos de los fármacos , Calor , Humanos , Isoflurofato/farmacología , Ratones , Receptores Virales/metabolismo , Pase Seriado , Células Tumorales Cultivadas , Ensayo de Placa Viral , Proteínas Virales/efectos de los fármacos
17.
Antimicrob Agents Chemother ; 35(11): 2444-6, 1991 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-1804023

RESUMEN

Cystatin C, a potent inhibitor of cysteine proteases such as papain and cathepsin B, was examined for its effect on human coronaviruses OC43 and 229e. Both viruses were greater than 99% inhibited by 0.1 mM inhibitor. Endpoint titrations showed that inhibiting activity paralleled that of leupeptin, a serine and cysteine protease inhibitor, and indicated that 1 to 2 microM inhibitor, slightly above physiologic levels, was effective.


Asunto(s)
Antivirales/farmacología , Coronaviridae/efectos de los fármacos , Cistatinas/farmacología , Catepsina B/farmacología , Células Cultivadas , Cicloheximida/farmacología , Cistatina C , Escherichia coli/metabolismo , Humanos , Leupeptinas/farmacología , Papaína/farmacología , Proteínas Recombinantes/farmacología , Replicación Viral/efectos de los fármacos
18.
Arch Virol ; 118(1-2): 57-66, 1991.
Artículo en Inglés | MEDLINE | ID: mdl-2048975

RESUMEN

Cell lines of rodent origin were tested for susceptibility to infection with rat coronavirus (RCV), including sialodacryoadenitis virus (SDAV) and Parker's rat coronavirus (PRCV). LBC rat mammary adenocarcinoma cells were susceptible only if the cells were treated with diethylaminoethyl-dextran (DEAE-D). A recent report that RCVs grow well in L2 mouse fibroblast cells was confirmed and expanded. RCV infection of L2 cells was substantially enhanced by treatment of cells with trypsin but not by treatment with DEAE-D. Primary isolation of SDAV from experimentally infected rats was accomplished using trypsin-treated L2 cells. One of 13 additional cell lines tested (rat urinary bladder epithelium, RBL-02) supported growth of RCVs, and growth was slightly enhanced by DEAE-D, but not by trypsin. These refinements of in vitro growth conditions for RCVs should facilitate further studies of their basic biology and improve options for primary isolation.


Asunto(s)
Línea Celular/microbiología , Coronaviridae/crecimiento & desarrollo , Animales , Coronaviridae/efectos de los fármacos , Coronaviridae/aislamiento & purificación , DEAE Dextrano/farmacología , Ratones , Microscopía Fluorescente , Ratas , Tripsina/farmacología
20.
Virus Res ; 16(2): 185-94, 1990 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2385959

RESUMEN

The receptors for the hemagglutinating encephalomyelitis virus (HEV, a porcine coronavirus) on chicken erythrocytes were analyzed and compared to the receptors for bovine coronavirus (BCV) and influenza C virus. Evidence was obtained that HEV requires the presence of N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) on the cell surface for agglutination of erythrocytes as has been previously shown for BCV and influenza C virus: (i) Incubation of red blood cells with sialate 9-O-acetylesterase, the receptor-destroying enzyme of influenza C virus, rendered the erythrocytes resistant against agglutination by each of the three viruses; (ii) Human erythrocytes which are resistant to agglutination by HEV acquire receptors for HEV after resialylation with Neu5,9Ac2. Sialylation of red blood cells with limiting amounts of sialic acid indicated that strain JHB/1/66 of influenza C virus requires less Neu5,9Ac2 for agglutination of erythrocytes than the two coronaviruses, both of which were found to be similar in their reactivity with Neu5,9Ac2-containing receptors.


Asunto(s)
Coronaviridae/metabolismo , Eritrocitos/metabolismo , Gammainfluenzavirus/metabolismo , Hemaglutinación por Virus , Orthomyxoviridae/metabolismo , Ácidos Siálicos/metabolismo , Acetilesterasa , Animales , Hidrolasas de Éster Carboxílico/farmacología , Células Cultivadas , Coronaviridae/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Humanos , Receptores Virales/efectos de los fármacos , Receptores Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA