Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(3): e1012100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527094

RESUMEN

The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15. We identified several mutations that strongly reduced DUB activity of PLpro, without affecting viral polyprotein processing. In contrast, mutations that abrogated deISGylating activity also hampered viral polyprotein processing and when introduced into the virus these mutants were not viable. SARS-CoV-2 mutants exhibiting reduced DUB activity elicited a stronger interferon response in human lung cells. In a mouse model of severe disease, disruption of PLpro DUB activity did not affect lethality, virus replication, or innate immune responses in the lungs. This suggests that the DUB activity of SARS-CoV-2 PLpro is dispensable for virus replication and does not affect innate immune responses in vivo. Interestingly, the DUB mutant of SARS-CoV replicated to slightly lower titers in mice and elicited a diminished immune response early in infection, although lethality was unaffected. We previously showed that a MERS-CoV mutant deficient in DUB and deISGylating activity was strongly attenuated in mice. Here, we demonstrate that the role of PLpro DUB activity during infection can vary considerably between highly pathogenic coronaviruses. Therefore, careful considerations should be taken when developing pan-coronavirus antiviral strategies targeting PLpro.


Asunto(s)
COVID-19 , Proteasas Similares a la Papaína de Coronavirus , Humanos , Animales , Ratones , Proteasas Similares a la Papaína de Coronavirus/genética , SARS-CoV-2/metabolismo , Inmunidad Innata , Papaína/genética , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Replicación Viral , Poliproteínas
2.
PLoS Pathog ; 19(8): e1011614, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37651466

RESUMEN

Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , SARS-CoV-2 , Replicación Viral , Animales , Humanos , Ratones , Alanina , Antivirales , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo
3.
PLoS Comput Biol ; 18(11): e1010667, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36409737

RESUMEN

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused both a health and economic crisis around the world. Its papain-like protease (PLpro) is one of the protein targets utilized in designing new drugs that would aid vaccines in the fight against the virus. Although there are already several potential candidates for a good inhibitor of this protein, the degree of variability of the protein itself is not taken into account. As an RNA virus, SARS-CoV-2 can mutate to a high degree, but PLpro variability has not been studied to date. Based on sequence data available in databases, we analyzed the mutational potential of this protein. We focused on the effect of observed mutations on inhibitors' binding mode and their efficacy as well as protein's activity. Our analysis identifies five mutations that should be monitored and included in the drug design process: P247S, E263D-Y264H and T265A-Y268C.


Asunto(s)
Aminoácidos , COVID-19 , Humanos , SARS-CoV-2/genética , Proteasas Similares a la Papaína de Coronavirus/genética , Papaína/química , Papaína/metabolismo , Péptido Hidrolasas/metabolismo
4.
Front Immunol ; 13: 816159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273599

RESUMEN

During the ongoing COVID-19 epidemic many efforts have gone into the investigation of the SARS-CoV-2-specific antibodies as possible therapeutics. Currently, conclusions cannot be drawn due to the lack of standardization in antibody assessments. Here we describe an approach of establishing antibody characterisation in emergent times which would, if followed, enable comparison of results from different studies. The key component is a reliable and reproducible assay of wild-type SARS-CoV-2 neutralisation based on a banking system of its biological components - a challenge virus, cells and an anti-SARS-CoV-2 antibody in-house standard, calibrated to the First WHO International Standard immediately upon its availability. Consequently, all collected serological data were retrospectively expressed in an internationally comparable way. The neutralising antibodies (NAbs) among convalescents ranged from 4 to 2869 IU mL-1 in a significant positive correlation to the disease severity. Their decline in convalescents was on average 1.4-fold in a one-month period. Heat-inactivation resulted in 2.3-fold decrease of NAb titres in comparison to the native sera, implying significant complement activating properties of SARS-CoV-2 specific antibodies. The monitoring of NAb titres in the sera of immunocompromised COVID-19 patients that lacked their own antibodies evidenced the successful transfusion of antibodies by the COVID-19 convalescent plasma units with NAb titres of 35 IU mL-1 or higher.


Asunto(s)
COVID-19/terapia , Inmunización Pasiva/métodos , Pruebas de Neutralización/métodos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/epidemiología , Calibración , Células Cultivadas , Enfermedades Transmisibles Emergentes , Convalecencia , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/inmunología , Croacia , Epidemias , Humanos , Cooperación Internacional , Estándares de Referencia , Glicoproteína de la Espiga del Coronavirus/inmunología , Resultado del Tratamiento
5.
J Virol ; 96(1): e0137221, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643430

RESUMEN

Coronaviral papain-like proteases (PLpros) are essential enzymes that mediate not only the proteolytic processes of viral polyproteins during virus replication but also the deubiquitination and deISGylation of cellular proteins that attenuate host innate immune responses. Therefore, PLpros are attractive targets for antiviral drug development. Here, we report the crystal structure of papain-like protease 2 (PLP2) of porcine epidemic diarrhea virus (PEDV) in complex with ubiquitin (Ub). The X-ray structural analyses reveal that PEDV PLP2 interacts with the Ub substrate mainly through the Ub core region and C-terminal tail. Mutations of Ub-interacting residues resulted in a moderately or completely abolished deubiquitinylating function of PEDV PLP2. In addition, our analyses also indicate that 2-residue-extended blocking loop 2 at the S4 subsite contributes to the substrate selectivity and binding affinity of PEDV PLP2. Furthermore, the PEDV PLP2 Glu99 residue, conserved in alphacoronavirus PLpros, was found to govern the preference of a positively charged P4 residue of peptidyl substrates. Collectively, our data provided structure-based information for the substrate binding and selectivity of PEDV PLP2. These findings may help us gain insights into the deubiquitinating (DUB) and proteolytic functions of PEDV PLP2 from a structural perspective. IMPORTANCE Current challenges in coronaviruses (CoVs) include a comprehensive understanding of the mechanistic effects of associated enzymes, including the 3C-like and papain-like proteases. We have previously reported that the PEDV PLP2 exhibits a broader substrate preference, superior DUB function, and inferior peptidase activity. However, the structural basis for these functions remains largely unclear. Here, we show the high-resolution X-ray crystal structure of PEDV PLP2 in complex with Ub. Integrated structural and biochemical analyses revealed that (i) three Ub core-interacting residues are essential for DUB function, (ii) 2-residue-elongated blocking loop 2 regulates substrate selectivity, and (iii) a conserved glutamate residue governs the substrate specificity of PEDV PLP2. Collectively, our findings provide not only structural insights into the catalytic mechanism of PEDV PLP2 but also a model for developing antiviral strategies.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/química , Virus de la Diarrea Epidémica Porcina/química , Coronavirus/química , Coronavirus/clasificación , Coronavirus/enzimología , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Cristalografía por Rayos X , Mutación , Virus de la Diarrea Epidémica Porcina/enzimología , Virus de la Diarrea Epidémica Porcina/genética , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo
6.
Viruses ; 13(10)2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34696527

RESUMEN

West Java Health Laboratory (WJHL) is one of the many institutions in Indonesia that have sequenced SARS-CoV-2 genome. Although having submitted a large number of sequences since September 2020, however, these submitted data lack advanced analyses. Therefore, in this study, we analyze the variant distribution, hotspot mutation, and its impact on protein structure and function of SARS-CoV-2 from the collected samples from WJHL. As many as one hundred sixty-three SARS-CoV-2 genome sequences submitted by West Java Health Laboratory (WJHL), with collection dates between September 2020 and June 2021, were retrieved from GISAID. Subsequently, the frequency and distribution of non-synonymous mutations across different cities and regencies from these samples were analyzed. The effect of the most prevalent mutations from dominant variants on the stability of their corresponding proteins was examined. The samples mostly consisted of people of working-age, and were distributed between female and male equally. All of the sample sequences showed varying levels of diversity, especially samples from West Bandung which carried the highest diversity. Dominant variants are the VOC B.1.617.2 (Delta) variant, B.1.466.2 variant, and B.1.470 variant. The genomic regions with the highest number of mutations are the spike, NSP3, nucleocapsid, NSP12, and ORF3a protein. Mutation analysis showed that mutations in structural protein might increase the stability of the protein. Oppositely, mutations in non-structural protein might lead to a decrease in protein stability. However, further research to study the impact of mutations on the function of SARS-CoV-2 proteins are required.


Asunto(s)
Genoma Viral/genética , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , COVID-19/patología , Proteínas de la Nucleocápside de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Punto Alto de Contagio de Enfermedades , Femenino , Humanos , Indonesia , Masculino , Simulación del Acoplamiento Molecular , Mutación/genética , Fosfoproteínas/genética , Estabilidad Proteica , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas Viroporinas/genética , Secuenciación Completa del Genoma
7.
Cell Rep ; 36(13): 109754, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34547223

RESUMEN

The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/ultraestructura , SARS-CoV-2/genética , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , COVID-19/genética , COVID-19/metabolismo , Proteasas Similares a la Papaína de Coronavirus/genética , Células HEK293 , Humanos , Papaína/química , Papaína/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Unión Proteica/genética , SARS-CoV-2/metabolismo , Especificidad por Sustrato/genética , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteínas Virales/metabolismo
8.
Int J Biol Macromol ; 188: 137-146, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364941

RESUMEN

COVID-19 is a disease caused by SARS-CoV-2, which has led to more than 4 million deaths worldwide. As a result, there is a worldwide effort to develop specific drugs for targeting COVID-19. Papain-like protease (PLpro) is an attractive drug target because it has multiple essential functions involved in processing viral proteins, including viral genome replication and removal of post-translational ubiquitination modifications. Here, we established two assays for screening PLpro inhibitors according to protease and anti-ISGylation activities, respectively. Application of the two screening techniques to the library of clinically approved drugs led to the discovery of tanshinone IIA sulfonate sodium and chloroxine with their IC50 values of lower than 10 µM. These two compounds were found to directly interact with PLpro and their molecular mechanisms of binding were illustrated by docking and molecular dynamics simulations. The results highlight the usefulness of the two developed screening techniques for locating PLpro inhibitors.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasa de Coronavirus/farmacología , Reposicionamiento de Medicamentos , SARS-CoV-2/enzimología , Antivirales/química , Sitios de Unión , Cloroquinolinoles/química , Cloroquinolinoles/farmacología , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/aislamiento & purificación , Inhibidores de Proteasa de Coronavirus/química , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fenantrenos/química , Fenantrenos/farmacología , SARS-CoV-2/efectos de los fármacos
9.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206406

RESUMEN

Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.


Asunto(s)
Antivirales/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteasas/farmacología , Virus ARN/enzimología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos , Virus de la Encefalitis Transmitidos por Garrapatas/enzimología , Colorantes Fluorescentes/química , Humanos , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , SARS-CoV-2/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Tratamiento Farmacológico de COVID-19
10.
Biochem J ; 478(13): 2517-2531, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198325

RESUMEN

The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Compuestos de Anilina/farmacología , Animales , Benzamidas/farmacología , Chlorocebus aethiops , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/aislamiento & purificación , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Sinergismo Farmacológico , Pruebas de Enzimas , Flavinas/farmacología , Transferencia Resonante de Energía de Fluorescencia , Furanos/farmacología , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Naftalenos/farmacología , Fenantrenos/farmacología , Quinonas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Células Vero , Replicación Viral/efectos de los fármacos
11.
J Phys Chem Lett ; 12(23): 5608-5615, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34110168

RESUMEN

Papain-like protease (PLpro) from SARS-CoV-2 plays essential roles in the replication cycle of the virus. In particular, it preferentially interacts with and cleaves human interferon-stimulated gene 15 (hISG15) to suppress the innate immune response of the host. We used small-angle X-ray and neutron scattering combined with computational techniques to study the mechanism of interaction of SARS-CoV-2 PLpro with hISG15. We showed that hISG15 undergoes a transition from an extended to a compact state after binding to PLpro, a conformation that has not been previously observed in complexes of SARS-CoV-2 PLpro with ISG15 from other species. Furthermore, computational analysis showed significant conformational flexibility in the ISG15 N-terminal domain, suggesting that it is weakly bound to PLpro and supports a binding mechanism that is dominated by the C-terminal ISG15 domain. This study fundamentally improves our understanding of the SARS-CoV-2 deISGylation complex that will help guide development of COVID-19 therapeutics targeting this complex.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Citocinas/química , Citocinas/metabolismo , Interferones/metabolismo , SARS-CoV-2/metabolismo , Ubiquitinas/química , Ubiquitinas/metabolismo , Proteasas Similares a la Papaína de Coronavirus/genética , Citocinas/genética , Humanos , Difracción de Neutrones , Conformación Proteica , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Dispersión del Ángulo Pequeño , Ubiquitinas/genética , Difracción de Rayos X
12.
Biophys Chem ; 276: 106610, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089978

RESUMEN

In the new millennium, the outbreak of new coronavirus has happened three times: SARS-CoV, MERS-CoV, and SARS-CoV-2. Unfortunately, we still have no pharmaceutical weapons against the diseases caused by these viruses. The pandemic of SARS-CoV-2 reminds us the urgency to search new drugs with totally different mechanism that may target the weaknesses specific to coronaviruses. Herein, we disclose a computational evaluation of targeted oxidation strategy (TOS) for potential inhibition of SARS-CoV-2 by disulfiram, a 70-year-old anti-alcoholism drug, and predict a multiple-target mechanism. A preliminary list of promising TOS drug candidates targeting the two thiol proteases of SARS-CoV-2 are proposed upon virtual screening of 32,143 disulfides.


Asunto(s)
Disuasivos de Alcohol/química , Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Disulfiram/química , Inhibidores de Proteasas/química , SARS-CoV-2/química , Disuasivos de Alcohol/farmacología , Antivirales/farmacología , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Disulfiram/farmacología , Reposicionamiento de Medicamentos , Expresión Génica , Humanos , Cinética , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Inhibidores de Proteasas/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Teoría Cuántica , SARS-CoV-2/enzimología , Especificidad por Sustrato , Termodinámica , Tratamiento Farmacológico de COVID-19
13.
Mol Cell Proteomics ; 20: 100120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34186245

RESUMEN

Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold-like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, nonstructural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) data set for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance, nuclear protein import for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Interacciones Huésped-Patógeno/fisiología , SARS-CoV-2/patogenicidad , Coronavirus Humano 229E/metabolismo , Coronavirus Humano 229E/patogenicidad , Coronavirus Humano OC43/metabolismo , Coronavirus Humano OC43/patogenicidad , Proteasas Similares a la Papaína de Coronavirus/genética , Degradación Asociada con el Retículo Endoplásmico , Células HEK293 , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mapas de Interacción de Proteínas , SARS-CoV-2/metabolismo , Respuesta de Proteína Desplegada , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
14.
Protein Cell ; 12(11): 877-888, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33864621

RESUMEN

A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (Mpro), PLpro is responsible for processing the viral replicase polyprotein into functional units. Therefore, it is an attractive target for antiviral drug development. Here we discovered four compounds, YM155, cryptotanshinone, tanshinone I and GRL0617 that inhibit SARS-CoV-2 PLpro with IC50 values ranging from 1.39 to 5.63 µmol/L. These compounds also exhibit strong antiviral activities in cell-based assays. YM155, an anticancer drug candidate in clinical trials, has the most potent antiviral activity with an EC50 value of 170 nmol/L. In addition, we have determined the crystal structures of this enzyme and its complex with YM155, revealing a unique binding mode. YM155 simultaneously targets three "hot" spots on PLpro, including the substrate-binding pocket, the interferon stimulating gene product 15 (ISG15) binding site and zinc finger motif. Our results demonstrate the efficacy of this screening and repurposing strategy, which has led to the discovery of new drug leads with clinical potential for COVID-19 treatments.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/química , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteasas/química , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/virología , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Imidazoles/química , Imidazoles/metabolismo , Imidazoles/uso terapéutico , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Naftoquinonas/química , Naftoquinonas/metabolismo , Naftoquinonas/uso terapéutico , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/uso terapéutico , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Tratamiento Farmacológico de COVID-19
15.
J Med Virol ; 93(9): 5350-5357, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33913542

RESUMEN

PARP14 and PARP9 play a key role in macrophage immune regulation. SARS-CoV-2 is an emerging viral disease that triggers hyper-inflammation known as a cytokine storm. In this study, using in silico tools, we hypothesize about the immunological phenomena of molecular mimicry between SARS-CoV-2 Nsp3 and the human PARP14 and PARP9. The results showed an epitope of SARS-CoV-2 Nsp3 protein that contains consensus sequences for both human PARP14 and PARP9 that are antigens for MHC Classes 1 and 2, which can potentially induce an immune response against human PARP14 and PARP9; while its depletion causes a hyper-inflammatory state in SARS-CoV-2 patients.


Asunto(s)
COVID-19/inmunología , Proteasas Similares a la Papaína de Coronavirus/química , Síndrome de Liberación de Citoquinas/inmunología , Proteínas de Neoplasias/química , Poli(ADP-Ribosa) Polimerasas/química , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Sitios de Unión , COVID-19/genética , COVID-19/patología , COVID-19/virología , Simulación por Computador , Secuencia de Consenso , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/inmunología , Síndrome de Liberación de Citoquinas/genética , Síndrome de Liberación de Citoquinas/patología , Síndrome de Liberación de Citoquinas/virología , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Expresión Génica , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/virología , Simulación del Acoplamiento Molecular , Imitación Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/inmunología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica
16.
Virus Genes ; 57(3): 245-249, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33683658

RESUMEN

In view of the rapidly progressing COVID-19 pandemic, our aim was to isolate and characterize SARS-CoV-2 from Indian patients. SARS-CoV-2 was isolated from nasopharyngeal swabs collected from the two members of a family without any history of (H/O) travel abroad. Both the virus isolates (8003 and 8004) showed CPE on day 3 post-inoculation, viral antigens by immunofluorescence assay and produced distinct, clear and uniform plaques. Infectious virus titers were 5 × 106 and 4 × 106 Pfu/ml by plaque assay and 107.5 and 107 by CPE-based TCID50/ml, respectively. Phylogenetic analysis grouped our isolates with the Italian strains. On comparison with Wuhan strain, 3 unique mutations were identified in nsp3 (A1812D), exonuclease (P1821S) of Orf1ab and spike protein (Q677H) regions, respectively. Both the viruses grouped with Italian strains of SARS-CoV-2 suggesting possible source being the virus imported from Italy. These fully characterized virus isolates will be useful in developing neutralization/virological assays for the evaluation of vaccines/antivirals.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Animales , Prueba de Ácido Nucleico para COVID-19 , Chlorocebus aethiops , Proteasas Similares a la Papaína de Coronavirus/genética , Exonucleasas/genética , Genoma Viral , Humanos , India , Mutación , Nasofaringe/virología , Filogenia , ARN Polimerasa Dependiente del ARN/genética , Glicoproteína de la Espiga del Coronavirus/genética , Viaje , Células Vero , Proteínas no Estructurales Virales/genética , Ensayo de Placa Viral , Secuenciación Completa del Genoma
17.
Travel Med Infect Dis ; 40: 101980, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33535105

RESUMEN

BACKGROUND: In Marseille, France, the COVID-19 incidence evolved unusually with several successive epidemic phases. The second outbreak started in July, was associated with North Africa, and involved travelers and an outbreak on passenger ships. This suggested the involvement of a new viral variant. METHODS: We sequenced the genomes from 916 SARS-CoV-2 strains from COVID-19 patients in our institute. The patients' demographic and clinical features were compared according to the infecting viral variant. RESULTS: From June 26th to August 14th, we identified a new viral variant (Marseille-1). Based on genome sequences (n = 89) or specific qPCR (n = 53), 142 patients infected with this variant were detected. It is characterized by a combination of 10 mutations located in the nsp2, nsp3, nsp12, S, ORF3a, ORF8 and N/ORF14 genes. We identified Senegal and Gambia, where the virus had been transferred from China and Europe in February-April as the sources of the Marseille-1 variant, which then most likely reached Marseille through Maghreb when French borders reopened. In France, this variant apparently remained almost limited to Marseille. In addition, it was significantly associated with a milder disease compared to clade 20A ancestor strains, in univariate analysis. CONCLUSION: Our results demonstrate that SARS-CoV-2 can genetically diversify rapidly, its variants can diffuse internationally and cause successive outbreaks.


Asunto(s)
COVID-19/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Adulto , África del Sur del Sahara/epidemiología , Anciano , Sustitución de Aminoácidos , COVID-19/epidemiología , China/epidemiología , Proteasas Similares a la Papaína de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Femenino , Francia/epidemiología , Genoma Viral , Humanos , Masculino , Persona de Mediana Edad , Mutación , Filogenia , Viaje , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Proteínas Viroporinas/genética
18.
J Med Virol ; 93(5): 2722-2734, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33475167

RESUMEN

The 21st century has witnessed three outbreaks of coronavirus (CoVs) infections caused by severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, spreads rapidly and since the discovery of the first COVID-19 infection in December 2019, has caused 1.2 million deaths worldwide and 226,777 deaths in the United States alone. The high amino acid similarity between SARS-CoV and SARS-CoV-2 viral proteins supports testing therapeutic molecules that were designed to treat SARS infections during the 2003 epidemic. In this review, we provide information on possible COVID-19 treatment strategies that act via inhibition of the two essential proteins of the virus, 3C-like protease (3CLpro ) or papain-like protease (PLpro ).


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Proteasas Virales/efectos de los fármacos , COVID-19/epidemiología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/efectos de los fármacos , Proteasas 3C de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/efectos de los fármacos , Proteasas Similares a la Papaína de Coronavirus/genética , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
19.
Emerg Microbes Infect ; 10(1): 178-195, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33372854

RESUMEN

The genome of SARS-CoV-2 encodes two viral proteases (NSP3/papain-like protease and NSP5/3C-like protease) that are responsible for cleaving viral polyproteins during replication. Here, we discovered new functions of the NSP3 and NSP5 proteases of SARS-CoV-2, demonstrating that they could directly cleave proteins involved in the host innate immune response. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively. Direct cleavage of IRF3 by NSP3 could explain the blunted Type-I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of cytokines and inflammatory responThe genome of SARS-CoV-2 encodes two viral proteases (NSP3/papain-like protease and NSP5/3C-like protease) that are responsible for cleaving viral polyproteins during replication. Here, we discovered new functions of the NSP3 and NSP5 proteases of SARS-CoV-2, demonstrating that they could directly cleave proteins involved in the host innate immune response. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively. Direct cleavage of IRF3 by NSP3 could explain the blunted Type-I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of cytokines and inflammatory response observed in COVID-19 patients. We demonstrate that in the mouse NLRP12 protein, one of the recognition site is not cleaved in our in-vitro assay. We pushed this comparative alignment of IRF-3 and NLRP12 homologs and show that the lack or presence of cognate cleavage motifs in IRF-3 and NLRP12 could contribute to the presentation of disease in cats and tigers, for example. Our findings provide an explanatory framework for indepth studies into the pathophysiology of COVID-19.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Secuencia de Aminoácidos , Animales , COVID-19/patología , Línea Celular , Quirópteros/virología , Proteasas 3C de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/genética , Células HEK293 , Humanos , Ratones , SARS-CoV-2/enzimología , SARS-CoV-2/genética
20.
FASEB J ; 35(1): e21197, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368679

RESUMEN

SARS-CoV and SARS-CoV-2 encode four structural and accessory proteins (spike, envelope, membrane and nucleocapsid proteins) and two polyproteins (pp1a and pp1ab). The polyproteins are further cleaved by 3C-like cysteine protease (3CLpro ) and papain-like protease (PLpro ) into 16 nonstructural proteins (nsps). PLpro is released from nsp3 through autocleavage, and then it cleaves the sites between nsp1/2, between nsp2/3 and between nsp3/4 with recognition motif of LXGG, and the sites in the C-terminus of ubiquitin and of protein interferon-stimulated gene 15 (ISG15) with recognition motif of RLRGG. Alone or together with SARS unique domain (SUD), PLpro can stabilize an E3 ubiquitin ligase, the ring-finger, and CHY zinc-finger domain-containing 1 (RCHY1), through domain interaction, and thus, promote RCHY1 to ubiquitinate its target proteins including p53. However, a dilemma appears in terms of PLpro roles. On the one hand, the ubiquitination of p53 is good for SARS-CoV because the ubiquitinated p53 cannot inhibit SARS-CoV replication. On the other hand, the ubiquitination of NF-κB inhibitor (IκBα), TNF receptor-associated factors (TRAFs), and stimulator of interferon gene (STING), and the ISGylation of targeted proteins are bad for SARS-CoV because these ubiquitination and ISGylation initiate the innate immune response and antiviral state. This mini-review analyzes the dilemma and provides a snapshot on how the viral PLpro smartly manages its roles to avoid its simultaneously contradictory actions, which could shed lights on possible strategies to deal with SARS-CoV-2 infections.


Asunto(s)
COVID-19/virología , Proteasas Similares a la Papaína de Coronavirus/fisiología , SARS-CoV-2/fisiología , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , COVID-19/inmunología , COVID-19/terapia , Proteasas Similares a la Papaína de Coronavirus/genética , Genes Virales , Interacciones Huésped-Patógeno , Humanos , Terapia Molecular Dirigida , FN-kappa B/metabolismo , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2/genética , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/terapia , Especificidad por Sustrato , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...