Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 10452, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001919

RESUMEN

MicroRNAs are non-coding RNAs that act to downregulate the expression of target genes by translational repression and degradation of messenger RNA molecules. Individual microRNAs have the ability to specifically target a wide array of gene transcripts, therefore allowing each microRNA to play key roles in multiple biological pathways. miR-324 is a microRNA predicted to target thousands of RNA transcripts and is expressed far more highly in the brain than in any other tissue, suggesting that it may play a role in one or multiple neurological pathways. Here we present data from the first global miR-324-null mice, in which increased excitability and interictal discharges were identified in vitro in the hippocampus. RNA sequencing was used to identify differentially expressed genes in miR-324-null mice which may contribute to this increased hippocampal excitability, and 3'UTR luciferase assays and western blotting revealed that two of these, Suox and Cd300lf, are novel direct targets of miR-324. Characterisation of microRNAs that produce an effect on neurological activity, such as miR-324, and identification of the pathways they regulate will allow a better understanding of the processes involved in normal neurological function and in turn may present novel pharmaceutical targets in treating neurological disease.


Asunto(s)
Excitabilidad Cortical/genética , Hipocampo/fisiología , MicroARNs/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Receptores Inmunológicos/genética , Animales , Línea Celular , Femenino , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Neocórtex/fisiología , RNA-Seq , Transducción de Señal/genética
2.
Cereb Cortex ; 30(12): 6350-6362, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32662517

RESUMEN

Synaptic dysfunction is hypothesized to be one of the earliest brain changes in Alzheimer's disease, leading to "hyperexcitability" in neuronal circuits. In this study, we evaluated a novel hyperexcitation indicator (HI) for each brain region using a hybrid resting-state structural connectome to probe connectome-level excitation-inhibition balance in cognitively intact middle-aged apolipoprotein E (APOE) ε4 carriers with noncarriers (16 male/22 female in each group). Regression with three-way interactions (sex, age, and APOE-ε4 carrier status) to assess the effect of APOE-ε4 on excitation-inhibition balance within each sex and across an age range of 40-60 years yielded a significant shift toward higher HI in female carriers compared with noncarriers (beginning at 50 years). Hyperexcitation was insignificant in the male group. Further, in female carriers the degree of hyperexcitation exhibited significant positive correlation with working memory performance (evaluated via a virtual Morris Water task) in three regions: the left pars triangularis, left hippocampus, and left isthmus of cingulate gyrus. Increased excitation of memory-related circuits may be evidence of compensatory recruitment of neuronal resources for memory-focused activities. In sum, our results are consistent with known Alzheimer's disease sex differences; in that female APOE-ε4 carriers have globally disrupted excitation-inhibition balance that may confer greater vulnerability to disease neuropathology.


Asunto(s)
Apolipoproteína E4/genética , Encéfalo/anatomía & histología , Encéfalo/fisiología , Excitabilidad Cortical , Adulto , Conectoma , Excitabilidad Cortical/genética , Femenino , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología
3.
J Biol Chem ; 295(13): 4114-4123, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32047112

RESUMEN

Ether-a-go-go (EAG) potassium selective channels are major regulators of neuronal excitability and cancer progression. EAG channels contain a Per-Arnt-Sim (PAS) domain in their intracellular N-terminal region. The PAS domain is structurally similar to the PAS domains in non-ion channel proteins, where these domains frequently function as ligand-binding domains. Despite the structural similarity, it is not known whether the PAS domain can regulate EAG channel function via ligand binding. Here, using surface plasmon resonance, tryptophan fluorescence, and analysis of EAG currents recorded in Xenopus laevis oocytes, we show that a small molecule chlorpromazine (CH), widely used as an antipsychotic medication, binds to the isolated PAS domain of EAG channels and inhibits currents from these channels. Mutant EAG channels that lack the PAS domain show significantly lower inhibition by CH, suggesting that CH affects currents from EAG channels directly through the binding to the PAS domain. Our study lends support to the hypothesis that there are previously unaccounted steps in EAG channel gating that could be activated by ligand binding to the PAS domain. This has broad implications for understanding gating mechanisms of EAG and related ERG and ELK K+ channels and places the PAS domain as a new target for drug discovery in EAG and related channels. Up-regulation of EAG channel activity is linked to cancer and neurological disorders. Our study raises the possibility of repurposing the antipsychotic drug chlorpromazine for treatment of neurological disorders and cancer.


Asunto(s)
Clorpromazina/farmacología , Canal de Potasio ERG1/genética , Canales de Potasio Éter-A-Go-Go/genética , Neuronas/efectos de los fármacos , Secuencia de Aminoácidos/genética , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos Nucleares/química , Antígenos Nucleares/genética , Sitios de Unión/efectos de los fármacos , Excitabilidad Cortical/efectos de los fármacos , Excitabilidad Cortical/genética , Canal de Potasio ERG1/química , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Ligandos , Neuronas/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Dominios Proteicos/efectos de los fármacos , Resonancia por Plasmón de Superficie , Xenopus laevis/genética
4.
Hypertension ; 74(1): 63-72, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31154904

RESUMEN

TNF-α (tumor necrosis factor-α) is initially synthesized as a transmembrane protein that is cleaved by TACE (TNF-α-converting enzyme) to release soluble TNF-α. The elevated level of TNF-α in the brain and circulation in heart failure (HF) suggests an increase in the TACE-mediated ectodomain shedding process. The present study sought to determine whether TACE is upregulated in cardiovascular/autonomic brain regions like subfornical organ and hypothalamic paraventricular nucleus in rats with ischemia-induced HF and whether TACE plays a role in TNF-α-driven sympathetic excitation. We found that TACE was expressed throughout the subfornical organ and paraventricular nucleus, with significantly higher levels in HF than in sham-operated (Sham) rats. Intracerebroventricular injection of recombinant TACE induced a mild increase in blood pressure, heart rate, and renal sympathetic nerve activity that peaked at 15 to 20 minutes in both Sham and HF rats. HF rats had a secondary prolonged increase in these variables that was prevented by the TNF-α inhibitor SPD304. Intracerebroventricular administration of the TACE inhibitor TNF-alpha protease inhibitor 1 decreased blood pressure, heart rate, and renal sympathetic nerve activity in Sham and HF rats, with an exaggerated reduction in heart rate and renal sympathetic nerve activity in the HF rats. Direct microinjection of TACE or TNF-alpha protease inhibitor 1 into paraventricular nucleus or subfornical organ of Sham and HF rats elicited blood pressure, heart rate, and renal sympathetic nerve activity responses similar to intracerebroventricular TACE or TNF-alpha protease inhibitor 1. Intracerebroventricular infusion of Ang II (angiotensin II) and IL (interleukin)-1ß increased TACE expression in subfornical organ and paraventricular nucleus of normal rats. These data suggest that a TACE-mediated increase in soluble TNF-α in the brain contributes to sympathetic excitation in HF.


Asunto(s)
Proteína ADAM17/genética , Excitabilidad Cortical/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Análisis de Varianza , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Hemodinámica/fisiología , Hipotálamo/metabolismo , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Valores de Referencia , Factores de Riesgo , Regulación hacia Arriba
5.
Cell Death Dis ; 10(4): 310, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952836

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a type of motor neuron disease (MND) in which humans lose motor functions due to progressive loss of motoneurons in the cortex, brainstem, and spinal cord. In patients and in animal models of MND it has been observed that there is a change in the properties of motoneurons, termed neuronal hyperexcitability, which is an exaggerated response of the neurons to a stimulus. Previous studies suggested neuronal excitability is one of the leading causes for neuronal loss, however the factors that instigate excitability in neurons over the course of disease onset and progression are not well understood, as these studies have looked mainly at embryonic or early postnatal stages (pre-symptomatic). As hyperexcitability is not a static phenomenon, the aim of this study was to assess the overall excitability of upper motoneurons during disease progression, specifically focusing on their oscillatory behavior and capabilities to fire repetitively. Our results suggest that increases in the intrinsic excitability of motoneurons are a global phenomenon of aging, however the cellular mechanisms that underlie this hyperexcitability are distinct in SOD1G93A ALS mice compared with wild-type controls. The ionic mechanism driving increased excitability involves alterations of the expression levels of HCN and KCNQ channel genes leading to a complex dynamic of H-current and M-current activation. Moreover, we show a negative correlation between the disease onset and disease progression, which correlates with a decrease in the expression level of HCN and KCNQ channels. These findings provide a potential explanation for the increased vulnerability of motoneurons to ALS with aging.


Asunto(s)
Envejecimiento , Esclerosis Amiotrófica Lateral/fisiopatología , Excitabilidad Cortical , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales de Potasio KCNQ/metabolismo , Neuronas Motoras/fisiología , Superóxido Dismutasa-1/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Excitabilidad Cortical/efectos de los fármacos , Excitabilidad Cortical/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales de Potasio KCNQ/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Superóxido Dismutasa-1/metabolismo
6.
Elife ; 82019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31025939

RESUMEN

Glial-neuronal signaling at synapses is widely studied, but how glia interact with neuronal somas to regulate their activity is unclear. Drosophila cortex glia are restricted to brain regions devoid of synapses, providing an opportunity to characterize interactions with neuronal somas. Mutations in the cortex glial NCKXzydeco elevate basal Ca2+, predisposing animals to seizure-like behavior. To determine how cortex glial Ca2+ signaling controls neuronal excitability, we performed an in vivo modifier screen of the NCKXzydeco seizure phenotype. We show that elevation of glial Ca2+ causes hyperactivation of calcineurin-dependent endocytosis and accumulation of early endosomes. Knockdown of sandman, a K2P channel, recapitulates NCKXzydeco seizures. Indeed, sandman expression on cortex glial membranes is substantially reduced in NCKXzydeco mutants, indicating enhanced internalization of sandman predisposes animals to seizures. These data provide an unexpected link between glial Ca2+ signaling and the well-known role of glia in K+ buffering as a key mechanism for regulating neuronal excitability.


Asunto(s)
Excitabilidad Cortical/genética , Proteínas de Drosophila/genética , Neuronas/metabolismo , Canales de Potasio/genética , Convulsiones/genética , Intercambiador de Sodio-Calcio/genética , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Comunicación Celular/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Drosophila melanogaster/genética , Endocitosis/genética , Endosomas/genética , Humanos , Mutación/genética , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/patología , Potasio/metabolismo , Convulsiones/patología , Sinapsis/genética , Sinapsis/patología
7.
Epilepsy Behav ; 93: 102-112, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30875639

RESUMEN

BACKGROUND: Epilepsy and migraine are paroxysmal neurological conditions associated with disturbances of cortical excitability. No useful biomarkers to monitor disease activity in these conditions are available. Phase clustering was previously described in electroencephalographic (EEG) responses to photic stimulation and may be a potential epilepsy biomarker. OBJECTIVE: The objective of this study was to investigate EEG phase clustering in response to transcranial magnetic stimulation (TMS), compare it with photic stimulation in controls, and explore its potential as a biomarker of genetic generalized epilepsy or migraine with aura. METHODS: People with (possible) juvenile myoclonic epilepsy (JME), migraine with aura, and healthy controls underwent single-pulse TMS with concomitant EEG recording during the interictal period. We compared phase clustering after TMS with photic stimulation across the groups using permutation-based testing. RESULTS: We included eight people with (possible) JME (five off medication, three on), 10 with migraine with aura, and 37 controls. The TMS and photic phase clustering spectra showed significant differences between those with epilepsy without medication and controls. Two phase clustering-based indices successfully captured these differences between groups. One participant was tested multiple times. In this case, the phase clustering-based indices were inversely correlated with the dose of antiepileptic medication. Phase clustering did not differ between people with migraine and controls. CONCLUSION: We present methods to quantify phase clustering using TMS-EEG and show its potential value as a measure of brain network activity in genetic generalized epilepsy. Our results suggest that the higher propensity to phase clustering is not shared between genetic generalized epilepsy and migraine.


Asunto(s)
Electroencefalografía/métodos , Epilepsia Generalizada/genética , Epilepsia Generalizada/terapia , Trastornos Migrañosos/terapia , Estimulación Magnética Transcraneal/métodos , Adolescente , Adulto , Análisis por Conglomerados , Excitabilidad Cortical/genética , Epilepsia Generalizada/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Migrañosos/fisiopatología , Estimulación Luminosa/métodos , Resultado del Tratamiento , Adulto Joven
8.
Mol Cell Probes ; 33: 11-15, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28192165

RESUMEN

We evaluated copy number variation (CNV) for four genes in rat strains differing in nervous system excitability. rpl13a copy number is significantly reduced in hippocampus and bone marrow in rats with a high excitability threshold and stress. The observed phenomenon may be associated with a role for rpl13a in lipid metabolism.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Fenómenos Fisiológicos del Sistema Nervioso/genética , Proteínas Ribosómicas/genética , Animales , Médula Ósea/metabolismo , Médula Ósea/fisiología , Excitabilidad Cortical/genética , Excitabilidad Cortical/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Ratas
9.
Schizophr Bull ; 43(4): 801-813, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28168302

RESUMEN

Our coherent perception of external events is enabled by the integration of inputs from different senses occurring within a range of temporal offsets known as the temporal binding window (TBW), which varies from person to person. A relatively wide TBW may increase the likelihood that stimuli originating from different environmental events are erroneously integrated and abnormally large TBW has been found in psychiatric disorders characterized by unusual perceptual experiences. Despite strong evidence of inter-individual differences in TBW, both within clinical and nonclinical populations, the neurobiological underpinnings of this variability remain unclear. We adopted an integrated strategy linking TBW to temporal dynamics in functional magnetic resonance imaging (fMRI)-resting-state activity and cortical excitation/inhibition (E/I) balance. E/I balance was indexed by glutamate/Gamma-AminoButyric Acid (GABA) concentrations and common variation in glutamate and GABA genes in a healthy sample. Stronger resting-state long-range temporal correlations, indicated by larger power law exponent (PLE), in the auditory cortex, robustly predicted narrower audio-tactile TBW, which was in turn associated with lower cognitive-perceptual schizotypy. Furthermore, PLE was highest and TBW narrowest for individuals with intermediate levels of E/I balance, with shifts towards either extreme resulting in reduced multisensory temporal precision and increased schizotypy, effectively forming a neural "tuning curve" for multisensory experience and schizophrenia risk. Our findings shed light on the neurobiological underpinnings of multisensory integration and its potentially clinically relevant inter-individual variability.


Asunto(s)
Corteza Auditiva/fisiopatología , Percepción Auditiva/fisiología , Excitabilidad Cortical/fisiología , Inhibición Neural/fisiología , Trastorno de la Personalidad Esquizotípica/fisiopatología , Percepción del Tiempo/fisiología , Percepción del Tacto/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adulto , Corteza Auditiva/diagnóstico por imagen , Corteza Auditiva/metabolismo , Excitabilidad Cortical/genética , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Inhibición Neural/genética , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Trastorno de la Personalidad Esquizotípica/diagnóstico por imagen , Trastorno de la Personalidad Esquizotípica/genética , Trastorno de la Personalidad Esquizotípica/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...