Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.251
1.
Clin Epigenetics ; 16(1): 68, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773655

BACKGROUND: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS: We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ ß ≤ 0.8) with large intertumor variation and overall low hypermethylation (ß > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (ß < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION: We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.


DNA Methylation , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/mortality , DNA Methylation/genetics , Female , Male , Prognosis , Middle Aged , Aged , Adult , Rituximab/therapeutic use , Aged, 80 and over , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Vincristine/therapeutic use , Prednisone/therapeutic use , Telomere/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Telomere Shortening/genetics , Epigenesis, Genetic/genetics , CpG Islands/genetics
2.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715048

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Adipose Tissue , DNA Methylation , Diabetes, Gestational , Epigenesis, Genetic , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Diabetes, Gestational/genetics , Epigenesis, Genetic/genetics , Adult , DNA Methylation/genetics , Muscle, Skeletal/metabolism , Adolescent , Adipose Tissue/metabolism , Male , Prenatal Exposure Delayed Effects/genetics , Child , Diabetes Mellitus, Type 1/genetics , RNA, Untranslated/genetics , RNA, Untranslated/blood , RNA, Long Noncoding/genetics , CpG Islands/genetics
3.
J Transl Med ; 22(1): 428, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711158

BACKGROUND: Lung adenocarcinoma (LUAD) has been a leading cause of cancer-related mortality worldwide. Early intervention can significantly improve prognosis. DNA methylation could occur in the early stage of tumor. Comprehensive understanding the epigenetic landscape of early-stage LUAD is crucial in understanding tumorigenesis. METHODS: Enzymatic methyl sequencing (EM-seq) was performed on 23 tumors and paired normal tissue to reveal distinct epigenetic landscape, for compared with The Cancer Genome Atlas (TCGA) 450K methylation microarray data. Then, an integrative analysis was performed combined with TCGA LUAD RNA-seq data to identify significant differential methylated and expressed genes. Subsequently, the prognostic risk model was constructed and cellular composition was analyzed. RESULTS: Methylome analysis of EM-seq comparing tumor and normal tissues identified 25 million cytosine-phosphate-guanine (CpG) sites and 30,187 differentially methylated regions (DMR) with a greater number of untraditional types. EM-seq identified a significantly higher number of CpG sites and DMRs compared to the 450K microarray. By integrating the differentially methylated genes (DMGs) with LUAD-related differentially expressed genes (DEGs) from the TCGA database, we constructed prognostic model based on six differentially methylated-expressed genes (MEGs) and verified our prognostic model in GSE13213 and GSE42127 dataset. Finally, cell deconvolution based on the in-house EM-seq methylation profile was used to estimate cellular composition of early-stage LUAD. CONCLUSIONS: This study firstly delves into novel pattern of epigenomic DNA methylation and provides a multidimensional analysis of the role of DNA methylation revealed by EM-seq in early-stage LUAD, providing distinctive insights into its potential epigenetic mechanisms.


Adenocarcinoma of Lung , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Lung Neoplasms , DNA Methylation/genetics , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Gene Expression Profiling , CpG Islands/genetics , Female , Neoplasm Staging , Male , Middle Aged , Genome, Human , Aged
4.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732187

Dynamic changes in genomic DNA methylation patterns govern the epigenetic developmental programs and accompany the organism's aging. Epigenetic clock (eAge) algorithms utilize DNA methylation to estimate the age and risk factors for diseases as well as analyze the impact of various interventions. High-throughput bisulfite sequencing methods, such as reduced-representation bisulfite sequencing (RRBS) or whole genome bisulfite sequencing (WGBS), provide an opportunity to identify the genomic regions of disordered or heterogeneous DNA methylation, which might be associated with cell-type heterogeneity, DNA methylation erosion, and allele-specific methylation. We systematically evaluated the applicability of five scores assessing the variability of methylation patterns by evaluating within-sample heterogeneity (WSH) to construct human blood epigenetic clock models using RRBS data. The best performance was demonstrated by the model based on a metric designed to assess DNA methylation erosion with an MAE of 3.686 years. We also trained a prediction model that uses the average methylation level over genomic regions. Although this region-based model was relatively more efficient than the WSH-based model, the latter required the analysis of just a few short genomic regions and, therefore, could be a useful tool to design a reduced epigenetic clock that is analyzed by targeted next-generation sequencing.


Aging , DNA Methylation , Epigenesis, Genetic , High-Throughput Nucleotide Sequencing , Humans , Aging/genetics , High-Throughput Nucleotide Sequencing/methods , Algorithms , CpG Islands , Female , Male , Epigenomics/methods , Aged , Adult , Middle Aged , Sequence Analysis, DNA/methods
5.
BMC Med Genomics ; 17(1): 127, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730335

Colorectal cancer (CRC) is prone to metastasis and recurrence after surgery, which is one of the main causes for its poor treatment and prognosis. Therefore, it is essential to identify biomarkers associated with metastasis and recurrence in CRC. DNA methylation has a regulatory role in cancer metastasis, tumor immune microenvironment (TME), and prognosis and may be one of the most valuable biomarkers for predicting CRC metastasis and prognosis. We constructed a diagnostic model and nomogram that can effectively predict CRC metastasis based on the differential methylation CpG sites (DMCs) between metastatic and non-metastatic CRC patients. Then, we identified 17 DMCs associated with progression free survival (PFS) of CRC and constructed a prognostic model. The prognosis model based on 17 DMCs can predict the PFS of CRC with medium to high accuracy. The results of immunohistochemical analysis indicated that the protein expression levels of the genes involved in prognostic DMCs were different between normal and colorectal cancer tissues. According to the results of immune-related analysis, we found that the low-risk patients had better immunotherapy response. In addition, high risk scores were negatively correlated with high tumor mutation burden (TMB) levels, and patients with low TMB levels in the high-risk group had the worst PFS. Our work shows the clinical value of DNA methylation in predicting CRC metastasis and PFS, as well as their correlation with TME, immunotherapy, and TMB, which helps understand the changes of DNA methylation in CRC metastasis and improving the treatment and prognosis of CRC.


Colorectal Neoplasms , DNA Methylation , Neoplasm Metastasis , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , CpG Islands/genetics , Tumor Microenvironment , Female , Male , Gene Expression Regulation, Neoplastic , Nomograms
6.
Sci Rep ; 14(1): 11595, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773164

Despite growing evidence implicating the calcium-activated chloride channel anoctamin1 (ANO1) in cancer metastasis, its direct impact on the metastatic potential of prostate cancer and the possible significance of epigenetic alteration in this process are not fully understood. Here, we show that ANO1 is minimally expressed in LNCap and DU145 prostate cancer cell lines with low metastatic potential but overexpressed in high metastatic PC3 prostate cancer cell line. The treatment of LNCap and DU145 cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) potentiates ANO1 expression, suggesting that DNA methylation is one of the mechanisms controlling ANO1 expression. Consistent with this notion, hypermethylation was detected at the CpG island of ANO1 promoter region in LNCap and DU145 cells, and 5-Aza-CdR treatment resulted in a drastic demethylation at promoter CpG methylation sites. Upon 5-Aza-CdR treatment, metastatic indexes, such as cell motility, invasion, and metastasis-related gene expression, were significantly altered in LNCap and DU145 cells. These 5-Aza-CdR-induced metastatic hallmarks were, however, almost completely ablated by stable knockdown of ANO1. These in vitro discoveries were further supported by our in vivo observation that ANO1 expression in xenograft mouse models enhances the metastatic dissemination of prostate cancer cells into tibial bone and the development of osteolytic lesions. Collectively, our results help elucidate the critical role of ANO1 expression in prostate cancer bone metastases, which is epigenetically modulated by promoter CpG methylation.


Anoctamin-1 , Bone Neoplasms , DNA Methylation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Promoter Regions, Genetic , Prostatic Neoplasms , Male , Anoctamin-1/metabolism , Anoctamin-1/genetics , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Mice , CpG Islands , Decitabine/pharmacology , Cell Movement/genetics , Epigenesis, Genetic , Azacitidine/pharmacology
7.
Sci Rep ; 14(1): 11540, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773176

Antisense oligonucleotides (ASOs) are synthetic single-stranded oligonucleotides that bind to RNAs through Watson-Crick base pairings. They are actively being developed as therapeutics for various human diseases. ASOs containing unmethylated deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs are known to trigger innate immune responses via interaction with toll-like receptor 9 (TLR9). However, the TLR9-stimulatory properties of ASOs, specifically those with lengths equal to or less than 20 nucleotides, phosphorothioate linkages, and the presence and arrangement of sugar-modified nucleotides-crucial elements for ASO therapeutics under development-have not been thoroughly investigated. In this study, we first established SY-ODN18, an 18-nucleotide phosphorothioate oligodeoxynucleotide with sufficient TLR9-stimulatory activity. We demonstrated that an unmethylated CpG motif near its 5'-end was indispensable for TLR9 activation. Moreover, by utilizing various sugar-modified nucleotides, we systematically generated model ASOs, including gapmer, mixmer, and fully modified designs, in accordance with the structures of ASO therapeutics. Our results illustrated that introducing sugar-modified nucleotides in such designs significantly reduces TLR9-stimulatory activity, even without methylation of CpG motifs. These findings would be useful for drug designs on several types of ASOs.


Oligonucleotides, Antisense , Toll-Like Receptor 9 , Toll-Like Receptor 9/metabolism , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/chemistry , Humans , CpG Islands , Animals , Mice , Nucleotides/metabolism , Nucleotides/chemistry , Sugars/metabolism , Sugars/chemistry , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology
8.
Clin Epigenetics ; 16(1): 66, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750495

BACKGROUND: There is an unmet need for precise biomarkers for early non-invasive breast cancer detection. Here, we aimed to identify blood-based DNA methylation biomarkers that are associated with breast cancer. METHODS: DNA methylation profiling was performed for 524 Asian Chinese individuals, comprising 256 breast cancer patients and 268 age-matched healthy controls, using the Infinium MethylationEPIC array. Feature selection was applied to 649,688 CpG sites in the training set. Predictive models were built by training three machine learning models, with performance evaluated on an independent test set. Enrichment analysis to identify transcription factors binding to regions associated with the selected CpG sites and pathway analysis for genes located nearby were conducted. RESULTS: A methylation profile comprising 51 CpGs was identified that effectively distinguishes breast cancer patients from healthy controls achieving an AUC of 0.823 on an independent test set. Notably, it outperformed all four previously reported breast cancer-associated methylation profiles. Enrichment analysis revealed enrichment of genomic loci associated with the binding of immune modulating AP-1 transcription factors, while pathway analysis of nearby genes showed an overrepresentation of immune-related pathways. CONCLUSION: This study has identified a breast cancer-associated methylation profile that is immune-related to potential for early cancer detection.


Breast Neoplasms , CpG Islands , DNA Methylation , Machine Learning , Adult , Aged , Female , Humans , Middle Aged , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Case-Control Studies , Epigenesis, Genetic , East Asian People/genetics
9.
Clin Epigenetics ; 16(1): 64, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730337

BACKGROUND: Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant decrease in quality of life. Among other risk factors, such as genetics and age, hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (Guilak in Best Pract Res Clin Rheumatol 25:815-823, 2011). It has been shown that post-mitotic cells, such as articular chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However, these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state. RESULTS: We showed that hyper-physiological loading evokes consistent changes in CpGs associated with expression changes (ML-tCpGs) in ITGA5, CAV1, and CD44, among other genes, which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology (OA-tCpGs), we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity. CONCLUSION: Our findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes, concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to such changes and are central and overlapping with OA-tCpGs of primary chondrocytes, we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting, detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.


Cartilage, Articular , Chondrocytes , CpG Islands , DNA Methylation , Epigenesis, Genetic , Organoids , Osteoarthritis , DNA Methylation/genetics , Humans , Osteoarthritis/genetics , CpG Islands/genetics , Chondrocytes/metabolism , Organoids/metabolism , Epigenesis, Genetic/genetics , Cartilage, Articular/metabolism
10.
Commun Biol ; 7(1): 582, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755427

The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.


DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Retroelements , Animals , Retroelements/genetics , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , CpG Islands , Male
11.
BMC Genomics ; 25(1): 452, 2024 May 08.
Article En | MEDLINE | ID: mdl-38714935

Apolipoprotein L1 (APOL1) coding variants, termed G1 and G2, are established genetic risk factors for a growing spectrum of diseases, including kidney disease, in individuals of African ancestry. Evidence suggests that the risk variants, which show a recessive mode of inheritance, lead to toxic gain-of-function changes of the APOL1 protein. Disease occurrence and presentation vary, likely due to modifiers or second hits. To understand the role of the epigenetic landscape in relation to APOL1 risk variants, we performed methylation quantitative trait locus (meQTL) analysis to identify differentially methylated CpGs influenced by APOL1 risk variants in 611 African American individuals. We identified five CpGs that were significantly associated with APOL1 risk alleles in discovery and replication studies, and one CpG-APOL1 association was independent of other genomic variants. Our study highlights proximal DNA methylation alterations that may help explain the variable disease risk and clinical manifestation of APOL1 variants.


Apolipoprotein L1 , CpG Islands , DNA Methylation , Epigenesis, Genetic , Genetic Predisposition to Disease , Genotype , Quantitative Trait Loci , Apolipoprotein L1/genetics , Humans , Black or African American/genetics , Alleles , Risk Factors , Polymorphism, Single Nucleotide , Apolipoproteins/genetics , Female
12.
Epigenetics ; 19(1): 2333660, 2024 Dec.
Article En | MEDLINE | ID: mdl-38564759

DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC v1.0 arrays. We conducted a comprehensive assessment of the EPIC v1.0 array probe reliability using 69 blood DNA samples, each measured twice, generated by the Alzheimer's Disease Neuroimaging Initiative study. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNAm measurements. Our findings, which provide crucial reliability information for probes on the EPIC v1.0 array, will serve as a valuable resource for future DNAm studies.


DNA Methylation , Quantitative Trait Loci , Oligonucleotide Array Sequence Analysis/methods , Reproducibility of Results , CpG Islands
13.
Environ Int ; 186: 108645, 2024 Apr.
Article En | MEDLINE | ID: mdl-38615541

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Acetylcysteine/analogs & derivatives , Benzene , CpG Islands , DNA Methylation , Occupational Exposure , Humans , DNA Methylation/drug effects , Male , Occupational Exposure/adverse effects , Benzene/toxicity , Adult , China , DNA Damage , Middle Aged , Biomarkers/urine , Acetylcysteine/urine , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
14.
Epigenetics ; 19(1): 2337085, 2024 Dec.
Article En | MEDLINE | ID: mdl-38595049

The PhiC31 integration system allows for targeted and efficient transgene integration and expression by recognizing pseudo attP sites in mammalian cells and integrating the exogenous genes into the open chromatin regions of active chromatin. In order to investigate the regulatory patterns of efficient gene expression in the open chromatin region of PhiC31 integration, this study utilized Ubiquitous Chromatin Opening Element (UCOE) and activating RNA (saRNA) to modulate the chromatin structure in the promoter region of the PhiC31 integration vector. The study analysed the effects of DNA methylation and nucleosome occupancy changes in the integrated promoter on gene expression levels. The results showed that for the OCT4 promoter with moderate CG density, DNA methylation had a smaller impact on expression compared to changes in nucleosome positioning near the transcription start site, which was crucial for enhancing downstream gene expression. On the other hand, for the SOX2 promoter with high CG density, increased methylation in the CpG island upstream of the transcription start site played a key role in affecting high expression, but the positioning and clustering of nucleosomes also had an important influence. In conclusion, analysing the DNA methylation patterns, nucleosome positioning, and quantity distribution of different promoters can determine whether the PhiC31 integration site possesses the potential to further enhance expression or overcome transgene silencing effects by utilizing chromatin regulatory elements.


Chromatin , Nucleosomes , Animals , Chromatin/genetics , Nucleosomes/genetics , DNA Methylation , CpG Islands , Promoter Regions, Genetic , Mammals/genetics
15.
J Ovarian Res ; 17(1): 83, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627856

Ovarian cancer, among all gynecologic malignancies, exhibits the highest incidence and mortality rate, primarily because it is often presents with non-specific or no symptoms during its early stages. For the advancement of Ovarian Cancer Diagnosis, it is crucial to identify the potential molecular signatures that could significantly differentiate between healthy and ovarian cancerous tissues and can be used further as a diagnostic biomarker for detecting ovarian cancer. In this study, we investigated the genome-wide methylation patterns in ovarian cancer patients using Methylated DNA Immunoprecipitation (MeDIP-Seq) followed by NGS. Identified differentially methylated regions (DMRs) were further validated by targeted bisulfite sequencing for CpG site-specific methylation profiles. Furthermore, expression validation of six genes by Quantitative Reverse Transcriptase-PCR was also performed. Out of total 120 differentially methylated genes (DMGs), 68 genes were hypermethylated, and 52 were hypomethylated in their promoter region. After analysis, we identified the top 6 hub genes, namely POLR3B, PLXND1, GIGYF2, STK4, BMP2 and CRKL. Interestingly we observed Non-CpG site methylation in the case of POLR3B and CRKL which was statistically significant in discriminating ovarian cancer samples from normal controls. The most significant pathways identified were focal adhesion, the MAPK signaling pathway, and the Ras signaling pathway. Expression analysis of hypermethylated genes was correlated with the downregulation of the genes. POLR3B and GIGYF2 turned out to be the novel genes associated with the carcinogenesis of EOC. Our study demonstrated that methylation profiling through MeDIP-sequencing has effectively identified six potential hub genes and pathways that might exacerbate our understanding of underlying molecular mechanisms of ovarian carcinogenesis.


DNA Methylation , Ovarian Neoplasms , Humans , Female , DNA Methylation/genetics , Carcinoma, Ovarian Epithelial/genetics , CpG Islands , Ovarian Neoplasms/genetics , Carcinogenesis/genetics , RNA Polymerase III/genetics , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics
16.
Clin Epigenetics ; 16(1): 57, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659084

BACKGROUND: Heart failure (HF) is a disease that poses a serious threat to individual health, and DNA methylation is an important mechanism in epigenetics, and its role in the occurrence and development of the disease has attracted more and more attention. The aim of this study was to evaluate the link between iodothyronine deiodinase 3 promoter region fragment FA27 (DIO3-FA27) methylation levels, biochemical indices, and HF. RESULTS: The methylation levels of DIO3-FA27_CpG_11.12 and DIO3-FA27_CpG_23.24 significantly differed in HF patients with different degrees. Multivariate logistic regression analysis indicated that the relative HF risk in the third and fourth quartiles of activated partial thromboplastin time and fibrin degradation products. The results of the restricted cubic spline model showed that the methylation levels of DIO3-FA 27_CpG_11.12 and DIO3-FA 27_CpG_23.24 were associated with coagulation indicators, liver function, renal function, and blood routine. CONCLUSIONS: Based on the differential analysis of CpG methylation levels based on DIO3-FA27, it was found that biochemical indicators combined with DIO3-FA27 promoter DNA methylation levels could increase the risk of worsening the severity classification of HF patients, which provided a solid foundation and new insights for the study of epigenetic regulation mechanisms in patients with HF.


DNA Methylation , Disease Progression , Epigenesis, Genetic , Heart Failure , Iodide Peroxidase , Promoter Regions, Genetic , Humans , Heart Failure/genetics , DNA Methylation/genetics , Male , Female , Iodide Peroxidase/genetics , Middle Aged , Aged , Epigenesis, Genetic/genetics , CpG Islands/genetics
17.
Cell Rep ; 43(4): 114084, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38583154

Eosinophils play a crucial role in host defense while also contributing to immunopathology through the release of inflammatory mediators. Characterized by distinctive cytoplasmic granules, eosinophils securely store and rapidly release various proteins exhibiting high toxicity upon extracellular release. Among these, major basic protein 1 (MBP-1) emerges as an important mediator in eosinophil function against pathogens and in eosinophil-associated diseases. While MBP-1 targets both microorganisms and host cells, its precise mechanism remains elusive. We demonstrate that formation of small pores by MBP-1 in lipid bilayers induces membrane permeabilization and disrupts potassium balance. Additionally, we reveal that mitochondrial DNA (mtDNA) present in eosinophil extracellular traps (EETs) amplifies MBP-1 toxic effects, underscoring the pivotal role of mtDNA in EETs. Furthermore, we present evidence indicating that absence of CpG methylation in mtDNA contributes to the regulation of MBP-1-mediated toxicity. Taken together, our data suggest that the mtDNA scaffold within extracellular traps promotes MBP-1 toxicity.


DNA, Mitochondrial , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Humans , Animals , Extracellular Traps/metabolism , Cell Membrane/metabolism , Eosinophils/metabolism , DNA Methylation , CpG Islands , Lipid Bilayers/metabolism
18.
Genes (Basel) ; 15(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38674360

Epigenetic clocks are valuable tools for estimating both chronological and biological age by assessing DNA methylation levels at specific CpG dinucleotides. While conventional epigenetic clocks rely on genome-wide methylation data, targeted approaches offer a more efficient alternative. In this study, we explored the feasibility of constructing a minimized epigenetic clock utilizing data acquired through the iPlex MassARRAY technology. The study enrolled a cohort of relatively healthy individuals, and their methylation levels of eight specific CpG dinucleotides in genes SLC12A5, LDB2, FIGN, ACSS3, FHL2, and EPHX3 were evaluated using the iPlex MassARRAY system and the Illumina EPIC array. The methylation level of five studied CpG sites demonstrated significant correlations with chronological age and an acceptable convergence of data obtained by the iPlex MassARRAY and Illumina EPIC array. At the same time, the methylation level of three CpG sites showed a weak relationship with age and exhibited a low concordance between the data obtained from the two technologies. The construction of the epigenetic clock involved the utilization of different machine-learning models, including linear models, deep neural networks (DNN), and gradient-boosted decision trees (GBDT). The results obtained from these models were compared with each other and with the outcomes generated by other well-established epigenetic clocks. In our study, the TabNet architecture (deep tabular data learning architecture) exhibited the best performance (best MAE = 5.99). Although our minimized epigenetic clock yielded slightly higher age prediction errors compared to other epigenetic clocks, it still represents a viable alternative to the genome-wide epigenotyping array.


CpG Islands , DNA Methylation , Epigenesis, Genetic , Humans , Male , Female , Adult , Middle Aged , Adolescent , Child , Young Adult , Epigenomics/methods , Machine Learning
19.
Biotechnol J ; 19(4): e2300308, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651249

It was previously demonstrated that polypod-like nanostructured DNA (polypodna) comprising three or more oligodeoxynucleotides (ODNs) were useful for the delivery of ODNs containing cytosine-phosphate-guanine (CpG) motifs, or CpG ODNs, to immune cells. Although the immunostimulatory activity of single-stranded CpG ODNs is highly dependent on CpG motif sequence and position, little is known about how the position of the motif affects the immunostimulatory activity of CpG motif-containing nanostructured DNAs. In the present study, four series of polypodna were designed, each comprising a CpG ODN with one potent CpG motif at varying positions and 2-5 CpG-free ODNs, and investigated their immunostimulatory activity using Toll-like receptor-9 (TLR9)-positive murine macrophage-like RAW264.7 cells. Polypodnas with the CpG motif in the 5'-overhang induced more tumor necrosis factor-α release than those with the motif in the double-stranded region, even though their cellular uptake were similar. Importantly, the rank order of the immunostimulatory activity of single-stranded CpG ODNs changed after their incorporation into polypodna. These results indicate that the CpG ODN sequence as well as the motif location in nanostructured DNAs should be considered for designing the CpG motif-containing nanostructured DNAs for immune stimulation.


DNA , Nanostructures , Oligodeoxyribonucleotides , Toll-Like Receptor 9 , Mice , Nanostructures/chemistry , Animals , RAW 264.7 Cells , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology , DNA/chemistry , DNA/immunology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , CpG Islands , Tumor Necrosis Factor-alpha/metabolism , Macrophages/immunology , Macrophages/drug effects
20.
Sci Adv ; 10(17): eadn1837, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38657072

Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.


Drosophila Proteins , Polycomb-Group Proteins , Protein Binding , Response Elements , Transcription, Genetic , Animals , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , CpG Islands , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Chromatin/metabolism , Chromatin/genetics , Promoter Regions, Genetic
...