Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Genes (Basel) ; 15(9)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39336729

RESUMEN

Cucumis melo is an annual dicotyledonous trailing herb. It is fruity, cool, and refreshing to eat and is widely loved by consumers worldwide. The single fruit weight is an important factor affecting the yield, and thus the income and economic benefits, of melon crops. In this study, to identify the main QTLs (quantitative trait locus) controlling the single fruit weight of melon and thereby identify candidate genes controlling this trait, specific-locus amplified fragment sequencing (SLAF) analysis was performed on the offspring of female 1244 plants crossed with male MS-5 plants. A total of 115 individual plants in the melon F2 population were analyzed to construct a genetic linkage map with a total map distance of 1383.88 cM by the group in the early stages of the project, which was divided into 12 linkage groups with a total of 10,596 SLAF markers spaced at an average genetic distance of 0.13 cM. A total of six QTLs controlling single fruit weight (sfw loci) were detected. Seven pairs of markers with polymorphisms were obtained by screening candidate intervals from the SLAF data. The primary QTL sfw2.2 was further studied in 300 F2:3 family lines grown in 2020 and 2021, respectively, a positioning sfw2.2 between the markers CY Indel 11 and CY Indel 16, between 18,568,142 and 18,704,724 on chromosome 2. This interval contained 136.58 kb and included three genes with functional annotations, MELO3C029673, MELO3C029669, and MELO3C029674. Gene expression information for different fruit development stages was obtained from 1244 and MS-5 fruits on the 15d, 25d, and 35d after pollination, and qRT-PCR (quantitative reverse transcription-PCR) indicated that the expression of the MELO3C029669 gene significantly differed between the parents during the three periods. The gene sequences between the parents of MELO3C029669 were analyzed and compared, a base mutation was found to occur in the intronic interval between the parents of the gene, from A-G. Phylogenetic evolutionary tree analysis revealed that the candidate gene MELO3C029669 is most closely related to Pisum sativum Fimbrin-5 variant 2 and most distantly related to Cucumis melo var. makuwa. Therefore, it was hypothesized that MELO3C029669 is the primary major locus controlling single fruit weight in melon. These results not only provide a theoretical basis for further studies to find genes with functions in melon single fruit weight but also lay the foundation for accelerating breakthroughs and innovations in melon breeding.


Asunto(s)
Mapeo Cromosómico , Cucurbitaceae , Frutas , Sitios de Carácter Cuantitativo , Frutas/genética , Frutas/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Cucurbitaceae/genética , Cucurbitaceae/crecimiento & desarrollo , Ligamiento Genético , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Fenotipo , Cromosomas de las Plantas/genética
2.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062804

RESUMEN

Light quality not only directly affects the photosynthesis of green plants but also plays an important role in regulating the development and movement of leaf stomata, which is one of the key links for plants to be able to carry out normal growth and photosynthesis. By sensing changes in the light environment, plants actively regulate the expansion pressure of defense cells to change stomatal morphology and regulate the rate of CO2 and water vapor exchange inside and outside the leaf. In this study, Cucumis melo was used as a test material to investigate the mitigation effect of different red, blue, and green light treatments on short-term drought and to analyze its drought-resistant mechanism through transcriptome and metabolome analysis, so as to provide theoretical references for the regulation of stomata in the light environment to improve the water use efficiency. The results of the experiment showed that after 9 days of drought treatment, increasing the percentage of green light in the light quality significantly increased the plant height and fresh weight of the treatment compared to the control (no green light added). The addition of green light resulted in a decrease in leaf stomatal conductance and a decrease in reactive oxygen species (ROS) content, malondialdehyde MDA content, and electrolyte osmolality in the leaves of melon seedlings. It indicated that the addition of green light promoted drought tolerance in melon seedlings. Transcriptome and metabolome measurements of the control group (CK) and the addition of green light treatment (T3) showed that the addition of green light treatment not only effectively regulated the synthesis of abscisic acid (ABA) but also significantly regulated the hormonal pathway in the hormones such as jasmonic acid (JA) and salicylic acid (SA). This study provides a new idea to improve plant drought resistance through light quality regulation.


Asunto(s)
Cucumis melo , Sequías , Luz , Estrés Fisiológico , Cucumis melo/fisiología , Cucumis melo/metabolismo , Cucumis melo/efectos de la radiación , Cucumis melo/crecimiento & desarrollo , Cucumis melo/genética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Fotosíntesis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/fisiología , Metaboloma , Luz Verde , Luz Azul
3.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842600

RESUMEN

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Asunto(s)
Cucumis melo , Ciclopentanos , Frutas , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Proteínas de Plantas , Plantas Modificadas Genéticamente , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Cucumis melo/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Regiones Promotoras Genéticas , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Acetatos/farmacología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología
4.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892093

RESUMEN

One key post-transcriptional modification mechanism that dynamically controls a number of physiological processes in plants is alternative splicing (AS). However, the functional impacts of AS on fruit ripening remain unclear. In this research, we used RNA-seq data from climacteric (VED, Harukei 3) and non-climacteric (PI, PS) melon cultivars to explore alternative splicing (AS) in immature and mature fruit. The results revealed dramatic changes in differential AS genes (DAG) between the young and mature fruit stages, particularly in genes involved in fruit development/ripening, carotenoid and capsaicinoid biosynthesis, and starch and sucrose metabolism. Serine/arginine-rich (SR) family proteins are known as important splicing factors in AS events. From the melon genome, a total of 17 SR members were discovered in this study. These genes could be classified into eight distinct subfamilies based on gene structure and conserved motifs. Promoter analysis detected various cis-acting regulatory elements involved in hormone pathways and fruit development. Interestingly, these SR genes exhibited specific expression patterns in reproductive organs such as flowers and ovaries. Additionally, concurrent with the increase in AS levels in ripening fruit, the transcripts of these SR genes were activated during fruit maturation in both climacteric and non-climacteric melon varieties. We also found that most SR genes were under selection during domestication. These results represent a novel finding of increased AS levels and SR gene expression during fruit ripening, indicating that alternative splicing may play a role in fruit maturation.


Asunto(s)
Empalme Alternativo , Cucumis melo , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica
5.
J Hazard Mater ; 473: 134452, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762984

RESUMEN

Agricultural lands with vanadium (V), pose a significant and widespread threat to crop production worldwide. The study was designed to explore the melatonin (ME) treatment in reducing the V-induced phytotoxicity in muskmelon. The muskmelon seedlings were grown hydroponically and subjected to V (40 mg L-1) stress and exogenously treated with ME (100 µmol L-1) to mitigate the V-induced toxicity. The results showed that V toxicity displayed a remarkably adverse effect on seedling growth and biomass, primarily by impeding root development, the photosynthesis system and the activities of antioxidants. Contrarily, the application of ME mitigated the V-induced growth damage and significantly improved root attributes, photosynthetic efficiency, leaf gas exchange parameters and mineral homeostasis by reducing V accumulation in leaves and roots. Additionally, a significant reduction in the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA) along with a decrease in electrolyte leakage was observed in muskmelon seedlings treated with ME under V-stress. This reduction was attributed to the enhancement in the activities of antioxidants in leaves/roots such as ascorbate (AsA), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), glutathione S-transferase (GST) as compared to the V stressed plants. Moreover, ME also upregulated the chlorophyll biosynthesis and antioxidants genes expression in muskmelon. Given these findings, ME treatment exhibited a significant improvement in growth attributes, photosynthesis efficiency and the activities of antioxidants (enzymatic and non-enzymatic) by regulating their expression of genes against V-stress with considerable reduction in oxidative damage.


Asunto(s)
Antioxidantes , Melatonina , Fotosíntesis , Plantones , Vanadio , Melatonina/farmacología , Vanadio/toxicidad , Antioxidantes/metabolismo , Fotosíntesis/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Lactoilglutatión Liasa/metabolismo , Lactoilglutatión Liasa/genética , Especies Reactivas de Oxígeno/metabolismo , Malondialdehído/metabolismo , Cucumis melo/efectos de los fármacos , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Cucumis melo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Clorofila/metabolismo
6.
Sci Rep ; 11(1): 21057, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702930

RESUMEN

Nutrient disorder and presence of disease-causing agents in soilless media negatively influence the growth of muskmelon. To combat these issues, use of environmentally-friendly sanitation techniques is crucial for increased crop productivity. The study was conducted under greenhouse and field conditions to investigate the effect of two different sanitation techniques: steaming and formalin fumigation on various media's characteristics and their impact on muskmelon yield. Media: jantar, guar, wheat straw and rice hull and peat moss of 10% air-filled porosity and sanitized with formalin and steaming. Steaming of guar, jantar, and wheat straw increased the phosphorus (P) and potassium (K) concentrations by 13.80-14.86% and 6.22-8.45% over formalin fumigation. Likewise, P and K concentrations in muskmelon were higher under steaming. Steaming significantly inhibited the survival of Fusarium wilt sp. melonis, root knot nematode sp. meloidogyne and nitrifying bacteria in media than formalin fumigation. In conclusion, steaming decreased the prevalence of nitrifying bacteria and pathogens which thus improved the NO3--N:NH4+-N ratios, P and K nutritional balance both in the media and muskmelon transplants. Hence, steaming as an environment-friendly approach is recommended for soilless media. Further, optimization of steaming for various composts with different crops needs to be investigated with steaming teachnique.


Asunto(s)
Producción de Cultivos , Cucumis melo , Formaldehído/farmacología , Fumigación , Fusarium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Cucumis melo/crecimiento & desarrollo , Cucumis melo/microbiología
7.
Theor Appl Genet ; 134(8): 2577-2586, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33950283

RESUMEN

KEY MESSAGE: This is the first identification of QTLs underlying resistance to Pseudoperonospora cubensis in Cucumis melo using a genetically characterized isolate. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), is one of the largest threats to cucurbit production in the eastern USA. Currently, no Cucumis melo (melon) cultivars have significant levels of resistance. Additionally, little is understood about the genetic basis of resistance in C. melo. Recombinant inbred lines (RILs; N = 169) generated from a cross between the resistant melon breeding line MR-1 and susceptible cultivar Ananas Yok'neam were phenotyped for CDM resistance in both greenhouse and growth chamber studies. A high-density genetic linkage map with 5,663 binned SNPs created from the RIL population was utilized for QTL mapping. Nine QTLs, including two major QTLs, were associated with CDM resistance. Of the major QTLs, qPcub-10.1 was stable across growth chamber and greenhouse tests, whereas qPcub-8.2 was detected only in growth chamber tests. qPcub-10.1 co-located with an MLO-like protein coding gene, which has been shown to confer resistance to powdery mildew and Phytophthora in other plants. This is the first screening of C. melo germplasm with a genetically characterized P. cubensis isolate.


Asunto(s)
Ascomicetos/fisiología , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Cucumis melo/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo , Cucumis melo/crecimiento & desarrollo , Cucumis melo/microbiología , Resistencia a la Enfermedad/genética , Ligamiento Genético , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Reproducción
8.
BMC Plant Biol ; 21(1): 126, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658004

RESUMEN

BACKGROUND: Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown. RESULTS: Two high-density genetic maps were constructed by whole-genome resequencing with two F2 segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis × wild agrestis and cultivated melo × cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027 bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering 86.6% and 87.4% of the melon genome. Two loci for fruit size were identified on chromosome 11 in WAP and chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be the candidate genes for both loci. CONCLUSION: The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based cloning and molecular marker assisted breeding.


Asunto(s)
Cucumis melo/genética , Frutas/genética , Genes de Plantas , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas , Cucumis melo/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genoma de Planta , Polimorfismo de Nucleótido Simple , Recombinación Genética , Secuenciación Completa del Genoma
9.
Biosci. j. (Online) ; 37: e37075, Jan.-Dec. 2021. graf, tab
Artículo en Inglés | LILACS | ID: biblio-1359208

RESUMEN

Worldwide, Brazil holds the fifth position in melon fruits exportation, further expanding its products to provide for the growing demand. This expansion is the result of the development and application of new technologies, including the management of the use of biostimulants. However, for melon crops, the information in the literature on the use of biostimulants remains limited to the effects of different doses on fruit quality at the time of harvest. Therefore, this study aimed to evaluate the influence of different methods of pre-harvest application of two biostimulants on the production and postharvest conservation of fruits of yellow melon cv. Iracema. The treatments consisted of a combination of three factors: two plant biostimulants (Crop Set® and Spray Dunger®), two application methods of the products (fertigation and spraying), and five times of postharvest storage (0, 14, 21, 28 and 35 days). An additional control treatment corresponded to plants without biostimulant application. The fruits were evaluated for production and physicochemical attributes: average mass, yield, flesh firmness, titratable acidity, soluble solids content, SSC/TA ratio, pH, total soluble sugars, and weight loss. Fertigation is the recommended application method of biostimulants for yellow melon due to its effect on the increase of average mass, yield, flesh firmness, soluble solids content, and total soluble sugars of the fruits in relation to the spraying method.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Cucumis melo/crecimiento & desarrollo , Mejoramiento de la Calidad
10.
Plant Sci ; 301: 110694, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33218617

RESUMEN

Most cultivated melons are andromonoecies in which male flowers arose both in main stem and lateral branches but bisexual flowers only emerged from the leaf axils of lateral branches. However, bisexual flowers emerged in leaf axils of main stem after ethephon treatment. Therefore, the mechanism regulating the occurrence of bisexual flowers were investigated by performing transcriptome analysis in two comparison sets: shoot apex of main stem (MA) versus that of lateral branches (LA), and shoot apex of main stem after ethephon treatment (Eth) versus control (Cont). KEGG results showed that genes involved in "plant hormone signal transduction", "MAPK signaling pathway" and "carbon metabolism" were significantly upregulated both in LA and Eth. Further, details of DEGs involved in ethylene signaling pathway were surveyed and six genes were co-upregulated in two comparison sets. Among these, CmERF1, downstream in ethylene signaling pathway, showed the most significantly difference and expressed higher in bisexual buds than that in male buds. Furthermore, fifteen DEGs were found to contain GCC box or CRT/DRE cis-element for CmERF1 in their putative promoter region, and these DEGs involved in several plant hormones signaling pathway, camalexin synthesis, carbon metabolism and plant pathogen interaction.


Asunto(s)
Cucumis melo/genética , Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Transcriptoma , Carbono/metabolismo , Cucumis melo/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Indoles/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Tiazoles/metabolismo
11.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32680869

RESUMEN

Hand hygiene interventions are critical for reducing farmworker hand contamination and preventing the spread of produce-associated illness. Hand hygiene effectiveness may be produce-commodity specific, which could influence implementation strategies. This study's goal was to determine if produce commodity influences the ability of handwashing with soap and water or two-step alcohol-based hand sanitizer (ABHS) interventions to reduce soil and bacteria on farmworker hands. Farmworkers (n = 326) harvested produce (cantaloupe, jalapeño, and tomato) for 30 to 90 minutes before engaging in handwashing, two-step ABHS (jalapeño and cantaloupe), or no hand hygiene. Hands were rinsed to measure amounts of soil (absorbance at 600 nm) and indicator bacteria (coliforms, Enterococcus sp., generic Escherichia coli, and Bacteroidales universal [AllBac] and human-specific [BFD] 16S rRNA gene markers). Without hand hygiene, bacterial concentrations (0.88 to 5.1 log10 CFU/hand) on hands significantly differed by the produce commodity harvested. Moderate significant correlations (ρ = -0.41 to 0.56) between soil load and bacterial concentrations were observed. There were significant produce-commodity-specific differences in the ability of handwashing and two-step ABHS interventions to reduce soil (P < 0.0001), coliforms (P = 0.002), and Enterococcus sp. (P = 0.003), but not the Bacteroidales markers AllBac (P = 0.4) or BFD (P = 0.3). Contamination on hands of farmworkers who harvested cantaloupe was more difficult to remove. Overall, we found that a two-step ABHS intervention was similar to handwashing with soap and water at reducing bacteria on farmworker hands. In summary, produce commodity type should be considered when developing hand hygiene interventions on farms.IMPORTANCE This study demonstrated that the type of produce commodity handled influences the ability of handwashing with soap and water or a two-step alcohol-based hand sanitizer (ABHS) intervention to reduce soil and bacterial hand contamination. Handwashing with soap and water, as recommended by the FDA's Produce Safety Rule, when tested in three agricultural environments, does not always reduce bacterial loads. Consistent with past results, we found that the two-step ABHS method performed similarly to handwashing with soap and water but also does not always reduce bacterial loads in these contexts. Given the ease of use of the two-step ABHS method, which may increase compliance, the two-step ABHS method should be further evaluated and possibly considered for implementation in the agricultural environment. Taken together, these results provide important information on hand hygiene effectiveness in three agricultural contexts.


Asunto(s)
Carga Bacteriana/efectos de los fármacos , Producción de Cultivos , Productos Agrícolas/clasificación , Desinfección de las Manos/instrumentación , Desinfectantes para las Manos/administración & dosificación , Mano/microbiología , Suelo , Capsicum/crecimiento & desarrollo , Cucumis melo/crecimiento & desarrollo , Etanol/química , Agricultores , Desinfectantes para las Manos/química , Humanos , Solanum lycopersicum/crecimiento & desarrollo , México
12.
PLoS One ; 15(7): e0236677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32716970

RESUMEN

Florida strawberry growers frequently relay-crop (RC) vegetables with strawberry to offset high input costs. Relay-cropping consists of planting two crops at different times on the same raised bed which helps growers' lower risk due to diversification and maximize economic returns. Four separate experiments on relay cropping strawberry with jalapeño pepper and cantaloupe were conducted at Balm, Florida, in 2016-17 and 2017-18. The objective was to a) determine the effects of relay-cropping on crop yields, b) optimize pepper and cantaloupe planting date, and c) optimize the strawberry termination date when relay cropping with vegetables. Strawberry yields were unaffected by the presence of vegetables. Pepper yields were unaffected by the presence of strawberries, but cantaloupes yields were significantly (p = 0.0250) lower when planted with strawberry. Early January to early-February were the optimum dates to transplant pepper with strawberries transplanted in October but date of planting did not affect cantaloupe yield. Early January to early-February transplant dates for pepper resulted in net profits of around $23000-38000/ha in 2016-17 compared to the baseline treatment (strawberries alone). However, in 2017-18 all of the planting dates of pepper with strawberry except January 4 resulted in losses of $2000-18000/ha. In 2016-17, cantaloupes planted in late January and early February resulted in profits of $2986.3 and 2705.1/ha, respectively. All other planting dates resulted in loses compared to baseline treatment. In 2017-18, all the planting dates resulted in net profits of around $6700-14500/ha. In conclusion, cantaloupe and jalapeño pepper can be relay cropped with strawberry with no negative effects on strawberry yield. However, early planting dates tend to maximize economic return.


Asunto(s)
Capsicum/crecimiento & desarrollo , Producción de Cultivos/economía , Cucumis melo/crecimiento & desarrollo , Fragaria/crecimiento & desarrollo , Florida , Estaciones del Año
13.
J Agric Food Chem ; 68(24): 6511-6519, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32437138

RESUMEN

We investigated the effect on melon fruits of "fish water" alone or in combination with a supplement of synthetic fertilizers in a nutrient solution or foliar application of Ca(NO3)2. These treatments were compared with a traditional soilless system with synthetic fertilizers and no reuse of the nutrient solution. The results show that the treatments with recirculation of fish water and with the foliar supplement yielded fruits of greater weight and size but with reduced lightness and lower concentrations of proteins, NO3-, K+, and total amino acids. The supply of synthetic nutrients to the roots or leaves caused a reduction in the sugar concentrations and the antioxidant activity of these fruits. The use of fish water (alone or with an amendment) increased spermine and putrescine with respect to the traditional soilless crop management. The results for these bioactive compounds in melons should be considered for maintenance of health with age.


Asunto(s)
Producción de Cultivos/métodos , Cucumis melo/crecimiento & desarrollo , Frutas/química , Hidroponía/métodos , Antioxidantes/análisis , Antioxidantes/metabolismo , Cucumis melo/química , Cucumis melo/metabolismo , Fertilizantes/análisis , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Nutrientes/metabolismo , Azúcares/análisis , Azúcares/metabolismo
14.
Genomics ; 112(3): 2499-2509, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32044327

RESUMEN

Thaumatin-like proteins (TLPs), which belong to pathogenesis-related (PR) protein family 5 (PR5), are involved in plant host defense and various developmental processes. The functions of the TLP family have been extensively discussed in multiple organisms, whereas the detailed information of this family in melon has not been reported yet. In this study, we identified 28 TLP genes in the melon genome and a N-terminal signal peptide was found highly conserved within each member of this family. Phylogeny analysis indicated that TLPs from melon and other plant species were clustered into ten groups. Twelve segmental and seven tandem duplication gene pairs that underwent purifying selection were identified. TLP genes expressed differentially in different tissues/organs, and were significantly induced after Podosphaera xanthii infection. TLPs in breeding line MR-1 tend to express early after pathogen infection compared with cultivar Top Mark. Our study provides a comprehensive understanding of the melon TLP family and demonstrates their potential roles in disease resistance, therefore provides more reference for further research.


Asunto(s)
Cucumis melo/genética , Proteínas de Plantas/genética , Ascomicetos , Cromosomas de las Plantas , Cucumis melo/crecimiento & desarrollo , Cucumis melo/metabolismo , Duplicación de Gen , Genoma de Planta , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
15.
PLoS One ; 14(9): e0222647, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31550269

RESUMEN

Water deficiency up to a certain level and duration leads to a stress condition called drought. It is a multi-dimensional stress causing alteration in the physiological, morphological, biochemical, and molecular traits in plants resulting in improper plant growth and development. Drought is one of the major abiotic stresses responsible for loss of crops including muskmelon (Cucumis melo. L). Muskmelon genotype SC-15, which exhibits high drought resistance as reported in our earlier reports, was exposed to deficient water condition and studied for alteration in physiological, molecular and proteomic profile changes in the leaves. Drought stress results in reduced net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration (E) rate. With expanded severity of drought, declination recorded in content of total chlorophyll and carotenoid while enhancement observed in phenol content indicating generation of oxidative stress. In contrary, activities of catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol (POD) were increased under drought stress. Peptide mass fingerprinting (PMF) showed that drought increased the relative abundance of 38 spots while decreases10 spots of protein. The identified proteins belong to protein synthesis, photosynthesis, nucleotide biosynthesis, stress response, transcription regulation, metabolism, energy and DNA binding. A drought-induced MADS-box transcription factor was identified. The present findings indicate that under drought muskmelon elevates the abundance of defense proteins and suppresses catabolic proteins. The data obtained exhibits possible mechanisms adopted by muskmelon to counter the impacts of drought induced stress.


Asunto(s)
Cucumis melo/fisiología , Clorofila/metabolismo , Cucumis melo/crecimiento & desarrollo , Cucumis melo/metabolismo , Deshidratación , Sequías , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas/metabolismo , Transpiración de Plantas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transcriptoma
16.
BMC Plant Biol ; 19(1): 369, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31438855

RESUMEN

BACKGROUND: Cucumis melo is a suitable study material for investigation of fruit ripening owing to its climacteric nature. Long non-coding RNAs have been linked to many important biological processes, such as fruit ripening, flowering time regulation, and abiotic stress responses in plants. However, knowledge of the regulatory roles of lncRNAs underlying the ripening process in C. melo are largely unknown. In this study the complete transcriptome of Cucumis melo L. cv. Hetao fruit at four developmental stages was sequenced and analyzed. The potential role of lncRNAs was predicted based on the function of differentially expressed target genes and correlated genes. RESULTS: In total, 3857 lncRNAs were assembled and annotated, of which 1601 were differentially expressed between developmental stages. The target genes of these lncRNAs and the regulatory relationship (cis- or trans-acting) were predicted. The target genes were enriched with GO terms for biological process, such as response to auxin stimulus and hormone biosynthetic process. Enriched KEGG pathways included plant hormone signal transduction and carotenoid biosynthesis. Co-expression network construction showed that LNC_002345 and LNC_000154, which were highly expressed, might co-regulate with mutiple genes associated with auxin signal transduction and acted in the same pathways. We identified lncRNAs (LNC_000987, LNC_000693, LNC_001323, LNC_003610, LNC_001263 and LNC_003380) that were correlated with fruit ripening and the climacteric, and may participate in the regulation of ethylene biosynthesis and metabolism and the ABA signaling pathway. A number of crucial transcription factors, such as ERFs, WRKY70, NAC56, and NAC72, may also play important roles in the regulation of fruit ripening in C. melo. CONCLUSIONS: Our results predict the regulatory functions of the lncRNAs during melon fruit development and ripening, and 142 highly expressed lncRNAs (average FPKM > 100) were identified. These lncRNAs participate in the regulation of auxin signal transduction, ethylene, sucrose biosynthesis and metabolism, the ABA signaling pathway, and transcription factors, thus regulating fruit development and ripening.


Asunto(s)
Cucumis melo/genética , Frutas/genética , ARN Largo no Codificante/fisiología , ARN de Planta/fisiología , Mapeo Cromosómico , Climaterio , Cucumis melo/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genoma de Planta , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Transcriptoma
17.
Plant Physiol Biochem ; 142: 137-142, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31279861

RESUMEN

Iron-deficiency is one of the most widespread micronutrient deficiency faced by plants, and proper iron supplementation is essential for the growth of crops and for people to obtain iron from food. In order to explore new methods of iron supplementation, we studied the repair effect of CDs on iron-deficient (Cucumis melo L.) muskmelon. Iron-deficient muskmelons were treated with different concentrations of Fe2+, CDs and their complexes. The results showed that CDs significantly increased the iron transport rate and it is noteworthy that 75 mg/L CDs increased the iron transport rate of 0.7 mg/L Fe2+ by 134%. The compound treatment reduced the oxidative stress caused by iron deficiency, such as the CAT activity in the leaves of the compound treatment group was 10%-50% lower than that of the iron supplementation alone. Fluorescent imaging results of melon proved that CDs entered into the muskmelon seedlings. In combination with the above results and the adsorption of CDs, we speculated that the way CDs promoted iron absorption and transport was most likely to combine with Fe2+ and co-transport in melon, which changed the content of reactive oxygen species and other free radicals, thus causing changes of physiological state of melon. This study confirmed that CDs had a positive effect on the iron deficiency of muskmelon, and improved the growth of muskmelon under the condition of iron deficiency, which has a certain reference value for further optimization of iron supplementation solution.


Asunto(s)
Cucumis melo/efectos de los fármacos , Cucumis melo/metabolismo , Hierro/farmacocinética , Puntos Cuánticos , Transporte Biológico/efectos de los fármacos , Carbono/química , Clorofila , Cucumis melo/crecimiento & desarrollo , Enzimas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo , Puntos Cuánticos/análisis , Puntos Cuánticos/química
18.
Environ Pollut ; 249: 1011-1018, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31146307

RESUMEN

Iron fertilizers are worthy to be studied due to alleviate the Fe deficiency. Different forms of iron oxide nanoparticles are selected to better understand possible particle applications as an Fe source for crop plants. In this study, we assessed the different effects of γ-Fe2O3 and Fe3O4 NPs on the physiology and fruit quality of muskmelon plants in a pot experiment for five weeks. Results showed that no increased iron content was found under NPs treatment in root, stem, leaf and fruit, except 400 mg/L Fe3O4 NPs had a higher iron content in muskmelon root. With the extension of NPs exposure, both γ-Fe2O3 and Fe3O4 NPs began to promote plant growth. In addition, γ-Fe2O3 and Fe3O4 NPs could increase chlorophyll content at a certain stage of exposure. Happily, 200 mg/L γ-Fe2O3 NPs and 100, 200 mg/L Fe3O4 NPs significantly increased fruit weight of muskmelon by 9.1%, 9.4% and 11.5%. It is noteworthy that both γ-Fe2O3 and Fe3O4 NPs caused positive effects on VC content, particularly 100 mg/L Fe3O4 NPs increased the VC content by 46.95%. To the best of our knowledge, little research has been done on the effect of nanoparticles on the whole physiological cycle and fruit quality of melon. The assessment of physiology and fruit quality of muskmelon plants in vitro upon γ-Fe2O3 and Fe3O4 NPs exposure could lay a foundation for NPs potential impact at every growth period of muskmelon plants.


Asunto(s)
Cucumis melo/efectos de los fármacos , Compuestos Férricos/farmacología , Óxido Ferrosoférrico/farmacología , Frutas/efectos de los fármacos , Nanopartículas/química , Antioxidantes/metabolismo , Clorofila , Cucumis melo/crecimiento & desarrollo , Cucumis melo/fisiología , Compuestos Férricos/química , Óxido Ferrosoférrico/química , Fertilizantes , Calidad de los Alimentos , Frutas/crecimiento & desarrollo , Frutas/fisiología
19.
J Econ Entomol ; 112(1): 20-24, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30277528

RESUMEN

Rockmelon (Cucumis melo Linnaeus (Cucurbitales: Cucurbitaceae)) is a novel commercialized fruit in Malaysia and has great potential to become an important horticultural crop for the international market. In this study, we investigated the effects of pollination by the Indo-Malaya stingless bee Heterotrigona itama Smith (Hymenoptera: Apidae) on measures of yield and quality of rockmelon cultivated in the greenhouse, compared with hand cross-pollination and self-pollination. Results showed that rockmelon produced from plants pollinated by stingless bees and hand cross-pollination had higher fruit set, were heavier and larger, and contained higher numbers of seed per fruit compared with those produced by self-pollination. Pollination by stingless bees produced fruit with greater sweetness than either hand cross-pollination or self-pollination. This study demonstrated that stingless bee pollination produced rockmelon fruit of similar quality, but better yields compared to the other pollination treatments. We showed that stingless bees should be considered as an alternative, effective pollinator for the improved production of high quality rockmelon in commercial greenhouse cultivation.


Asunto(s)
Abejas , Cucumis melo/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Polinización , Animales
20.
Theor Appl Genet ; 131(3): 569-579, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29147724

RESUMEN

KEY MESSAGE: Map-based cloning identified CmGL that encodes a HD-ZIP type IV transcription factor that controls multicellular trichome initiation in melon. Trichomes are small hairs covering the aerial parts of plants that originate from the epidermal cells, which can protect plants against the damage by insects and pathogens. The regulatory pathway of unicellular trichomes has been well studied in the model plant Arabidopsis. Little is known about the genetic control and regulation of trichome development in melon (Cucumis melo L.) which has multicellular trichomes. In this study, we identified a melon mutant, cmgl, which showed completely glabrous on all aerial organs. A bulked segregant analysis was conducted to identify polymorphic markers for linkage analysis in a population with 256 F2 plants, which allowed to locate the cmgl locus in melon chromosome VIII. Next-generation sequencing-aided marker discovery and fine mapping in a large population with 1536 F2 plants narrowed the candidate gene region to 12 kb that harbored only one candidate gene for cmgl, which encoded a class IV homeodomain-associated leucine zipper transcription factor. Four SNPs in the coding region of the CmGL gene were identified between the two parental lines; a single base substitution from C to A resulted in a premature termination codon and a truncated protein in the cmgl. The SNP was converted into a dCAPS marker, which showed co-segregation in the F2 population and 564 melon accessions. Result of this study will be helpful for better understanding of genetic control of trichome development in melon and marker-assisted selection in developing new cultivars.


Asunto(s)
Cucumis melo/genética , Leucina Zippers , Proteínas de Plantas/genética , Factores de Transcripción/genética , Tricomas/crecimiento & desarrollo , Mapeo Cromosómico , Cucumis melo/crecimiento & desarrollo , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA