Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 885
Filtrar
1.
Sci Rep ; 14(1): 15833, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982112

RESUMEN

Drought affects crops directly, and indirectly by affecting the activity of insect pests and the transmitted pathogens. Here, we established an experiment with well-watered or water-stressed melon plants, later single infected with either cucumber mosaic virus (CMV: non-persistent), or cucurbit aphid-borne yellow virus (CABYV: persistent), or both CMV and CABYV, and mock-inoculated control. We tested whether i) the relation between CMV and CABYV is additive, and ii) the relationship between water stress and virus infection is antagonistic, i.e., water stress primes plants for enhanced tolerance to virus infection. Water stress increased leaf greenness and temperature, and reduced leaf water potential, shoot biomass, stem dimensions, rate of flowering, CABYV symptom severity, and marketable fruit yield. Virus infection reduced leaf water potential transiently in single infected plants and persistently until harvest in double-infected plants. Double-virus infection caused the largest and synergistic reduction of marketable fruit yield. The relationship between water regime and virus treatment was additive in 12 out of 15 traits at harvest, with interactions for leaf water content, leaf:stem ratio, and fruit set. We conclude that both virus-virus relations in double infection and virus-drought relations cannot be generalized because they vary with virus, trait, and plant ontogeny.


Asunto(s)
Cucurbitaceae , Sequías , Enfermedades de las Plantas , Enfermedades de las Plantas/virología , Cucurbitaceae/virología , Cucumovirus/fisiología , Cucumovirus/patogenicidad , Hojas de la Planta/virología , Virus de Plantas/fisiología , Agua/metabolismo
2.
Virol J ; 21(1): 147, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943139

RESUMEN

Vertical transmission, the transfer of pathogens across generations, is a critical mechanism for the persistence of plant viruses. The transmission mechanisms are diverse, involving direct invasion through the suspensor and virus entry into developing gametes before achieving symplastic isolation. Despite the progress in understanding vertical virus transmission, the environmental factors influencing this process remain largely unexplored. We investigated the complex interplay between vertical transmission of plant viruses and pollination dynamics, focusing on common bean (Phaseolus vulgaris). The intricate relationship between plants and pollinators, especially bees, is essential for global ecosystems and crop productivity. We explored the impact of virus infection on seed transmission rates, with a particular emphasis on bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV). Under controlled growth conditions, BCMNV exhibited the highest seed transmission rate, followed by BCMV and CMV. Notably, in the field, bee-pollinated BCMV-infected plants showed a reduced transmission rate compared to self-pollinated plants. This highlights the influence of pollinators on virus transmission dynamics. The findings demonstrate the virus-specific nature of seed transmission and underscore the importance of considering environmental factors, such as pollination, in understanding and managing plant virus spread.


Asunto(s)
Phaseolus , Enfermedades de las Plantas , Polinización , Animales , Enfermedades de las Plantas/virología , Abejas/virología , Phaseolus/virología , Semillas/virología , Transmisión Vertical de Enfermedad Infecciosa , Cucumovirus/fisiología , Potyvirus/fisiología
3.
Genes (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38927667

RESUMEN

The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant-pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a-b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement.


Asunto(s)
Capsicum , Cucumovirus , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Cucumovirus/genética , Cucumovirus/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Capsicum/virología , Capsicum/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Interacciones Huésped-Patógeno/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/farmacología
4.
Viruses ; 16(5)2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38793558

RESUMEN

The cucumber mosaic virus (CMV) 2b protein is a suppressor of plant defenses and a pathogenicity determinant. Amongst the 2b protein's host targets is the RNA silencing factor Argonaute 1 (AGO1), which it binds to and inhibits. In Arabidopsis thaliana, if 2b-induced inhibition of AGO1 is too efficient, it induces reinforcement of antiviral silencing by AGO2 and triggers increased resistance against aphids, CMV's insect vectors. These effects would be deleterious to CMV replication and transmission, respectively, but are moderated by the CMV 1a protein, which sequesters sufficient 2b protein molecules into P-bodies to prevent excessive inhibition of AGO1. Mutant 2b protein variants were generated, and red and green fluorescent protein fusions were used to investigate subcellular colocalization with AGO1 and the 1a protein. The effects of mutations on complex formation with the 1a protein and AGO1 were investigated using bimolecular fluorescence complementation and co-immunoprecipitation assays. Although we found that residues 56-60 influenced the 2b protein's interactions with the 1a protein and AGO1, it appears unlikely that any single residue or sequence domain is solely responsible. In silico predictions of intrinsic disorder within the 2b protein secondary structure were supported by circular dichroism (CD) but not by nuclear magnetic resonance (NMR) spectroscopy. Intrinsic disorder provides a plausible model to explain the 2b protein's ability to interact with AGO1, the 1a protein, and other factors. However, the reasons for the conflicting conclusions provided by CD and NMR must first be resolved.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Cucumovirus , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Cucumovirus/metabolismo , Cucumovirus/genética , Cucumovirus/fisiología , Arabidopsis/metabolismo , Arabidopsis/virología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Unión Proteica , Proteínas Virales/metabolismo , Proteínas Virales/genética , Interacciones Huésped-Patógeno , Proteinas del Complejo de Replicasa Viral/metabolismo , Proteinas del Complejo de Replicasa Viral/genética , Enfermedades de las Plantas/virología , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/química , Metiltransferasas
5.
PLoS Pathog ; 20(4): e1012174, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630801

RESUMEN

As a type of parasitic agent, satellite RNAs (satRNAs) rely on cognate helper viruses to achieve their replication and transmission. During the infection of satRNAs, helper virus RNAs serve as templates for synthesizing viral proteins, including the replication proteins essential for satRNA replication. However, the role of non-template functions of helper virus RNAs in satRNA replication remains unexploited. Here we employed the well-studied model that is composed of cucumber mosaic virus (CMV) and its associated satRNA. In the experiments employing the CMV trans-replication system, we observed an unexpected phenomenon the replication proteins of the mild strain LS-CMV exhibited defective in supporting satRNA replication, unlike those of the severe strain Fny-CMV. Independent of translation products, all CMV genomic RNAs could enhance satRNA replication, when combined with the replication proteins of CMV. This enhancement is contingent upon the recruitment and complete replication of helper virus RNAs. Using the method developed for analyzing the satRNA recruitment, we observed a markedly distinct ability of the replication proteins from both CMV strains to recruit the positive-sense satRNA-harboring RNA3 mutant for replication. This is in agreement with the differential ability of both 1a proteins in binding satRNAs in plants. The discrepancies provide a convincing explanation for the variation of the replication proteins of both CMV strains in replicating satRNAs. Taken together, our work provides compelling evidence that the non-template functions of helper virus RNAs create an optimal replication environment to enhance satRNA proliferation.


Asunto(s)
Cucumovirus , Virus Helper , Satélite de ARN , ARN Viral , Replicación Viral , Virus Helper/genética , Virus Helper/fisiología , Cucumovirus/genética , Cucumovirus/metabolismo , Cucumovirus/fisiología , Satélite de ARN/metabolismo , Satélite de ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Enfermedades de las Plantas/virología , Nicotiana/virología , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética
6.
Arch Virol ; 169(3): 61, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441697

RESUMEN

The coat protein (CP) of the cucumber mosaic virus (CMV) yellow strain [CMV(Y)], but not the CMV B2 strain [CMV(B2)], serves as an avirulence determinant against the NB-LRR class RCY1 of Arabidopsis thaliana. To investigate the avirulence function, a series of binary vectors were constructed by partially exchanging the CP coding sequence between CMV(Y) and CMV(B2) or introducing nucleotide substitutions. These vectors were transiently expressed in Nicotiana benthamiana leaves transformed with modified RCY1 cDNA. Analysis of hypersensitive resistance-cell death (HCD), CP accumulation, and defense gene expression at leaf sites infiltrated with Agrobacterium indicated that a single amino acid at position 31 of the CP seems to determine the avirulence function.


Asunto(s)
Arabidopsis , Cucumovirus , Infecciones por Citomegalovirus , Humanos , Aminoácidos , Arabidopsis/genética , Cucumovirus/genética , ADN Complementario
7.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474557

RESUMEN

This study involved the design and synthesis of a series of novel 4-chromanone-derived compounds. Their in vivo anti-cucumber mosaic virus (CMV) activity in field trials against CMV disease in Passiflora spp. was then assessed. Bioassay results demonstrated that compounds 7c and 7g exhibited remarkable curative effects and protection against CMV, with inhibition rates of 57.69% and 51.73% and 56.13% and 52.39%, respectively, surpassing those of dufulin and comparable to ningnanmycin. Field trials results indicated that compound 7c displayed significant efficacy against CMV disease in Passiflora spp. (passion fruit) after the third spraying at a concentration of 200 mg/L, with a relative control efficiency of 47.49%, surpassing that of dufulin and comparable to ningnanmycin. Meanwhile, nutritional quality test results revealed that compound 7c effectively enhanced the disease resistance of Passiflora spp., as evidenced by significant increases in soluble protein, soluble sugar, total phenol, and chlorophyll contents in Passiflora spp. leaves as well as improved the flavor and taste of Passiflora spp. fruits, as demonstrated by notable increases in soluble protein, soluble sugar, soluble solid, and vitamin C contents in Passiflora spp. fruits. Additionally, a transcriptome analysis revealed that compound 7c primarily targeted the abscisic acid (ABA) signaling pathway, a crucial plant hormone signal transduction pathway, thereby augmenting resistance against CMV disease in Passiflora spp. Therefore, this study demonstrates the potential application of these novel 4-chromanone-derived compounds as effective inducers of plant immunity for controlling CMV disease in Passiflora spp. in the coming decades.


Asunto(s)
Cromonas , Cucumovirus , Infecciones por Citomegalovirus , Passiflora , Frutas , Resistencia a la Enfermedad , Azúcares/metabolismo
8.
Int J Biol Macromol ; 262(Pt 2): 130100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350582

RESUMEN

Cucumber mosaic virus (CMV) causes huge economic losses to agriculture every year; thus, understanding the mechanism of plant resistance to CMV is imperative. In this study, an integrated analysis of transmission electron microscopy (TEM) observations and proteomic results was used to identify cytoarchitectural differences in Nicotiana tabacum cv. NC82 (susceptible) and cv. Taiyan 8 (T.T.8; resistant) following infection with CMV. The TEM observations showed that the structure of the chloroplasts and mitochondria was severely damaged at the late stage of infection in NC82. Moreover, the chloroplast stroma and mitochondrial cristae were reduced and disaggregated. However, in T.T.8, organelle structure remained largely intact Selective autophagy predominated in T.T.8, whereas non-selective autophagy dominated in NC82, resembling cellular disorder. Proteomic analysis of T.T.8 revealed differentially expressed proteins (DEPs) mostly associated with photosynthesis, respiration, reactive oxygen species (ROS) scavenging, and cellular autophagy. Biochemical analyses revealed that ROS-related catalase, autophagy-related disulfide isomerase, and jasmonic acid and antioxidant secondary metabolite synthesis-related 4-coumarate:CoA ligase (Nt4CL) exhibited different trends and significant differences in expression in the two cultivars after CMV inoculation. Furthermore, mutant phenotyping verified that reduced Nt4CL expression impaired resistance in T.T.8. The identified DEPs are crucial for maintaining intracellular homeostatic balance and likely contribute to the mechanism of CMV resistance in tobacco. These findings increase our understanding of plant cytological mechanisms conferring resistance to CMV infection.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Cucumovirus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nicotiana , Proteómica/métodos , Enfermedades de las Plantas
9.
Virology ; 591: 109983, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237218

RESUMEN

As an important medicinal plant, Panax notoginseng often suffers from various abiotic and biotic stresses during its growth, such as drought, heavy metals, fungi, bacteria and viruses. In this study, the symptom and physiological parameters of cucumber mosaic virus (CMV)-infected P. notoginseng were analyzed and the RNA-seq was performed. The results showed that CMV infection affected the photosynthesis of P. notoginseng, caused serious oxidative damage to P. notoginseng and increased the activity of several antioxidant enzymes. Results of transcriptome analysis and corresponding verification showed that CMV infection changed the expression of genes related to plant defense and promoted the synthesis of P. notoginseng saponins to a certain extent, which may be defensive ways of P. notoginseng against CMV infection. Furthermore, pretreatment plants with saponins reduced the accumulation of CMV. Thus, our results provide new insights into the role of saponins in P. notoginseng response to virus infection.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Panax notoginseng , Saponinas , Saponinas/farmacología , Panax notoginseng/genética , Panax notoginseng/metabolismo , Cucumovirus/genética , Cucumovirus/metabolismo , Raíces de Plantas , Homeostasis , Infecciones por Citomegalovirus/metabolismo
10.
Viruses ; 16(1)2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257844

RESUMEN

Here, we review the research undertaken since the 1950s in Australia's grain cropping regions on seed-borne virus diseases of cool-season pulses caused by alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). We present brief background information about the continent's pulse industry, virus epidemiology, management principles and future threats to virus disease management. We then take a historical approach towards all past investigations with these two seed-borne pulse viruses in the principal cool-season pulse crops grown: chickpea, faba bean, field pea, lentil, narrow-leafed lupin and white lupin. With each pathosystem, the main focus is on its biology, epidemiology and management, placing particular emphasis on describing field and glasshouse experimentation that enabled the development of effective phytosanitary, cultural and host resistance control strategies. Past Australian cool-season pulse investigations with AMV and CMV in the less commonly grown species (vetches, narbon bean, fenugreek, yellow and pearl lupin, grass pea and other Lathyrus species) and those with the five less important seed-borne pulse viruses also present (broad bean stain virus, broad bean true mosaic virus, broad bean wilt virus, cowpea mild mottle virus and peanut mottle virus) are also summarized. The need for future research is emphasized, and recommendations are made regarding what is required.


Asunto(s)
Virus del Mosaico de la Alfalfa , Comovirus , Cucumovirus , Infecciones por Citomegalovirus , Medicago sativa , Estaciones del Año , Australia , Semillas
11.
Planta ; 259(2): 38, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227024

RESUMEN

MAIN CONCLUSION: Silencing of an ascorbate oxidase (AO) gene in N. benthamiana enhanced disease severity from cucumber mosaic virus (CMV), showing higher accumulation and expansion of the spreading area of CMV. A Nicotiana benthamiana ascorbate oxidase (NbAO) gene was found to be induced upon cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was employed to elucidate the function of AO in N. benthamiana. The tobacco rattle virus (TRV)-mediated VIGS resulted in an efficient silencing of the NbAO gene, i.e., 97.5% and 78.8% in relative quantification as compared to the control groups (TRV::eGFP- and the mock-inoculated plants), respectively. In addition, AO enzymatic activity decreased in the TRV::NtAO-silenced plants as compared to control. TRV::NtAO-mediated NbAO silencing induced a greater reduction in plant height by 15.2% upon CMV infection. CMV titer at 3 dpi was increased in the systemic leaves of NbAO-silenced plants (a 35-fold change difference as compared to the TRV::eGFP-treated group). Interestingly, CMV and TRV titers vary in different parts of systemically infected N. benthamiana leaves. In TRV::eGFP-treated plants, CMV accumulated only at the top half of the leaf, whereas the bottom half of the leaf was "occupied" by TRV. In contrast, in the NbAO-silenced plants, CMV accumulated in both the top and the bottom half of the leaf, suggesting that the silencing of the NbAO gene resulted in the expansion of the spreading area of CMV. Our data suggest that the AO gene might function as a resistant factor against CMV infection in N. benthamiana.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Nicotiana/genética , Ascorbato Oxidasa , Hojas de la Planta/genética
12.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958540

RESUMEN

Aconitum carmichaelii is a herbaceous herb indigenous to China that has been cultivated for traditional medicine for centuries. Virus-like symptoms of A. carmichaelii plants were observed on leaves in some A. carmichaelii plantations in Zhanyi and Wuding Counties, Yunnan Province, southwest China. High-throughput sequencing (HTS) was performed on 28 symptomatic plants, and the results revealed infection with 11 viruses, including 2 novel viruses and 9 previously described viruses: Aconitum amalgavirus 1 (AcoAV-1), aconite virus A (AcVA), cucumber mosaic virus (CMV), currant latent virus (CuLV), apple stem grooving virus (ASGV), chilli veinal mottle virus (ChiVMV), tomato spotted wilt orthotospovirus (TSWV), tobacco vein distorting virus (TVDV), and potato leafroll virus (PLRV). Two novel viruses tentatively named Aconitum potyvirus 1 and Aconitum betapartitivirus 1, were supported by sequence and phylogenetic analysis results of their genomes. We proposed the names Potyvirus aconiti and Betapartitivirus aconiti. RT-PCR assays of 142 plants revealed the predominance and widespread distribution of CMV, AcVA, and AcoPV-1 in plantations. The detection of isolates of CuLV, ASGV, ChiVMV, TSWV, TVDV, and PLRV infections for the first time in A. carmichaelii expands their known host ranges.


Asunto(s)
Aconitum , Cucumovirus , Infecciones por Citomegalovirus , Potyvirus , Secoviridae , Virus , Filogenia , Viroma , China
13.
Viruses ; 15(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38005837

RESUMEN

In the past decade, severe epidemics of cucumber mosaic virus (CMV) have caused significant damage to Espelette pepper crops. This virus threatens the production of Espelette pepper, which plays a significant role in the local economy and touristic attractiveness of the French Basque Country, located in southwestern France. In 2021 and 2022, CMV was detected via double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) in Gorria pepper seed lots harvested from naturally infected fields scattered throughout the entire Espelette pepper production area. These seed lots were used in greenhouse grow-out tests to determine whether CMV could be transmitted to seedlings from contaminated seeds, using visual symptom assessment, DAS-ELISAs, and reverse transcription-polymerase chain reaction (RT-PCR). Despite the widespread occurrence of CMV in seeds of field samples, the grow-out experiments on a total of over 5000 seedlings yielded no evidence of seed transmission of local CMV isolates in Gorria pepper. Therefore, rather than seeds from infected pepper plants, sources of CMV inoculum in Espelette are more likely to be alternative hosts present in and around pepper fields that can allow for the survival of CMV during the off-season. These results have important epidemiological implications and will guide the choice of effective measures to control current epidemics.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Cucumovirus/genética , Semillas , Productos Agrícolas , Francia/epidemiología
14.
Viruses ; 15(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37896816

RESUMEN

Previously, we identified a highly conserved, γ-shaped RNA element (γRE) from satellite RNAs of cucumber mosaic virus (CMV), and we determined γRE to be structurally required for satRNA survival and the inhibition of CMV replication. It remains unknown how γRE biologically functions. In this work, pull-down assays were used to screen candidates of host factors from Nicotiana benthamiana plants using biotin-labeled γRE as bait. Nine host factors were found to interact specifically with γRE. Then, all of these host factors were down-regulated individually in N. benthamiana plants via tobacco rattle virus-induced gene silencing and tested with infection by GFP-expressing CMV (CMV-gfp) and the isolate T1 of satRNA (sat-T1). Out of nine candidates, three host factors, namely histone H3, GTPase Ran3, and eukaryotic translation initiation factor 4A, were extremely important for infection by CMV-gfp and sat-T1. Moreover, we found that cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 contributed to the replication of CMV and sat-T1, but also negatively regulated CMV 2b activity. Collectively, our work provides essential clues for uncovering the mechanism by which satRNAs inhibit CMV replication.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Virus de Plantas , Satélite de ARN/genética , ARN , ARN de Planta , Plantas , Cucumovirus/genética , Nicotiana , Virus de Plantas/genética , Enfermedades de las Plantas , ARN Viral/genética
15.
Virol J ; 20(1): 216, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737192

RESUMEN

BACKGROUND: Plant viruses of the genus Alphaendornavirus are transmitted solely via seed and pollen and generally cause no apparent disease. It has been conjectured that certain plant endornaviruses may confer advantages on their hosts through improved performance (e.g., seed yield) or resilience to abiotic or biotic insult. We recently characterised nine common bean (Phaseolus vulgaris L.) varieties that harboured either Phaseolus vulgaris endornavirus (PvEV1) alone, or PvEV1 in combination with PvEV2 or PvEV1 in combination with PvEV2 and PvEV3. Here, we investigated the interactions of these endornaviruses with each other, and with three infectious pathogenic viruses: cucumber mosaic virus (CMV), bean common mosaic virus (BCMV), and bean common mosaic necrosis virus (BCMNV). RESULTS: In lines harbouring PvEV1, PvEV1 and PvEV2, or PvEV1, PvEV2 plus PvEV3, the levels of PvEV1 and PvEV3 RNA were very similar between lines, although there were variations in PvEV2 RNA accumulation. In plants inoculated with infectious viruses, CMV, BCMV and BCMNV levels varied between lines, but this was most likely due to host genotype differences rather than to the presence or absence of endornaviruses. We tested the effects of endornaviruses on seed production and seedborne transmission of infectious pathogenic viruses but found no consistent relationship between the presence of endornaviruses and seed yield or protection from seedborne transmission of infectious pathogenic viruses. CONCLUSIONS: It was concluded that endornaviruses do not interfere with each other's accumulation. There appears to be no direct synergy or competition between infectious pathogenic viruses and endornaviruses, however, the effects of host genotype may obscure interactions between endornaviruses and infectious viruses. There is no consistent effect of endornaviruses on seed yield or susceptibility to seedborne transmission of other viruses.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Phaseolus , Potyvirus , ARN
16.
Viruses ; 15(9)2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37766198

RESUMEN

Resistance to cucumber mosaic virus (CMV) strain LS in melon is controlled by the gene cmv1, which restricts phloem entry. In nature, CMV is commonly found in mixed infections, particularly with potyviruses, where a synergistic effect is frequently produced. We have explored the possibility that this synergism could help CMV-LS to overcome cmv1-mediated resistance. We demonstrate that during mixed infection with a potyvirus, CMV-LS is able to overcome cmv1-controlled resistance and develop a systemic infection and that this ability does not depend on an increased accumulation of CMV-LS in mechanically inoculated cotyledons. Likewise, during a mixed infection initiated by aphids, the natural vector of both cucumoviruses and potyviruses that can very efficiently inoculate plants with a low number of virions, CMV-LS also overcomes cmv1-controlled resistance. This indicates that in the presence of a potyvirus, even a very low amount of inoculum, can be sufficient to surpass the resistance and initiate the infection. These results indicate that there is an important risk for this resistance to be broken in nature as a consequence of mixed infections, and therefore, its deployment in elite cultivars would not be enough to ensure a long-lasting resistance.


Asunto(s)
Coinfección , Cucumovirus , Cucurbitaceae , Infecciones por Citomegalovirus , Potyvirus , Cucumovirus/genética , Enfermedades de las Plantas
17.
Mol Biol (Mosk) ; 57(5): 797-806, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37752645

RESUMEN

Tomato aspermy virus (TAV, genus Cucumovirus from the family Bromoviridae) is one of the most common and harmful chrysanthemum viruses, causing severe flower distortion, size reduction, and color breaking. Metatranscriptome sequencing of chrysanthemum plants of the Ribonette and Golden Standard cultivars from the collection of the Nikita Botanical Garden (Yalta, Republic of Crimea) generated TAV-related RNA reads. The complete genomes of two Russian isolates of the virus were assembled from the reads. This is the first report of full-length TAV genomes from Russia. Typically of cucumoviruses, the segmented TAV genome is represented by three single-stranded positive-sense linear RNA molecules of 3412 (RNA1), 3097 (RNA2) and 2219 (RNA3) nucleotides. Five open reading frames (ORF) have been identified that encode replicase (ORF1), RNA-dependent RNA polymerase (ORF2a), silencing suppressor protein (OFR2b), movement protein (OFR3a) and the coat protein (ORF3b). The identity of TAV genomes from the two chrysanthemum cultivars was 99.8% for all three viral RNAs; with other TAV isolates from GenBank it was 97.5-99.7% (RNA1), 93.8-99.8% (RNA2), and 89.3-99.3% (RNA3). Phylogenetic analysis showed that RNA1 and RNA3 of the Russian isolates were assigned to heterogeneous groups of TAV isolates found on various plant species in different regions of the world. At the same time, RNA2 clearly clustered with tomato isolates SKO20ST2 from Slovenia and PV-0220 from Bulgaria and, to a lesser extent, with the Iranian isolate Ker.Mah.P from petunia and the Chinese isolate Henan from chrysanthemum. The incongruence of phylogenetic trees reconstructed from different genome segments suggests pseudo-recombination (reassortment) in the Russian TAV isolates.


Asunto(s)
Chrysanthemum , Cucumovirus , Cucumovirus/genética , Filogenia , Chrysanthemum/genética , Irán , ARN Viral/genética
18.
FEBS Open Bio ; 13(11): 2005-2019, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37596957

RESUMEN

Y-satellite RNA (Y-sat) of cucumber mosaic virus upregulates the expression of the aphid ABCG4 gene, which promotes aphid wing formation. We used ABCG4 virus-induced gene silencing (VIGS) to prevent the wing-induction mechanism of Y-sat and thus inhibited aphid wing formation. Of the aphids on plants with VIGS of ABCG4, only about 30% had wings, and 60-70% of the winged aphids were small and likely impaired in flying ability. In addition, we showed that double-stranded RNAs (dsRNAs) and small RNAs were transferred from the plant to the aphid to adequately silence aphid genes. Supplying ABCG4 dsRNA by VIGS to aphids is thus a potential strategy to inhibit aphid wing formation.


Asunto(s)
Áfidos , Cucumovirus , Animales , Satélite de ARN/metabolismo , Áfidos/genética , Cucumovirus/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo
19.
Virus Res ; 334: 199179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481165

RESUMEN

The argonaute (AGO) family proteins play a crucial role in preventing viral invasions through the plant antiviral RNA silencing pathway, with distinct AGO proteins recruited for specific antiviral mechanisms. Our previous study revealed that Nicotiana benthamiana AGO5 (NbAGO5) expression was significantly upregulated in response to bamboo mosaic virus (BaMV) infection. However, the roles of NbAGO5 in antiviral mechanisms remained to be explored. In this research, we examined the antiviral functions of NbAGO5 in the infections of different viruses. It was found that the accumulation of NbAGO5 was induced not only at the RNA but also at the protein level following the infections of BaMV, potato virus X (PVX), tobacco mosaic virus (TMV), and cucumber mosaic virus (CMV) in N. benthamiana. To explore the antiviral mechanism and regulatory function of NbAGO5, we generated NbAGO5 overexpression (OE-NbAGO5) and knockout (nbago5) transgenic N. benthamiana lines. Our findings reveal that NbAGO5 provides defense against BaMV, PVX, TMV, and a mutant CMV deficient in 2b gene, but not against the wild-type CMV and turnip mosaic virus (TuMV). Through affinity purification and small RNA northern blotting, we demonstrated that NbAGO5 exerts its antiviral function by binding to viral small interfering RNAs (vsiRNAs). Moreover, we observed that CMV 2b and TuMV HC-Pro interact with NbAGO5, triggering its degradation via the 26S proteasome and autophagy pathways, thereby allowing these viruses to overcome NbAGO5-mediated defense. In addition, TuMV HC-Pro provides another line of counter-defense by interfering with vsiRNA binding by NbAGO5. Our study provides further insights into the antiviral RNA interference mechanism and the complex interplay between NbAGO5 and plant viruses.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Nicotiana , Antivirales/metabolismo , Interferencia de ARN , Cucumovirus/genética , ARN/metabolismo , Enfermedades de las Plantas
20.
Nat Commun ; 14(1): 3852, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37385991

RESUMEN

Selective autophagy is a double-edged sword in antiviral immunity and regulated by various autophagy receptors. However, it remains unclear how to balance the opposite roles by one autophagy receptor. We previously identified a virus-induced small peptide called VISP1 as a selective autophagy receptor that facilitates virus infections by targeting components of antiviral RNA silencing. However, we show here that VISP1 can also inhibit virus infections by mediating autophagic degradation of viral suppressors of RNA silencing (VSRs). VISP1 targets the cucumber mosaic virus (CMV) 2b protein for degradation and attenuates its suppression activity on RNA silencing. Knockout and overexpression of VISP1 exhibit compromised and enhanced resistance against late infection of CMV, respectively. Consequently, VISP1 induces symptom recovery from CMV infection by triggering 2b turnover. VISP1 also targets the C2/AC2 VSRs of two geminiviruses and enhances antiviral immunity. Together, VISP1 induces symptom recovery from severe infections of plant viruses through controlling VSR accumulation.


Asunto(s)
Traumatismos Craneocerebrales , Cucumovirus , Infecciones por Citomegalovirus , Humanos , Macroautofagia , Autofagia/genética , Antivirales , Cucumovirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...