Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.534
1.
J Mass Spectrom ; 59(6): e5036, 2024 Jun.
Article En | MEDLINE | ID: mdl-38726689

Turmeric and ginger are extensively employed as functional ingredients due to their high content of curcuminoids and gingerols, considered the key bioactive compounds found in these roots. In this study, we present an innovative and fast method for the assay of curcuminoids and gingerols in different foods containing the two spices, with the aim of monitoring the quality of products from a nutraceutical perspective. The proposed approach is based on paper spray tandem mass spectrometry coupled with the use of a labeled internal standard, which has permitted to achieve the best results in terms of specificity and accuracy. All the calculated analytical parameters were satisfactory; accuracy values are around 100% for all spiked samples and the precision data result lower than 15%. The protocol was applied to several real samples, and to demonstrate its robustness and reliability, the results were compared to those arising from the common liquid chromatographic method.


Curcuma , Fatty Alcohols , Tandem Mass Spectrometry , Zingiber officinale , Zingiber officinale/chemistry , Curcuma/chemistry , Tandem Mass Spectrometry/methods , Fatty Alcohols/analysis , Reproducibility of Results , Limit of Detection , Catechols/analysis , Food Analysis/methods , Curcumin/analysis , Curcumin/analogs & derivatives , Paper
2.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731476

Although the wide variety of bioactivities of curcumin has been reported by researchers, the clinical application of curcumin is still limited due to its poor aqueous solubility. In view of this, a series of dimethylaminomethyl-substituted curcumin derivatives were designed and synthesized (compounds 1-15). Acetate of these derivatives were prepared (compounds 1a-15a). The Mannich reaction and aldol condensation reaction are the main reactions involved in this study. Compounds 6, 10, 12, 3a, 5a, 6a, 7a, 8a, 10a, 11a, 12a, 13a, 14a, and 15a exhibited better in vitro anti-inflammatory activity compared to curcumin in the RAW264.7 cell line. Compounds 5, 1a, 5a, 8a, and 12a exhibited better in vitro antioxidant activity compared to curcumin in the PC 12 cell line. Compounds 11, 13, 5a, 7a, and 13a exhibited better in vitro radiation protection compared to curcumin in the PC 12 cell line. The aqueous solubilities of all the curcumin derivative acetates were greatly improved compared to curcumin.


Anti-Inflammatory Agents , Antioxidants , Curcumin , Radiation-Protective Agents , Solubility , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/chemical synthesis , Curcumin/analogs & derivatives , Animals , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemical synthesis , Radiation-Protective Agents/chemistry , Drug Design , Structure-Activity Relationship , Molecular Structure , PC12 Cells , Rats , Water/chemistry
3.
Sci Rep ; 14(1): 10696, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730068

COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.


Anti-Inflammatory Agents , Antioxidants , Antiviral Agents , COVID-19 Drug Treatment , Curcumin , SARS-CoV-2 , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Antioxidants/pharmacology , Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Anti-Inflammatory Agents/pharmacology , Cell Line, Tumor , Curcuma/chemistry , Serine Endopeptidases/metabolism , COVID-19/virology , COVID-19/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Cytokines/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/virology
4.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732206

Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 µM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.


Breast Neoplasms , Cell Cycle Checkpoints , Curcumin , Cyclin-Dependent Kinase Inhibitor p21 , Gene Expression Regulation, Neoplastic , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , MCF-7 Cells , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cell Cycle Checkpoints/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Antineoplastic Agents/pharmacology , GADD45 Proteins
5.
Int J Biol Macromol ; 268(Pt 1): 131616, 2024 May.
Article En | MEDLINE | ID: mdl-38631592

Hydrogels have shown great potential for application in food science due to their diverse functionalities. However, most hydrogels inevitably contain toxic chemical cross-linking agent residues, posing serious food safety concerns. In this paper, a curcumin/sodium alginate/carboxymethyl chitosan hydrogels (CSCH) were prepared by self-assembly of two oppositely charged polysaccharides, carboxymethyl chitosan and sodium alginate, to form a three-dimensional network encapsulating curcumin for extending food shelf life. The network structure of the CSCH film confirmed by FTIR, XRD, and XPS was mainly formed by electrostatic interactions. The chemical stability of CSCH network encapsulated curcumin was 4.2 times greater than that of free curcumin, with excellent gas barrier, antimicrobial, antioxidant, and biosafety properties. It was found that CSCH films reduced dehydration, prevented nutrient loss, inhibited microbial growth, and lowered the respiration rate, which effectively maintained the quality of mango and prolonged its shelf-life up to 11 days. Notably, CSCH films possessed the properties of rapid recycling (10 mins) and biodegradability (53 days). This polysaccharide-based hydrogel film provides a viable strategy for the development of green and sustainable food packaging.


Chitosan , Curcumin , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/analogs & derivatives , Chitosan/chemistry , Chitosan/analogs & derivatives , Hydrogels/chemistry , Alginates/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Polyelectrolytes/chemistry , Food Packaging/methods , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Methylgalactosides
6.
BMC Complement Med Ther ; 24(1): 172, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654265

BACKGROUND: To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS: The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS: Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION: The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.


Anti-Inflammatory Agents , Cell Survival , Curcumin , Epithelial Cells , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Epithelial Cells/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Limbus Corneae/drug effects , Cells, Cultured , Diarylheptanoids/pharmacology , Epithelium, Corneal/drug effects
7.
Biochemistry (Mosc) ; 89(3): 417-430, 2024 Mar.
Article En | MEDLINE | ID: mdl-38648762

Platelets are known for their indispensable role in hemostasis and thrombosis. However, alteration in platelet function due to oxidative stress is known to mediate various health complications, including cardiovascular diseases and other health complications. To date, several synthetic molecules have displayed antiplatelet activity; however, their uses are associated with bleeding and other adverse effects. The commercially available curcumin is generally a mixture of three curcuminoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Although crude curcumin is known to inhibit platelet aggregation, the effect of purified curcumin on platelet apoptosis, activation, and aggregation remains unclear. Therefore, in this study, curcumin was purified from a crude curcumin mixture and the effects of this preparation on the oxidative stress-induced platelet apoptosis and activation was evaluated. 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) compound was used as an inducer of oxidative stress. Purified curcumin restored AAPH-induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release from mitochondria to the cytosol, and phosphatidyl serine externalization. Further, it inhibited the agonist-induced platelet activation and aggregation, demonstrating its antiplatelet activity. Western blot analysis confirms protective effect of the purified curcumin against oxidative stress-induced platelet apoptosis and activation via downregulation of MAPKs protein activation, including ASK1, JNK, and p-38. Together, these results suggest that the purified curcumin could be a potential therapeutic bioactive molecule to treat the oxidative stress-induced platelet activation, apoptosis, and associated complications.


Apoptosis , Blood Platelets , Curcumin , MAP Kinase Kinase Kinase 5 , Oxidative Stress , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Apoptosis/drug effects , Oxidative Stress/drug effects , MAP Kinase Kinase Kinase 5/metabolism , Humans , Blood Platelets/drug effects , Blood Platelets/metabolism , MAP Kinase Signaling System/drug effects , Reactive Oxygen Species/metabolism , Platelet Activation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Platelet Aggregation/drug effects
8.
Molecules ; 29(7)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38611731

Although identical in molecular formula and weight, curcumin and cyclocurcumin show remarkable differences in their reactivity. Both are natural compounds isolated from the rhizome of turmeric, the former is involved in the diketo/keto-enol tautomerism through the bis-α,ß-unsaturated diketone unit according to the polarity of the solvent, while the latter could react by trans-cis isomerization due to the presence of the α,ß-unsaturated dihydropyranone moiety. Even if curcumin is generally considered responsible of the therapeutical properties of Curcuma longa L. due to its high content, cyclocurcumin has attracted great interest over the last several decades for its individual behavior and specific features as a bioactive compound. Cyclocurcumin has a hydrophobic nature characterized by fluorescence emission, solvatochromism, and the tendency to form spherical fluorescent aggregates in aqueous solution. Molecular docking analysis reveals the potentiality of cyclocurcumin as antioxidant, enzyme inhibitor, and antiviral agent. Promising biological activities are observed especially in the treatment of degenerative and cardiovascular diseases. Despite the versatility emerging from the data reported herein, the use of cyclocurcumin seems to remain limited in clinical applications mainly because of its low solubility and bioavailability.


Curcumin , Curcumin/analogs & derivatives , Pyrans , Curcumin/pharmacology , Molecular Docking Simulation , Antioxidants/pharmacology , Antiviral Agents
9.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38673967

Breast cancer is one of the leading causes of death in the female population because of the resistance of cancer cells to many anticancer drugs used. Curcumin has cytotoxic activities against breast cancer cells, although it has limited use due to its poor bioavailability and rapid metabolic elimination. The synthesis of metal complexes of curcumin and curcuminoids is a relevant topic in the search for more active and selective derivatives of these molecular scaffolds. However, solubility and bioavailability are concomitant disadvantages of these types of molecules. To overcome such drawbacks, the preparation of inclusion complexes offers a chemical and pharmacologically safe option for improving the aqueous solubility of organic molecules. Herein, we describe the preparation of the inclusion complex of dimethoxycurcumin magnesium complex (DiMeOC-Mg, (4)) with beta-cyclodextrin (DiMeOC-Mg-BCD, (5)) in the stoichiometric relationship 1:1. This new inclusion complex's solubility in aqueous media phosphate buffer saline (PBS) was improved by a factor of 6x over the free metal complex (4). Furthermore, 5 affects cell metabolic rate, cell morphology, cell migration, induced apoptosis, and downregulation of the matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and signal transducer and activator of transcription-3 (STAT3) expression levels on MD Anderson metastasis breast-231 cancer (MDA-MB-231) cell lines. Results of an antitumor assay in an in ovo model showed up to 30% inhibition of tumor growth for breast cancer (MDA-MB-231) when using (5) (0.650 mg/kg dose) and 17.29% inhibition with the free homoleptic metal complex (1.5 mg/kg dose, (4)). While the formulation of inclusion complexes from metal complexes of curcuminoids demonstrates its usefulness in improving the solubility and bioavailability of these metallodrugs, the new compound (5) exhibits excellent potential for use as a therapeutic agent in the battle against breast cancer.


Antineoplastic Agents , Curcumin , Curcumin/analogs & derivatives , Magnesium , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/pharmacokinetics , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Magnesium/chemistry , Apoptosis/drug effects , Female , Cell Line, Tumor , STAT3 Transcription Factor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Movement/drug effects , Solubility , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Chick Embryo , Matrix Metalloproteinase 9/metabolism
10.
Inorg Chem ; 63(17): 7955-7965, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38634659

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin (THcurcH), and tetrahydrobisdesmethoxycurcumin (THbdcurcH) were prepared and characterized. The neutral complexes [Ru(arene)(THcurc)Cl] and [Ru(arene)(THbdcurc)Cl] (arene = cymene, benzene, or hexamethylbenzene) were characterized by NMR spectroscopy and ESI mass spectrometry, and the crystal structures of the three complexes were determined by X-ray diffraction analysis. Compared to curcuminoids, these metabolites lose their conjugated double bond system responsible for their planarity, showing unique closed conformation structures. Both closed and open conformations have been analyzed and rationalized by using density functional theory (DFT). The cytotoxicity of the complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against non-tumorigenic human embryonic kidney cells (HEK293) and human breast (MCF-10A) cells and compared to the free ligands, cisplatin, and RAPTA-C. There is a correlation between cellular uptake and the cytotoxicity of the compounds, suggesting that cellular uptake and binding to nuclear DNA may be the major pathway for cytotoxicity. However, the levels of complex binding to DNA do not strictly correlate with the cytotoxic potency, indicating that other mechanisms are also involved. In addition, treatment of MCF-7 cells with [Ru(cym)(THcurc)Cl] showed a significant decrease in p62 protein levels, which is generally assumed as a noncisplatin-like mechanism of action involving autophagy. Hence, a cisplatin- and a noncisplatin-like concerted mechanism of action, involving both apoptosis and autophagy, is possible.


Antineoplastic Agents , Coordination Complexes , Curcumin , Drug Screening Assays, Antitumor , Ruthenium , Humans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/analogs & derivatives , Curcumin/metabolism , Ruthenium/chemistry , Ruthenium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Diarylheptanoids/chemistry , Diarylheptanoids/pharmacology , Diarylheptanoids/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Models, Molecular , Density Functional Theory , Cell Survival/drug effects , HEK293 Cells
11.
Molecules ; 29(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38474469

Diacetylcurcumin manganese complex (DiAc-Cp-Mn) is a diacetylcurcumin (DiAc-Cp) derivative synthesized with Mn (II) to mimic superoxide dismutase (SOD). It exhibited superior reactive oxygen species (ROS) scavenging efficacy, particularly for the superoxide radical. The present study investigated the ROS scavenging activity, neuroprotective effects, and underlying mechanism of action of DiAc-Cp-Mn in a cellular model of Parkinson's disease. This study utilized rotenone-induced neurotoxicity in SH-SY5Y cells to assess the activities of DiAc-Cp-Mn by measuring cell viability, intracellular ROS, mitochondrial membrane potential (MMP), SOD, and catalase (CAT) activities. The mRNA expression of the nuclear factor erythroid 2 p45-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), inducible nitric oxide synthase (iNOS), and Interleukin 1ß (IL-1ß), which are oxidative and inflammatory genes, were also evaluated to clarify the molecular mechanism. The results of the in vitro assays showed that DiAc-Cp-Mn exhibited greater scavenging activity against superoxide radicals, hydrogen peroxide, and hydroxyl radicals compared to DiAc-Cp. In cell-based assays, DiAc-Cp-Mn demonstrated greater neuroprotective effects against rotenone-induced neurotoxicity when compared to its parent compound, DiAc-Cp. DiAc-Cp-Mn maintained MMP levels, reduced intracellular ROS levels, and increased the activities of SOD and CAT by activating the Nrf2-Keap1 signaling pathway. In addition, DiAc-Cp-Mn exerted its anti-inflammatory impact by down-regulating the mRNA expression of iNOS and IL-1ß that provoked neuro-inflammation. The current study indicates that DiAc-Cp-Mn protects against rotenone-induced neuronal damage by reducing oxidative stress and inflammation.


Curcumin/analogs & derivatives , Mitochondrial Diseases , Neuroblastoma , Neuroprotective Agents , Neurotoxicity Syndromes , Parkinson Disease , Humans , Manganese/metabolism , Reactive Oxygen Species/metabolism , Rotenone/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Inflammation , Superoxide Dismutase/metabolism , Antioxidants/pharmacology , RNA, Messenger/genetics
12.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38499446

Dermatomycosis is an infection with global impacts caused especially by dermatophytes and Candida species. Current antifungal therapies involve drugs that face fungal resistance barriers. This clinical context emphasizes the need to discover new antifungal agents. Herein, the antifungal potential of 10 curcumin analogs was evaluated against four Candida and four dermatophyte species. The most active compound, 3,3'-dimethoxycurcumin, exhibited minimum inhibitory concentration values ranging from 1.9‒62.5 to 15.6‒62.5 µg ml-1 against dermatophytes and Candida species, respectively. According to the checkerboard method, the association between DMC and terbinafine demonstrated a synergistic effect against Trichophyton mentagrophytes and Epidermophyton floccosum. Ergosterol binding test indicated DMC forms a complex with ergosterol of Candida albicans, C. krusei, and C. tropicalis. However, results from the sorbitol protection assay indicated that DMC had no effect on the cell walls of Candida species. The in vivo toxicity, using Galleria mellonella larvae, indicated no toxic effect of DMC. Altogether, curcumin analog DMC was a promising antifungal agent with a promising ability to act against Candida and dermatophyte species.


Arthrodermataceae , Curcumin , Curcumin/analogs & derivatives , Antifungal Agents/pharmacology , Candida , Curcumin/pharmacology , Microbial Sensitivity Tests , Ergosterol , Trichophyton
13.
Food Chem Toxicol ; 186: 114489, 2024 Apr.
Article En | MEDLINE | ID: mdl-38360388

Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17ß-hydroxysteroid dehydrogenase 3 (17ß-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17ß-HSD3 and analyzed their structure-activity relationship (SAR) and performed in silico docking. Curcuminoids and their metabolites ranked in terms of IC50 values against human 17ß-HSD3 were bisdemethoxycurcumin (0.61 µM) > curcumin (8.63 µM) > demethoxycurcumin (9.59 µM) > tetrahydrocurcumin (22.04 µM) > cyclocurcumin (29.14 µM), and those against rat 17ß-HSD3 were bisdemethoxycurcumin (3.94 µM) > demethoxycurcumin (4.98 µM) > curcumin (9.62 µM) > tetrahydrocurcumin (45.82 µM) > cyclocurcumin (143.5 µM). The aforementioned chemicals were mixed inhibitors for both enzymes. Molecular docking analysis revealed that they bind to the domain between the androstenedione and NADPH active sites of 17ß-HSD3. Bivariate correlation analysis showed a positive correlation between LogP and pKa of curcumin derivatives with their IC50 values. Additionally, a 3D-QSAR analysis revealed that a pharmacophore model consisting of three hydrogen bond acceptor regions and one hydrogen bond donor region provided a better fit for bisdemethoxycurcumin compared to curcumin. In conclusion, curcuminoids and their metabolites possess the ability to inhibit androgen biosynthesis by directly targeting human and rat 17ß-HSD3. The inhibitory strength of these compounds is influenced by their lipophilicity and ionization characteristics.


17-Hydroxysteroid Dehydrogenases , Curcumin , Curcumin/analogs & derivatives , Diarylheptanoids , Pyrans , Humans , Rats , Animals , Curcumin/pharmacology , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Structure-Activity Relationship
14.
Phytother Res ; 38(3): 1555-1573, 2024 Mar.
Article En | MEDLINE | ID: mdl-38281735

Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.


Curcumin , Curcumin/analogs & derivatives , Graft vs Host Disease , Animals , Mice , Curcumin/pharmacology , NF-E2-Related Factor 2/metabolism , T-Lymphocytes , Disease Models, Animal , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology
15.
Eur J Pharmacol ; 966: 176352, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38290567

BACKGROUND: Curcumin nicotinate (Curtn), derived from curcumin and niacin, reduces serum LDL-C levels, partly due to its influence on PCSK9. This study investigates IDOL's role in Curtn's lipid-lowering effects. OBJECTIVE: To elucidate Curtn's regulation of the IDOL/LDLR pathway and potential molecular mechanisms in hepatocytes. METHODS: Differential metabolites in Curtn-treated HepG2 cells were identified via LC-MS. Molecular docking assessed Curtn's affinity with IDOL. Cholesterol content and LDLR expression effects were studied in high-fat diet Wistar rats. In vitro evaluations determined Curtn's influence on IDOL overexpression's LDL-C uptake and LDLR expression in hepatocytes. RESULTS: Lipids were the main differential metabolites in Curtn-treated HepG2 cells. Docking showed Curtn's higher affinity to IDOL's FERM domain compared to curcumin, suggesting potential competitive inhibition of IDOL's binding to LDLR. Curtn decreased liver cholesterol in Wistar rats and elevated LDLR expression. During in vitro experiments, Curtn significantly enhanced the effects of IDOL overexpression in HepG2 cells, leading to increased LDL-C uptake and elevated expression of LDL receptors. CONCLUSION: Curtn modulates the IDOL/LDLR pathway, enhancing LDL cholesterol uptake in hepatocytes. Combined with its PCSK9 influence, Curtn emerges as a potential hyperlipidemia therapy.


Curcumin , Curcumin/analogs & derivatives , Niacin/analogs & derivatives , Proprotein Convertase 9 , Rats , Animals , Cholesterol, LDL , Curcumin/pharmacology , Rats, Wistar , Molecular Docking Simulation , Ubiquitin-Protein Ligases/metabolism , Hepatocytes/metabolism , Receptors, LDL/metabolism , Cholesterol , Lipoproteins, LDL/metabolism
16.
Life Sci ; 338: 122406, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38176583

AIMS: Curcumin is a natural compound and has good antitumor properties, but its clinical use is limited by its low bioavailability. We constructed the derivative CP41 (3,5-bis(2-chlorobenzylidene)-1-piperidin-4-one) by enhancing the bioavailability of curcumin while retaining its antitumor properties. MAIN METHODS: CCK-8 (Cell Counting Kit-8) was used to detect the effect of CP41 on cell proliferation; Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay were used to evaluate the expression of subcutaneous tumor-related molecules in cells and mice. KEY FINDINGS: Our results showed that CP41 inhibited the proliferation of endometrial cancer cells by suppressing the proliferation of AN3CA and HEC-1-B cells. We found that CP41 significantly increased H3F3A and inhibited proteasome activity, which activated MAPK signaling and led to apoptosis. Further experiments showed that H3F3A is a potential target of CP41. Correlation analysis showed that H3F3A was positively correlated with the sensitivity to chemotherapeutic agents in endometrial cancer. CP41 significantly induced reactive oxygen species (ROS) levels and activated endoplasmic reticulum stress, which led to apoptosis. The safety profile of CP41 was also evaluated, and CP41 did not cause significant drug toxicity in mice. SIGNIFICANCE: CP41 showed stronger antitumor potency than curcumin, and its antitumor activity may be achieved by inducing ROS and activating H3F3A-mediated apoptosis.


Curcumin , Endometrial Neoplasms , Animals , Female , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation , Curcumin/analogs & derivatives , Curcumin/pharmacology , Endometrial Neoplasms/drug therapy , Endoplasmic Reticulum Stress , Oxidative Stress/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Piperidines/pharmacology , Mitogen-Activated Protein Kinases/drug effects , Mitogen-Activated Protein Kinases/metabolism
17.
Inflammopharmacology ; 32(2): 1531-1544, 2024 Apr.
Article En | MEDLINE | ID: mdl-38153537

Age-related white matter lesions (WML) frequently present vascular problems by decreasing cerebral blood supply, resulting in the condition known as chronic cerebral hypoperfusion (CCH). This study aimed to investigate the effect of hexahydrocurcumin (HHC) on the processes of demyelination and remyelination induced by the model of the Bilateral Common Carotid Artery Occlusion (BCCAO) for 29 days to mimic the CCH condition. The pathological appearance of myelin integrity was significantly altered by CCH, as evidenced by Transmission Electron Microscopy (TEM) and Luxol Fast Blue (LFB) staining. In addition, CCH activated A1-astrocytes and reactive-microglia by increasing the expression of Glial fibrillary acidic protein (GFAP), complement 3 (C3d) and pro-inflammatory cytokines. However, S100a10 expression, a marker of neuroprotective astrocytes, was suppressed, as were regenerative factors including (IGF-1) and Transglutaminase 2 (TGM2). Therefore, the maturation step was obstructed as shown by decreases in the levels of myelin basic protein (MBP) and the proteins related with lipid synthesis. Cognitive function was therefore impaired in the CCH model, as evidenced by the Morris water maze test. By contrast, HHC treatment significantly improved myelin integrity, and inhibited A1-astrocytes and reactive-microglial activity. Consequently, pro-inflammatory cytokines and A1-astrocytes were attenuated, and regenerative factors increased assisting myelin maturation and hence improving cognitive performance. In conclusion, HHC improves cognitive function and also the integrity of white matter in CCH rats by reducing demyelination, and pro-inflammatory cytokine production and promoting the process of remyelination.


Brain Ischemia , Cognitive Dysfunction , Curcumin/analogs & derivatives , Demyelinating Diseases , Rats , Animals , Cognitive Dysfunction/drug therapy , Cytokines/metabolism
18.
J Drug Target ; 31(9): 976-985, 2023 Dec.
Article En | MEDLINE | ID: mdl-37851377

The eradication of chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) infection is a crucial goal in clinical practice. Enhancing the anti-HBV activity of interferon type I (IFNI) is a key strategy for achieving a functional cure for CHB. In this study, we investigated the effect of combined treatment with IFNα and Desmethoxycurcumin (DMC) on HBV replication in HepG2 cells and explored the underlying mechanism. Our results indicated IFNα alone was ineffective in completely inhibiting HBV replication, which was attributed to the virus-induced down-regulation of IFNI receptor 1 (IFNAR1) protein. However, the addition of a low dose of DMC significantly synergized with IFNα, leading to notable enhancement of IFNα anti-HBV activity. This effect was achieved by stabilising the IFNAR1 protein. Further investigation revealed that low dose DMC effectively blocked the ubiquitination-mediated degradation of IFNAR1, which was accomplished by rescuing the protein levels of alphaB-crystallin (CRYAB) and orchestrating the interaction between CRYAB and the E3 ubiquitin ligase, ß-Trcp. Importantly, over-expression of CRYAB was found to favour the antiviral activity of IFNα against HBV replication. In conclusion, our study demonstrates that low-dose DMC enhanced the anti-HBV activity of IFNα by counteracting the reduction of CRYAB and stabilising the IFNAR1 protein.


Curcumin/analogs & derivatives , Hepatitis B virus , Interferon-alpha , Interferon-alpha/pharmacology , Morocco , Hepatitis B virus/physiology , Carrier Proteins
19.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article En | MEDLINE | ID: mdl-36835104

Herein, we describe the synthesis and evaluation of anti-inflammatory activities of new curcumin derivatives. The thirteen curcumin derivatives were synthesized by Steglich esterification on one or both of the phenolic rings of curcumin with the aim of providing improved anti-inflammatory activity. Monofunctionalized compounds showed better bioactivity than the difunctionalized derivatives in terms of inhibiting IL-6 production, and known compound 2 presented the highest activity. Additionally, this compound showed strong activity against PGE2. Structure-activity relationship studies were carried out for both IL-6 and PGE2, and it was found that the activity of this series of compounds increases when a free hydroxyl group or aromatic ligands are present on the curcumin ring and a linker moiety is absent. Compound 2 remained the highest activity in modulating IL-6 production and showed strong activity against PGE2 synthesis.


Anti-Inflammatory Agents , Curcumin , Polyphenols , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Curcumin/analogs & derivatives , Curcumin/pharmacology , Interleukin-6 , Polyphenols/chemistry , Structure-Activity Relationship
20.
Environ Toxicol ; 38(2): 451-459, 2023 Feb.
Article En | MEDLINE | ID: mdl-36413041

Diphenyl difluoroketone (EF-24), a synthetic curcumin analog, has enhanced bioavailability over curcumin. EF-24 acts more powerful bioactivity for anti-inflammatory and anti-cancer activity. However, the effects and mechanism of EF-24 on cervical cancer has not been fully investigated. Herein, this study evaluated the effects of EF-24 on TPA-induced cellular migration of cervical cancer. The results showed that EF-24 substantially reduced the cellular migration and cellular invasion of the HeLa and SiHa cells. Moreover, gelatin zymography, western blotting analyses and real-time PCR revealed that EF-24 suppressed Matrix metalloproteinase-9 (MMP-9) activity, protein expression and mRNA levels. Mechanistically, EF-24 inhibited the phosphorylation of the p38 signaling pathway. In conclusion, EF-24 inhibited TPA-induced cellular migration and cellular invasion of cervical cancer cell lines through modulating MMP-9 expression via downregulating signaling p38 pathway and EF-24 may have potential to serve as a chemopreventive agent of cervical cancer.


Curcumin , Matrix Metalloproteinase 9 , Uterine Cervical Neoplasms , Female , Humans , Cell Line, Tumor , Cell Movement/drug effects , Curcumin/analogs & derivatives , Curcumin/pharmacology , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Neoplasm Invasiveness , Signal Transduction , Uterine Cervical Neoplasms/enzymology , Uterine Cervical Neoplasms/pathology
...