Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 958
1.
J Hazard Mater ; 472: 134561, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38733784

Steroid estrogens (SEs) have garnered global attention because of their potential hazards to human health and aquatic organisms at low concentrations (ng/L). The ecosystems of plateau freshwater lakes are fragile, the water lag time is long, and pollutants easily accumulate, making them more vulnerable to the impact of SEs. However, the knowledge of the impact of SEs on the growth and decomposition of phytoplankton communities in plateau lakes and the eutrophication process is limited. This study investigated the effects and mechanisms of SEs exposure on dominant algal communities and the expression of typical algal functional genes in Erhai Lake using indoor simulations and molecular biological methods. The results showed that phytoplankton were sensitive to 17ß-estradiol (E2ß) pollution, with a concentration of 50, and 100 ng/L E2ß exposure promoting the growth of cyanophyta and chlorophyta in the short term; this poses an ecological risk of inducing algal blooms. E2ß of 1000 ng/L exposure led to cross-effects of estrogenic effects and toxicity, with most phytoplankton being inhibited. However, small filamentous cyanobacteria and diatoms exhibited greater tolerance; Melosira sp. even exhibited "low inhibition, high promotion" behavior. Exposure to E2ß reduced the Shannon-Wiener diversity index (H'), Pielou index (J), and the number of dominant algal species (S) in phytoplankton communities, leading to instability in community succession. E2ß of 50 ng/L enhanced the expression levels of relevant functional genes, such as ftsH, psaB, atpB, and prx, related to Microcystis aeruginosa. E2ß of 50 ng/L and 5 mg/L can promote the transcription of Microcystis toxins (MC) related genes (mcyA), leading to more MC production by algal cells.


Estradiol , Eutrophication , Lakes , Phytoplankton , Water Pollutants, Chemical , Phytoplankton/drug effects , Phytoplankton/genetics , Estradiol/toxicity , Water Pollutants, Chemical/toxicity , Diatoms/drug effects , Diatoms/genetics , Diatoms/metabolism , Diatoms/growth & development , Cyanobacteria/genetics , Cyanobacteria/metabolism , Cyanobacteria/drug effects , Chlorophyta/drug effects , Chlorophyta/genetics , Chlorophyta/growth & development , Chlorophyta/metabolism
2.
Toxins (Basel) ; 16(5)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38787058

Cyanobacterial harmful algal blooms (cyanoHABs) occur in fresh water globally. These can degrade water quality and produce toxins, resulting in ecological and economic damages. Thus, short-term management methods (i.e., algaecides) are necessary to rapidly mitigate the negative impacts of cyanoHABs. In this study, we assess the efficacy of a hydrogen peroxide-based algaecide (PAK® 27) on a Microcystis dominated bloom which occurred within the Pahokee Marina on Lake Okeechobee, Florida, USA. We observed a significant reduction in chlorophyll a (96.81%), phycocyanin (93.17%), and Microcystis cell counts (99.92%), and a substantial reduction in microcystins (86.7%) 48 h after treatment (HAT). Additionally, there was a significant shift in bacterial community structure 48 HAT, which coincided with an increase in the relative abundance of photosynthetic protists. These results indicate that hydrogen peroxide-based algaecides are an effective treatment method for cyanoHAB control and highlight their effects on non-target microorganisms (i.e., bacteria and protists).


Harmful Algal Bloom , Hydrogen Peroxide , Lakes , Florida , Hydrogen Peroxide/pharmacology , Lakes/microbiology , Microcystis/drug effects , Microcystis/growth & development , Cyanobacteria/drug effects , Microbiota/drug effects , Microcystins , Phycocyanin/pharmacology , Chlorophyll A/metabolism
3.
Chemosphere ; 361: 142473, 2024 Aug.
Article En | MEDLINE | ID: mdl-38810810

In this study, a cyanobacteria-bacteria consortium containing native wastewater bacteria and immobilized Synechococcus sp. was constructed. The cyanobacterial cellular responses (including growth, biomass and lipid productivity) and contaminant removal ability (for TN, TP, COD and antibiotics) in the consortium were evaluated during the advanced treatment of wastewater containing 10-50 µg/L of mixed antibiotics (amoxicillin, tetracycline, erythromycin, sulfadiazine and ciprofloxacin) with the addition of a certain phytohormone (indole-3-acetic acid, gibberellin A3 or 6-benzylaminopurine) at trace level within a period of four days. Each phytohormone promoted the growth of Synechococcus sp. and increased the tolerance of Synechococcus sp. to mixed antibiotics. Indole-3-acetic acid coupled to moderate antibiotic stress could elevate lipid productivity and lipid content of Synechococcus sp. to 33.50 mg/L/day and 43.75%, respectively. Phytohormones increased the pollutant removal performance of the cyanobacteria-bacteria consortium through the stimulation of cyanobacterial growth and the regulation of cyanobacteria-bacteria interaction, which increased the abundances of microalgae-associated bacteria including Flavobacterium, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Bosea, Sphingomonas and Emticicia. Up to 80.83%, 98.06%, 83.26%, 99.84%, 99.50%, 89.41%, 65.61% and 60.65% of TN, TP, COD, amoxicillin, tetracycline, erythromycin, sulfadiazine and ciprofloxacin were removed by the consortium with the addition of phytohormones. In general, indole-3-acetic acid was the optimal phytohormone for enhancing lipid production and contaminant removal performance of the cyanobacteria-bacteria consortium.


Anti-Bacterial Agents , Plant Growth Regulators , Wastewater , Water Pollutants, Chemical , Wastewater/microbiology , Wastewater/chemistry , Plant Growth Regulators/metabolism , Anti-Bacterial Agents/pharmacology , Water Pollutants, Chemical/metabolism , Cyanobacteria/metabolism , Cyanobacteria/growth & development , Cyanobacteria/drug effects , Indoleacetic Acids/metabolism , Lipids , Bacteria/metabolism , Bacteria/drug effects , Synechococcus/metabolism , Synechococcus/growth & development , Synechococcus/drug effects , Microalgae/metabolism , Microalgae/drug effects , Microalgae/growth & development , Biodegradation, Environmental , Waste Disposal, Fluid/methods , Biomass
4.
Water Res ; 256: 121642, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657307

Both cyanobacterial blooms and antibiotic resistance have aggravated worldwide and posed a great threat to public health in recent years. As a significant source and reservoir of water environmental resistome, cyanobacteria exhibit confusing discrepancy between their reduced susceptibility and their chronic exposure to antibiotic mixtures at sub-inhibitory concentrations. How the increasing temperature affects the adaptive evolution of cyanobacteria-associated antibiotic resistance in response to low-level antibiotic combinations under climate change remains unclear. Here we profiled the antibiotic interaction and collateral susceptibility networks among 33 commonly detected antibiotics in 600 cyanobacterial strains isolated from 50 sites across four eutrophicated lakes in China. Cyanobacteria-associated antibiotic resistance level was found positively correlated to antibiotic heterogeneity across all sites. Among 528 antibiotic combinations, antagonism was observed for 62 % interactions and highly conserved within cyanobacterial species. Collateral resistance was detected in 78.5 % of pairwise antibiotic interaction, leading to a widened or shifted upwards mutant selection window for increased opportunity of acquiring second-step mutations. We quantified the interactive promoting effect of collateral resistance and increasing temperature on the evolution of both phenotypic and genotypic cyanobacteria-associated resistance under chronic exposure to environmental level of antibiotic combinations. With temperature increasing from 16 °C to 36 °C, the evolvability index and genotypic resistance level increased by 1.25 - 2.5 folds and 3 - 295 folds in the collateral-resistance-informed lineages, respectively. Emergence of resistance mutation pioneered by tolerance, which was jointly driven by mutation rate and persister fraction, was found to be accelerated by increased temperature and antibiotic switching rate. Our findings provided mechanic insights into the boosting effect of climate warming on the emergence and development of cyanobacteria-associated resistance against collateral antibiotic phenotypes.


Anti-Bacterial Agents , Climate Change , Cyanobacteria , Cyanobacteria/genetics , Cyanobacteria/drug effects , Anti-Bacterial Agents/pharmacology , Lakes/microbiology , Drug Resistance, Microbial/genetics , China , Drug Resistance, Bacterial/genetics , Temperature
5.
Environ Pollut ; 350: 123960, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38608853

Nanoplastics pollution is a growing environmental problem worldwide. Recent research has demonstrated the toxic effects of nanoplastics on various marine organisms. However, the influences of nanoplastics on marine nitrogen-fixing cyanobacteria, a critical nitrogen source in the ocean, remained unknown. Here, we report that nanoplastics exposure significantly reduced growth, photosynthetic, and nitrogen fixation rates of Crocosphaera watsonii (a major marine nitrogen-fixing cyanobacterium). Transcriptomic analysis revealed that nanoplastics might harm C. watsonii via downregulation of photosynthetic pathways and DNA damage repair genes, while genes for respiration, cell damage, nitrogen limitation, and iron (and phosphorus) scavenging were upregulated. The number and size of starch grains and electron-dense vacuoles increased significantly after nanoplastics exposure, suggesting that C. watsonii allocated more resources to storage instead of growth under stress. We propose that nanoplastics can damage the cell (e.g., DNA, cell membrane, and membrane-bound transporters), inhibit nitrogen and carbon fixation, and hence lead to nutrient limitation and impaired growth. Our findings suggest the possibility that nanoplastics pollution could reduce the new nitrogen input and hence affect the productivity in the ocean. The impact of nanoplastics on marine nitrogen fixation and productivity should be considered when predicting the ecosystem response and biogeochemical cycling in the changing ocean.


Cyanobacteria , Nitrogen Fixation , Nitrogen Fixation/drug effects , Cyanobacteria/drug effects , Cyanobacteria/metabolism , Cyanobacteria/growth & development , Nitrogen/metabolism , Water Pollutants, Chemical/toxicity , Photosynthesis/drug effects , Seawater/chemistry
6.
Chemosphere ; 358: 142125, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670509

Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 µm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.


Arabidopsis , Chloroplasts , Marine Toxins , Microcystins , Phosphoprotein Phosphatases , Microcystins/toxicity , Chloroplasts/drug effects , Chloroplasts/metabolism , Phosphoprotein Phosphatases/metabolism , Arabidopsis/drug effects , Cyanobacteria/drug effects , Cell Division/drug effects , Synechococcus/drug effects
7.
Toxins (Basel) ; 13(11)2021 10 23.
Article En | MEDLINE | ID: mdl-34822537

Cyanobacterial blooms are a global concern. Chemical coagulants are used in water treatment to remove contaminants from the water column and could potentially be used in lakes and reservoirs. The aims of this study was to: 1) assess the efficiency of ferric sulfate (Fe2(SO4)3) coagulant in removing harmful cyanobacterial cells from lake water with cyanobacterial blooms on a short time scale, 2) determine whether some species of cyanobacteria can be selectively removed, and 3) determine the differential impact of coagulants on intra- and extra-cellular toxins. Our main results are: (i) more than 96% and 51% of total cyanobacterial cells were removed in mesocosms with applied doses of 35 mgFe/L and 20 mgFe/L, respectively. Significant differences in removing total cyanobacterial cells and several dominant cyanobacteria species were observed between the two applied doses; (ii) twelve microcystins, anatotoxin-a (ANA-a), cylindrospermopsin (CYN), anabaenopeptin A (APA) and anabaenopeptin B (APB) were identified. Ferric sulfate effectively removed the total intracellular microcystins (greater than 97% for both applied doses). Significant removal of extracellular toxins was not observed after coagulation with both doses. Indeed, the occasional increase in extracellular toxin concentration may be related to cells lysis during the coagulation process. No significant differential impact of dosages on intra- and extra-cellular toxin removal was observed which could be relevant to source water applications where optimal dosing is difficult to achieve.


Anti-Bacterial Agents/pharmacology , Cyanobacteria Toxins/chemistry , Cyanobacteria/drug effects , Ferric Compounds/pharmacology , Lakes/microbiology , Cyanobacteria/chemistry
8.
Toxins (Basel) ; 13(8)2021 08 23.
Article En | MEDLINE | ID: mdl-34437460

Macroalgae can directly restrict the growth of various phytoplankton species by releasing allelopathic compounds; therefore, considerable attention should be paid to the allelopathic potential of these organisms against harmful and bloom-forming cyanobacteria. The main aim of this study was to demonstrate for the first time the allelopathic activity of Ulva intestinalis on the growth, the fluorescence parameters: the maximum PSII quantum efficiency (Fv/Fm) and the effective quantum yield of PSII photochemistry (ΦPSII), the chlorophyll a (Chl a) and carotenoid (Car) content, and the microcystin-LR (MC-LR) and phenol content of three bloom-forming cyanobacteria, Aphanizomenon sp., Nodularia spumigena, and Nostoc sp. We found both negative and positive allelopathic effects of U. intestinalis on tested cyanobacteria. The study clearly showed that the addition of the filtrate of U. intestinalis significantly inhibited growth, decreased pigment content and Fv/Fm and ΦPSII values of N. spumigena and Nostoc sp., and stimulated Aphanizomenon sp. The addition of different concentrations of aqueous extract also stimulated the cyanobacterial growth. It was also shown that the addition of extract obtained from U. intestinalis caused a significant decrease in the MC-LR content in Nostoc sp. cells. Moreover, it the phenol content in N. spumigena cells was increased. On the other hand, the cell-specific phenol content for Aphanizomenon sp. decreased due to the addition of the filtrate. In this work, we demonstrated that the allelopathic effect of U. intestinalis depends on the target species' identity as well as the type of allelopathic method used. The study of the allelopathic Baltic macroalgae may help to identify their possible role as a significant biological factor influencing harmful cyanobacterial blooms in brackish ecosystems.


Aphanizomenon/growth & development , Cyanobacteria/drug effects , Cyanobacteria/growth & development , Nodularia/growth & development , Nostoc/growth & development , Pheromones/toxicity , Photosynthesis/drug effects , Aphanizomenon/drug effects , Nodularia/drug effects , Nostoc/drug effects , Phytoplankton/drug effects , Phytoplankton/growth & development , Pigments, Biological , Seaweed/chemistry , Ulva/chemistry
9.
Article En | MEDLINE | ID: mdl-33593243

The initial cyanide (CN-) concentration and amount of co-contaminants in GCTs can inhibit bacterial growth and reduce the CN--degrading ability of bacteria. Several microorganisms can biotransform a wide range of organic and inorganic industrial contaminants into nontoxic compounds. However, active enzymatic CN- metabolism processes are mostly constrained by the physical and chemical characteristics of GCTs. High concentrations of toxic metal co-contaminants, such as, Pb, and Cr, and factors, such as pH, temperature, and oxygen concentration create oxidative stress and limit the CN--degrading potential of cyanotrophic strains. The effects of such external and internal factors on the CN--degrading ability of bacteria hinder the selection of suitable microorganisms for CN- biodegradation. Therefore, understanding the effects of the physicochemical properties of GCTs on cyanobacteria strains can help identify suitable microbes and favorable environmental conditions to promote microbial growth and can also help design efficient CN- biodegradation processes. In this review, we present a detailed analysis of the physicochemical properties of GCTs and their effects on microbial CN- degradation.


Cyanides/toxicity , Cyanobacteria/drug effects , Environmental Pollutants/toxicity , Gold/toxicity , Biodegradation, Environmental/drug effects , Cyanides/chemistry , Cyanides/metabolism , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Gold/chemistry , Gold/metabolism , Industrial Waste/analysis
10.
Ecotoxicol Environ Saf ; 207: 111233, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-32916528

Growth of microcystin-producing cyanobacteria in Lake Okeechobee (Florida, USA) and surrounding waters has resulted in adverse health impacts for humans and endangered species, as well as significant economic losses. As these issues worsen, there is growing pressure for efficacious solutions to rapidly mitigate harmful algal blooms (HABs) and protect critical freshwater resources. Applications of USEPA-registered algaecides as management tactics meet many decision-making criteria often required by water resource managers (e.g., effective, scalable, selective), but have not yet been evaluated on a large scale within the Lake Okeechobee waterway. This study was conducted to bolster the peer-reviewed database for available management tactics against microcystin-producing cyanobacteria in waters of this region. Laboratory-scale experiments can be conducted first to minimize uncertainty at larger scales and improve confidence in decision-making. In this study, samples containing microcystin-producing cyanobacteria collected from Lake Okeechobee were exposed to several USEPA-registered algaecides in laboratory toxicity experiments. Responses of target cyanobacteria were measured 3 days after treatment (DAT) in terms of cell density, chlorophyll-a concentrations, and phycocyanin concentrations. Based on responses of the cyanobacteria, minimum effective exposure concentrations were identified for each algaecide. Microcystin release (i.e. proportion of total microcystins in the aqueous phase) was measured and compared 1 DAT among effective exposures. Total microcystin concentrations were measured in effective treatments at 1, 4, and 9 DAT to discern potential for microcystin persistence following exposures to the effective formulations and exposure concentrations. Overall, several formulations including GreenClean Liquid® 5.0, GreenClean Liquid® 5.0 combined with Hydrothol® 191, and the copper-based algaecides evaluated (Algimycin® PWF, Argos, Captain® XTR, Cutrine® Ultra, and SeClear®) achieved significant and similar effects on target cyanobacteria. The chelated copper-based formulations (Algimycin® PWF, Argos, Captain® XTR, and Cutrine® Ultra) resulted in relatively less microcystin release 1 DAT and lesser total microcystin concentrations 4 DAT. At 9 DAT, total microcystin concentrations were significantly lower than in untreated controls in all treatments evaluated. These results provide the necessary comparative performance data for preliminary decision-making and designing additional studies at larger scales. Importantly, the comparative toxicity data and approach provided in this study demonstrate the initial steps for development of site-specific management strategies for Lake Okeechobee and other areas impacted by harmful algal blooms with large spatial and temporal scales.


Cyanobacteria/physiology , Herbicides/toxicity , Microcystins/metabolism , Chlorophyll/analogs & derivatives , Chlorophyll A , Copper/toxicity , Copper Sulfate/toxicity , Cyanobacteria/drug effects , Florida , Harmful Algal Bloom , Lakes/microbiology , Microcystis , Water
11.
ACS Appl Bio Mater ; 4(1): 483-493, 2021 01 18.
Article En | MEDLINE | ID: mdl-35014302

Electrically conductive composite nanofibers were fabricated using poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT-PSS) and cellulose nanofibrils (CNFs) via the electrospinning technique. Poly(ethylene oxide) (PEO) was used to assist the electrospinning process, and poly(ethylene glycol) diglycidyl ether was used to induce chemical cross-linking, enabling stability of the formed fibrous mats in water. The experimental parameters regarding the electrospinning polymer dispersion and electrospinning process were carefully studied to achieve a reproducible method to obtain bead-free nanofibrous mats with high stability after water contact, with an electrical conductivity of 13 ± 5 S m-1, thus making them suitable for bioelectrochemical applications. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy, and the C/S ratio was determined with energy dispersive X-ray analysis. Cyclic voltammetric studies showed that the PEDOT-PSS/CNF/PEO composite fibers exhibited high electroactivity and high stability in water for at least two months. By infrared spectroscopy, the slightly modified fiber morphology after water contact was demonstrated to be due to dissolution of some part of the PEO in the fiber structure. The biocompatibility of the PEDOT-PSS/CNF/PEO composite fibers when used as an electroconductive substrate to immobilize microalgae and cyanobacteria in a photosynthetic bioelectrochemical cell was also demonstrated.


Biocompatible Materials/chemistry , Cellulose/chemistry , Nanofibers/chemistry , Polyethylene Glycols/chemistry , Polystyrenes/chemistry , Thiophenes/chemistry , Biocompatible Materials/pharmacology , Chlamydomonas/drug effects , Chlamydomonas/metabolism , Cyanobacteria/drug effects , Cyanobacteria/metabolism , Electric Conductivity , Nanofibers/toxicity , Water/chemistry
12.
Arch Microbiol ; 203(1): 31-44, 2021 Jan.
Article En | MEDLINE | ID: mdl-32803344

Over the last decades, Harmful Cyanobacterial Blooms (HCBs) represent one of the most conspicuous hazards to human health in freshwater ecosystems, due to the uses of the water for drinking, recreation and aquaculture. Cyanobacteria are one of the main biological components in freshwater ecosystems and they may proliferate in nutrients rich ecosystems causing severe impacts at different levels. Therefore, several methods have been applied to control cyanobacterial proliferation, including physical, chemical and biological strategies. However, the application of those methods is generally not very efficient. Research on an eco-friendly alternative leading to the isolation of new bioactive compounds with strong impacts against harmful cyanobacteria is a need in the field of water environment protection. Thus, this paper aims to give an overview of harmful cyanobacterial blooms and reviews the state of the art of studying the activities of biological compounds obtained from plants, seaweeds and microorganisms in the cyanobacterial bloom control.


Biodegradation, Environmental , Biological Products/pharmacology , Cyanobacteria/drug effects , Eutrophication/drug effects , Ecosystem , Fresh Water/microbiology , Plants/chemistry , Seaweed/chemistry
13.
Toxins (Basel) ; 12(12)2020 12 13.
Article En | MEDLINE | ID: mdl-33322165

The dynamic increase in the commercial application of antimicrobial derivatives of boronic acids, and potential impact of their presence in aquatic systems, supports the necessity to study the toxicity of these substances towards microorganisms of crucial meaning in the environment. One example of the mentioned derivatives is tavaborole (5-fluoro-substituted benzoxaborole), a pharmaceutical agent with antifungal activity. Cyanobacteria were used as model organisms, which are photoautotrophic prokaryotes, as representative aquatic bacteria and photoautotrophs associated with the plant kingdom. To the best of our knowledge, we investigated this issue for the first time. In order to recognize the under-stress response of those microorganisms, the concentration of photopigments-a key factor in the activity of photosynthetic apparatus-was measured spectrophotometrically. We found that the 3-piperazine bis(benzoxaborole) significantly suppressed the growth of halophilic and freshwater cyanobacteria, at a concentration 3.0 mM and 0.3 mM, respectively. Our results also showed that the tested substances at micromolar concentrations stimulated the growth of cyanobacteria, particularly in the freshwater strain Chroococcidiopsis thermalis. The tested substances acted with various strengths, depending on their structure and concentration; nevertheless, they had a greater influence on the synthesis of phycobiliproteins (e.g., lowered their concentration) than on the formation of chlorophyll and carotenoids.


Boronic Acids/pharmacology , Cyanobacteria/drug effects , Cyanobacteria/growth & development , Photosynthesis/drug effects , Boronic Acids/chemistry , Chlorophyll/antagonists & inhibitors , Chlorophyll/metabolism , Cyanobacteria/metabolism , Dose-Response Relationship, Drug , Photosynthesis/physiology
14.
World J Microbiol Biotechnol ; 36(12): 188, 2020 Nov 26.
Article En | MEDLINE | ID: mdl-33241509

Cyanobacterial blooms are a worldwide problem, especially in freshwaters. As one of the most abundant co-existing organisms of algae, bacteria play critical roles in cyanobacteria growth, particularly the cyanobactericidal bacteria which can efficiently kill cyanobacteria. Recent years, cyanobactericidal bacteria are highly recognized as a method that could potentially block cyanobacterial blooms. Many studies have been conducted to assess their effects on the termination of cyanobacteria blooms and explore their cyanobactericidal mechanisms, e.g., attacking by cell to cell or releasing specific compounds, the physiological, metabolic, and transcriptional disturbance on cyanobacteria. In this review, the present state of research on cyanobactericidal bacteria for the bloom-causing cyanobacteria species is summarized. The challenges in applying cyanobactericidal bacteria in the control of natural cyanobacterial blooms are discussed.


Biological Control Agents , Cyanobacteria/drug effects , Cyanobacteria/physiology , Eutrophication , Fresh Water/microbiology , Microbial Interactions
15.
Toxins (Basel) ; 12(11)2020 11 19.
Article En | MEDLINE | ID: mdl-33228063

Cyanotoxins are the underlying cause of the threat that globally pervasive Cyanobacteria Harmful algal blooms (CyanoHABs) pose to humans. Major attention has been focused on the cyanobacterial hepatotoxin microcystins (MCs); however, there is a dearth of studies on cyanobacterial neurotoxin anatoxins. In this study, we explored how an anatoxin-producing Cuspidothrix issatschenkoi strain responded to culture with inorganic and organic nitrogen sources in terms of growth and anatoxins production. The results of our study revealed that ʟ- alanine could greatly boost cell growth, and was associated with the highest cell productivity, while urea significantly stimulated anatoxin production with the maximum anatoxin yield reaching 25.86 µg/mg dry weight, which was 1.56-fold higher than that in the control group (BG11). To further understand whether the carbon/nitrogen balance in C. issatschenkoi would affect anatoxin production, we explored growth and toxin production in response to different carbon/nitrogen ratios (C/N). Anatoxin production was mildly promoted when the C/N ratio was within low range, and significantly inhibited when the C/N ratio was within high range, showing approximately a three-fold difference. Furthermore, the transcriptional profile revealed that anaC gene expression was significantly up-regulated over 2-24 h when the C/N ratio was increased, and was significantly down-regulated after 96 h. Overall, our results further enriched the evidence that urea can stimulate cyanotoxin production, and ʟ-alanine could boost C. issatschenkoi proliferation, thus providing information for better management of aquatic systems. Moreover, by focusing on the intracellular C/N metabolic balance, this study explained the anatoxin production dynamics in C. issatschenkoi in response to different N sources.


Bacterial Toxins/metabolism , Carbon/pharmacology , Cyanobacteria/drug effects , Marine Toxins/metabolism , Nitrogen/pharmacology , Tropanes/metabolism , Alanine/pharmacology , Ammonium Compounds/pharmacology , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Nitrates/pharmacology , Proline/pharmacology , Urea/pharmacology
16.
Toxins (Basel) ; 12(11)2020 11 20.
Article En | MEDLINE | ID: mdl-33233813

Fresh-water sources of drinking water are experiencing toxic cyanobacterial blooms more frequently. Chemical oxidation is a common approach to treat cyanobacteria and their toxins. This study systematically investigates the bacterial/cyanobacterial community following chemical oxidation (Cl2, KMnO4, O3, H2O2) using high throughput sequencing. Raw water results from high throughput sequencing show that Proteobacteria, Actinobacteria, Cyanobacteria and Bacteroidetes were the most abundant phyla. Dolichospermum, Synechococcus, Microcystis and Nostoc were the most dominant genera. In terms of species, Dolichospermum sp.90 and Microcystis aeruginosa were the most abundant species at the beginning and end of the sampling, respectively. A comparison between the results of high throughput sequencing and taxonomic cell counts highlighted the robustness of high throughput sequencing to thoroughly reveal a wide diversity of bacterial and cyanobacterial communities. Principal component analysis of the oxidation samples results showed a progressive shift in the composition of bacterial/cyanobacterial communities following soft-chlorination with increasing common exposure units (CTs) (0-3.8 mg·min/L). Close cyanobacterial community composition (Dolichospermum dominant genus) was observed following low chlorine and mid-KMnO4 (287.7 mg·min/L) exposure. Our results showed that some toxin producing species may persist after oxidation whether they were dominant species or not. Relative persistence of Dolichospermum sp.90 was observed following soft-chlorination (0.2-0.6 mg/L) and permanganate (5 mg/L) oxidation with increasing oxidant exposure. Pre-oxidation using H2O2 (10 mg/L and one day contact time) caused a clear decrease in the relative abundance of all the taxa and some species including the toxin producing taxa. These observations suggest selectivity of H2O2 to provide an efficient barrier against toxin producing cyanobacteria entering a water treatment plant.


Cyanobacteria/drug effects , Oxidants/pharmacology , Biodiversity , Chlorine/pharmacology , Cyanobacteria/genetics , DNA, Bacterial/analysis , Harmful Algal Bloom/drug effects , Hydrogen Peroxide/pharmacology , Oxidation-Reduction , Ozone/pharmacology , Potassium Permanganate/pharmacology , Sequence Analysis, DNA
17.
IET Nanobiotechnol ; 14(8): 707-713, 2020 Oct.
Article En | MEDLINE | ID: mdl-33108328

In this study, the extract of two strains of cyanobacteria was used for the synthesis of silver nanoparticles (NPs). UV-vis spectroscopy, X-ray diffraction, dynamic light scattering and field emission scanning electron microscopy (FESEM) analyses were carried out to characterise the NPs. The antioxidant activity and heavy metal detection properties were investigated; moreover, their minimum inhibitory concentration and minimum bactericidal concentration against the multi-drug resistant bacteria were determined. The most abundant materials in these extracts were carbohydrates, so the biosynthesis of NPs using exopolysaccharide (EPS) was also investigated. The surface plasmon resonance of NPs had a peak at 435 nm and EPS NPs at 350-450 nm. The NPs produced by Nostoc sp. IBRC-M5064 extract revealed the face-centred cubic (fcc) structure of AgCl, while NPs of N. pruniforme showed the fcc crystalline structure of Ag3PO4 and AgCl. The FESEM showed the spherical shape of these NPs. The AgCl/Ag3PO4 colloid, in comparison with AgCl, showed better antioxidant activity and antibacterial effect. The heavy metal detection analysis of NPs revealed that the NPs of both stains involved in Hg (NO3)2 detection.


Anti-Bacterial Agents/pharmacology , Cyanobacteria/drug effects , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Phosphates/chemistry , Silver Compounds/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Colorimetry , Cyanobacteria/growth & development , Green Chemistry Technology , Microbial Sensitivity Tests , Phosphates/pharmacology , Silver Compounds/pharmacology
18.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article En | MEDLINE | ID: mdl-33053769

Free fatty acids (FFA) generated in cyanobacterial cells can be utilized for the biodiesel that is required for our sustainable future. The combination of FFA and strong light induces severe photoinhibition of photosystem II (PSII), which suppresses the production of FFA in cyanobacterial cells. In the present study, we examined the effects of exogenously added FFA on the photoinhibition of PSII in Synechocystis sp. PCC 6803. The addition of lauric acid (12:0) to cells accelerated the photoinhibition of PSII by inhibiting the repair of PSII and the de novo synthesis of D1. α-Linolenic acid (18:3) affected both the repair of and photodamage to PSII. Surprisingly, palmitic (16:0) and stearic acids (18:0) enhanced the repair of PSII by accelerating the de novo synthesis of D1 with the mitigation of the photoinhibition of PSII. Our results show chemical potential of FFA in the regulation of PSII without genetic manipulation.


Palmitic Acid/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Stearic Acids/metabolism , Cyanobacteria/drug effects , Cyanobacteria/physiology , Cyanobacteria/radiation effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Light , Palmitic Acid/pharmacology , Photosynthesis/drug effects , Stearic Acids/pharmacology , Synechocystis/drug effects , Synechocystis/physiology , Synechocystis/radiation effects
19.
PLoS One ; 15(7): e0236188, 2020.
Article En | MEDLINE | ID: mdl-32701995

Microalgae and cyanobacteria are considered as important model organisms to investigate the biology of photosynthesis; moreover, they are valuable sources of biomolecules for several biotechnological applications. Understanding the species-specific traits of photosynthetic electron transport is extremely important, because it contributes to the regulation of ATP/NADPH ratio, which has direct/indirect links to carbon fixation and other metabolic pathways and thus overall growth and biomass production. In the present work, a cuvette-based setup is developed, in which a combination of measurements of dissolved oxygen, pH, chlorophyll fluorescence and NADPH kinetics can be performed without disturbing the physiological status of the sample. The suitability of the system is demonstrated using a model cyanobacterium Synechocystis sp. PCC6803, as well as biofuel-candidate microalgae species, such as Chlorella sorokiniana, Dunaliella salina and Nannochloropsis limnetica undergoing inorganic carbon (Ci) limitation. Inorganic carbon limitation, induced by photosynthetic Ci uptake under continuous illumination, caused a decrease in the effective quantum yield of PSII (Y(II)) and loss of oxygen-evolving capacity in all species investigated here; these effects were largely recovered by the addition of NaHCO3. Detailed analysis of the dark-light and light-dark transitions of NADPH production/uptake and changes in chlorophyll fluorescence kinetics revealed species- and condition-specific responses. These responses indicate that the impact of decreased Calvin-Benson cycle activity on photosynthetic electron transport pathways involving several sections of the electron transport chain (such as electron transfer via the QA-QB-plastoquinone pool, the redox state of the plastoquinone pool) can be analyzed with high sensitivity in a comparative manner. Therefore, the integrated system presented here can be applied for screening for specific traits in several significant species at different stages of inorganic carbon limitation, a condition that strongly impacts primary productivity.


Carbon/pharmacology , Cyanobacteria/physiology , Inorganic Chemicals/pharmacology , Microalgae/physiology , Photosynthesis , Chlorella/drug effects , Chlorella/physiology , Chlorophyll/metabolism , Cyanobacteria/drug effects , Electron Transport/drug effects , Fluorescence , Kinetics , Microalgae/drug effects , NADP/metabolism , Oxygen/metabolism , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Quantum Theory , Synechocystis/drug effects , Synechocystis/physiology
20.
BMC Microbiol ; 20(1): 206, 2020 07 13.
Article En | MEDLINE | ID: mdl-32660415

BACKGROUND: Cyanobacteria are well known for their inherent ability to serve as atmospheric nitrogen fixers and as bio-fertilizers; however, increased contaminants in aquatic ecosystem significantly decline the growth and function of these microbes in paddy fields. Plant growth regulators play beneficial role in combating the negative effects induced by heavy metals in photoautotroph. Current study evaluates the potential role of indole acetic acid (IAA; 290 nm) and kinetin (KN; 10 nm) on growth, nitrogen metabolism and biochemical constituents of two paddy field cyanobacteria Nostoc muscorum ATCC 27893 and Anabaena sp. PCC 7120 exposed to two concentrations of chromium (CrVI; 100 µM and 150 µM). RESULTS: Both the tested doses of CrVI declined the growth, ratio of chlorophyll a to carotenoids (Chl a/Car), contents of phycobiliproteins; phycocyanin (PC), allophycocyanin (APC), and phycoerythrin (PE), protein and carbohydrate associated with decrease in the inorganic nitrogen (nitrate; NO3- and nitrite; NO2-) uptake rate that results in the decrease in nitrate and ammonia assimilating enzymes; nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT) except glutamate dehydrogenase (GDH). However, exogenous supplementation of IAA and KN exhibited alleviating effects on growth, nitrogen metabolism and exopolysaccharide (EPS) (first protective barrier against metal toxicity) contents in both the cyanobacteria, which probably occurred as a result of a substantial decrease in the Cr uptake that lowers the damaging effects. CONCLUSION: Overall result of the present study signifies affirmative role of the phytohormone in minimizing the toxic effects induced by chromium by stimulating the growth of cyanobacteria thereby enhancing its ability as bio-fertilizer that improved fertility and productivity of soil even in metal contaminated condition.


Bacterial Proteins/metabolism , Chromium/toxicity , Cyanobacteria/growth & development , Plant Growth Regulators/pharmacology , Polysaccharides, Bacterial/metabolism , Anabaena/chemistry , Anabaena/drug effects , Anabaena/growth & development , Carotenoids/analysis , Chlorophyll A/analysis , Cyanobacteria/chemistry , Cyanobacteria/drug effects , Gene Expression Regulation, Bacterial/drug effects , Indoleacetic Acids/pharmacology , Kinetin/pharmacology , Nitrogen/metabolism , Phycocyanin/analysis , Stress, Physiological
...