Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.025
Filtrar
2.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963813

RESUMEN

Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell-cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death. Together, these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.


Asunto(s)
Ácidos y Sales Biliares , Proliferación Celular , Hepatectomía , Hepatocitos , Regeneración Hepática , Ratones Noqueados , Receptores de Calcitriol , Animales , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/fisiología , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Masculino , Ratones , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Ciclina D1/metabolismo , Ciclina D1/genética , Ciclina E/metabolismo , Ciclina E/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Ratones Endogámicos C57BL , Vitamina D/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Oncogénicas
3.
Cell Cycle ; 23(5): 613-627, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38752903

RESUMEN

Ubiquitin like with PHD and ring finger domains 2 (UHRF2) regulates the cell cycle and epigenetics as a multi-domain protein sharing homology with UHRF1. UHRF1 functions with DNMT1 to coordinate daughter strand methylation during DNA replication, but UHRF2 can't perform this function, and its roles during cell cycle progression are not well defined. UHRF2 role as an oncogene vs. tumor suppressor differs in distinct cell types. UHRF2 interacts with E2F1 to control Cyclin E1 (CCNE1) transcription. UHRF2 also functions in a reciprocal loop with Cyclin E/CDK2 during G1, first as a direct target of CDK2 phosphorylation, but also as an E3-ligase with direct activity toward both Cyclin E and Cyclin D. In this study, we demonstrate that UHRF2 is expressed in early G1 following either serum stimulation out of quiescence or in cells transiting directly out of M-phase, where UHRF2 protein is lost. Further, UHRF2 depletion in G2/M is reversed with a CDK1 specific inhibitor. UHRF2 controls expression levels of cyclins and CDK inhibitors and controls its own transcription in a negative-feedback loop. Deletion of UHRF2 using CRISPR/Cas9 caused a delay in passage through each cell cycle phase. UHRF2 loss culminated in elevated levels of cyclins but also the CDK inhibitor p27KIP1, which regulates G1 passage, to reduce retinoblastoma phosphorylation and increase the amount of time required to reach G1/S passage. Our data indicate that UHRF2 is a central regulator of cell-cycle pacing through its complex regulation of cell cycle gene expression and protein stability.


Asunto(s)
Ciclina E , Fase G1 , Mitosis , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Ciclina E/metabolismo , Ciclina E/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Ciclo Celular/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Fosforilación , Proteínas Oncogénicas
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167250, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763409

RESUMEN

Despite considerable therapeutic advancements, the global survival rate for lung cancer patients remains poor, posing challenges in developing an effective treatment strategy. In many cases, microRNAs (miRNAs) exhibit abnormal expression levels in cancers, including lung cancer. Dysregulated miRNAs often play a crucial role in the development and progression of cancer. Therefore, understanding the mechanisms underlying aberrant miRNA expression during carcinogenesis may provide crucial clues to develop novel therapeutics. In this study, we identified and cloned a novel miRNA, hsa-miR-CHA2, which is abnormally downregulated in non-small cell lung cancer (NSCLC)-derived cell lines and tissues of patients with NSCLC. Furthermore, we found that hsa-miR-CHA2 regulates the post-transcriptional levels of Cyclin E1 (CCNE1) by binding to the 3'-UTR of CCNE1 mRNA. CCNE1, a cell cycle regulator involved in the G1/S transition, is often amplified in various cancers. Notably, hsa-miR-CHA2 overexpression led to the alteration of the Rb-E2F pathway, a significant signaling pathway in the cell cycle, by targeting CCNE1 in A549 and SK-LU-1 cells. Subsequently, we confirmed that hsa-miR-CHA2 induced G1-phase arrest and exhibited an anti-proliferative effect by targeting CCNE1. Moreover, in subcutaneous xenograft mouse models, intra-tumoral injection of polyplexed hsa-miR-CHA2 mimic suppressed tumor growth and development. In conclusion, hsa-miR-CHA2 exhibited an anticancer effect by targeting CCNE1 both in vitro and in vivo. These findings suggest the potential role of hsa-miR-CHA2 as an important regulator of cell proliferation in molecular-targeted therapy for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ciclina E , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , MicroARNs , Proteínas Oncogénicas , Humanos , Ciclina E/genética , Ciclina E/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Ratones , Proliferación Celular/genética , Línea Celular Tumoral , Células A549 , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Regiones no Traducidas 3'/genética , Ratones Endogámicos BALB C , Transducción de Señal
5.
Ann Diagn Pathol ; 72: 152320, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38703529

RESUMEN

CIC-rearranged sarcoma (CRS) is a group of high-grade undifferentiated small round cell sarcomas examined as a separate entity in the current WHO classification; since it shows more aggressive clinical behavior and distinct morphological and molecular features compared to Ewing sarcoma (ES). As CCNE1 expression is associated with tumor growth in CIC::DUX4 sarcomas, we aimed to demonstrate the value of cyclin E1 expression in CRS. Cyclin E1 immunohistochemistry and break-apart FISH for EWSR1 and CIC gene rearrangements were performed on 3-mm tissue microarrays composed of 40 small round cell tumors. Five cases were classified as CRS, whereas 22 were ES and 13 were unclassified (EWSR1-/CIC-). Among all three diagnostic groups, we found cyclin E1 expression level to be higher in CRS (80 %) and unclassified groups (61.5 %) compared to ES (4.5 %, p < 0.001). In addition, high cyclin E1 expression levels were associated with higher mean age at diagnosis, presence of atypical histology and myxoid stroma, low CD99 expression, and presence of metastasis at diagnosis. The sensitivity and specificity of high cyclin E1 expression in detecting non-ES cases were 95.5 % and 66.7 %, respectively. However, the correlation between cyclin E1 expression level and survival was not statistically significant. This is the first study that shows cyclin E1 immunohistochemical expression in EWSR1-negative undifferentiated small cell sarcomas, particularly CRS.


Asunto(s)
Biomarcadores de Tumor , Ciclina E , Reordenamiento Génico , Proteínas Oncogénicas , Proteínas Represoras , Humanos , Masculino , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Femenino , Adulto , Ciclina E/metabolismo , Ciclina E/genética , Persona de Mediana Edad , Adolescente , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Adulto Joven , Niño , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Inmunohistoquímica/métodos , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Sarcoma de Ewing/genética , Sarcoma/patología , Sarcoma/metabolismo , Sarcoma/genética , Sarcoma/diagnóstico , Hibridación Fluorescente in Situ/métodos , Anciano , Preescolar , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Células Pequeñas/metabolismo , Sarcoma de Células Pequeñas/genética , Sarcoma de Células Pequeñas/patología , Sarcoma de Células Pequeñas/diagnóstico
6.
Aging (Albany NY) ; 16(9): 8019-8030, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713155

RESUMEN

Aurora kinase B (AURKB) initiates the phosphorylation of serine 10 on histone H3 (pH3S10), a crucial process for chromosome condensation and cytokinesis in mammalian mitosis. Nonetheless, the precise mechanisms through which AURKB regulates the cell cycle and contributes to tumorigenesis as an oncogenic factor in colorectal cancer (CRC) remain unclear. Here, we report that AURKB was highly expressed and positively correlated with Ki-67 expression in CRC. The abundant expression of AURKB promotes the growth of CRC cells and xenograft tumors in animal model. AURKB knockdown substantially suppressed CRC proliferation and triggered cell cycle arrest in G2/M phase. Interestingly, cyclin E1 (CCNE1) was discovered as a direct downstream target of AURKB and functioned synergistically with AURKB to promote CRC cell proliferation. Mechanically, AURKB activated CCNE1 expression by triggering pH3S10 in the promoter region of CCNE1. Furthermore, it was showed that the inhibitor specific for AURKB (AZD1152) can suppress CCNE1 expression in CRC cells and inhibit tumor cell growth. To conclude, this research demonstrates that AURKB accelerated the tumorigenesis of CRC through its potential to epigenetically activate CCNE1 expression, suggesting AURKB as a promising therapeutic target in CRC.


Asunto(s)
Aurora Quinasa B , Proliferación Celular , Neoplasias Colorrectales , Ciclina E , Histonas , Proteínas Oncogénicas , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ciclina E/metabolismo , Ciclina E/genética , Histonas/metabolismo , Aurora Quinasa B/metabolismo , Aurora Quinasa B/genética , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Fosforilación , Animales , Proliferación Celular/genética , Ratones , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Serina/metabolismo , Progresión de la Enfermedad , Masculino , Ratones Desnudos , Femenino
7.
Front Immunol ; 15: 1388690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803495

RESUMEN

Introduction: Psoriasis is a chronic skin disease characterized by unique scaling plaques. However, during the acute phase, psoriatic lesions exhibit eczematous changes, making them difficult to distinguish from atopic dermatitis, which poses challenges for the selection of biological agents. This study aimed to identify potential diagnostic genes in psoriatic lesions and investigate their clinical significance. Methods: GSE182740 datasets from the GEO database were analyzed for differential analysis; machine learning algorithms (SVM-RFE and LASSO regression models) are used to screen for diagnostic markers; CIBERSORTx is used to determine the dynamic changes of 22 different immune cell components in normal skin lesions, psoriatic non-lesional skin, and psoriatic lesional skin, as well as the expression of the diagnostic genes in 10 major immune cells, and real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry are used to validate results. Results: We obtained 580 differentially expressed genes (DEGs) in the skin lesion and non-lesion of psoriasis patients, 813 DEGs in mixed patients between non-lesions and lesions, and 96 DEGs in the skin lesion and non-lesion of atopic dermatitis, respectively. Then 144 specific DEGs in psoriasis via a Veen diagram were identified. Ultimately, UGGT1, CCNE1, MMP9 and ARHGEF28 are identified for potential diagnostic genes from these 144 specific DEGs. The value of the selected diagnostic genes was verified by receiver operating characteristic (ROC) curves with expanded samples. The the area under the ROC curve (AUC) exceeded 0.7 for the four diagnosis genes. RT-qPCR results showed that compared to normal human epidermis, the expression of UGGT1, CCNE1, and MMP9 was significantly increased in patients with psoriasis, while ARHGEF28 expression was significantly decreased. Notably, the results of CIBERSORTx showed that CCNE1 was highly expressed in CD4+ T cells and neutrophils, ARHGEF28 was also expressed in mast cells. Additionally, CCNE1 was strongly correlated with IL-17/CXCL8/9/10 and CCL20. Immunohistochemical results showed increased nuclear expression of CCNE1 in psoriatic epidermal cells relative to normal. Conclusion: Based on the performance of the four genes in ROC curves and their expression in immune cells from patients with psoriasis, we suggest that CCNE1 possess higher diagnostic value.


Asunto(s)
Biomarcadores , Aprendizaje Automático , Psoriasis , Piel , Psoriasis/inmunología , Psoriasis/diagnóstico , Psoriasis/genética , Humanos , Piel/inmunología , Piel/patología , Piel/metabolismo , Perfilación de la Expresión Génica , Dermatitis Atópica/inmunología , Dermatitis Atópica/diagnóstico , Dermatitis Atópica/genética , Transcriptoma , Bases de Datos Genéticas , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Oncogénicas , Ciclina E
8.
Cancer Res Commun ; 4(6): 1399-1409, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38717153

RESUMEN

Cyclin E overexpression as a result of CCNE1 amplification is a critical driver of genomic instability in gastric cancer, but its clinical implication is largely unknown. Thus, we integrated genomic, transcriptomic, and immune profiling analysis of 7,083 esophagogastric tumors and investigated the impact of CCNE1 amplification on molecular features and treatment outcomes. We identified CCNE1 amplification in 6.2% of esophageal adenocarcinoma samples, 7.0% of esophagogastric junction carcinoma, 4.2% of gastric adenocarcinoma samples, and 0.8% of esophageal squamous cell carcinoma. Metastatic sites such as lymph node and liver showed an increased frequency of CCNE1 amplification relative to primary tumors. Consistent with a chromosomal instability phenotype, CCNE1 amplification was associated with decreased CDH1 mutation and increased TP53 mutation and ERBB2 amplification. We observed no differences in immune biomarkers such as PD-L1 expression and tumor mutational burden comparing CCNE1-amplified and nonamplified tumors, although CCNE1 amplification was associated with changes in immune populations such as decreased B cells and increased M1 macrophages from transcriptional analysis. Real-world survival analysis demonstrated that patients with CCNE1-amplified gastric cancer had worse survival after trastuzumab for HER2-positive tumors, but better survival after immunotherapy. These data suggest that CCNE1-amplified gastric cancer has a distinct molecular and immune profile with important therapeutic implications, and therefore further investigation of CCNE1 amplification as a predictive biomarker is warranted. SIGNIFICANCE: Advanced gastric cancer has a relatively dismal outcome with a 5-year overall survival of less than 10%. Furthermore, while comprehensive molecular analyses have established molecular subtypes within gastric cancers, biomarkers of clinical relevance in this cancer type are lacking. Overall, this study demonstrates that CCNE1 amplification is associated with a distinct molecular profile in gastric cancer and may impact response to therapy, including targeted therapy and/or immunotherapy.


Asunto(s)
Ciclina E , Neoplasias Esofágicas , Amplificación de Genes , Proteínas Oncogénicas , Neoplasias Gástricas , Humanos , Ciclina E/genética , Proteínas Oncogénicas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/patología , Receptor ErbB-2/genética , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Biomarcadores de Tumor/genética , Mutación , Masculino , Unión Esofagogástrica/patología , Femenino , Trastuzumab/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/mortalidad , Antígenos CD/genética , Cadherinas
9.
Aging (Albany NY) ; 16(8): 7009-7021, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38637117

RESUMEN

BACKGROUND: Reduced numbers and dysfunction of thymic epithelial cells (TECs) are important factors of thymic degeneration. Previous studies have found that umbilical cord mesenchymal stem cells (UCMSCs) reverse the structure and function of the senescent thymus in vivo. However, the transcriptomic regulation mechanism is unclear. METHODS: TECs were cultured with H2O2 for 72 hours to induce senescence. UCMSCs were cocultured with senescent TECs for 48 hours to detect SA-ß-gal, P16 and Ki67. The cocultured TECs were collected for lncRNA, mRNA and miRNA sequencing to establish a competitive endogenous regulatory network (ceRNA). And RT-qPCR, immunofluorescence staining, and western blot were used to identified key genes. RESULTS: Our results showed that H2O2 induced TEC aging and that UCMSCs reversed these changes. Compared with those in aged TECs, 2260 DE mRNAs, 1033 DE lncRNAs and 67 DE miRNAs were differentially expressed, and these changes were reversed by coculturing the cells with UCMSCs. Differential mRNA enrichment analysis of ceRNA regulation revealed that the PI3K-AKT pathway was a significant signaling pathway. UCMSC coculture upregulated VEGFA, which is the upstream factor of the PI3K-AKT signaling pathway, and the expression of the key proteins PI3K and AKT. Thus, the expression of the cell cycle suppressor P27, which is downstream of the PI3K-AKT signaling pathway, was downregulated, while the expression of the cell cycle regulators CDK2 and CCNE was upregulated. CONCLUSION: UCMSC coculture upregulated the expression of VEGFA, activated the PI3K-AKT signaling pathway, increased the expression of CDK2 and CCNE, decreased the expression of P27, and promoted the proliferation of TECs.


Asunto(s)
Senescencia Celular , Técnicas de Cocultivo , Células Epiteliales , Perfilación de la Expresión Génica , Células Madre Mesenquimatosas , MicroARNs , Proteínas Oncogénicas , Timo , Cordón Umbilical , Células Madre Mesenquimatosas/metabolismo , Humanos , Células Epiteliales/metabolismo , Cordón Umbilical/citología , Timo/citología , Timo/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Ciclina E/metabolismo , Ciclina E/genética , Biomarcadores/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/farmacología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Cultivadas , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética
10.
Exp Dermatol ; 33(4): e15071, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566477

RESUMEN

Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.


Asunto(s)
Melanoma , MicroARNs , Humanos , Animales , Ratones , MicroARNs/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/metabolismo , Línea Celular Tumoral , ARN Circular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Ciclina E/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo
11.
Cell Rep ; 43(4): 114116, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625790

RESUMEN

Overexpression of Cyclin E1 perturbs DNA replication, resulting in DNA lesions and genomic instability. Consequently, Cyclin E1-overexpressing cancer cells increasingly rely on DNA repair, including RAD52-mediated break-induced replication during interphase. We show that not all DNA lesions induced by Cyclin E1 overexpression are resolved during interphase. While DNA lesions upon Cyclin E1 overexpression are induced in S phase, a significant fraction of these lesions is transmitted into mitosis. Cyclin E1 overexpression triggers mitotic DNA synthesis (MiDAS) in a RAD52-dependent fashion. Chemical or genetic inactivation of MiDAS enhances mitotic aberrations and persistent DNA damage. Mitosis-specific degradation of RAD52 prevents Cyclin E1-induced MiDAS and reduces the viability of Cyclin E1-overexpressing cells, underscoring the relevance of RAD52 during mitosis to maintain genomic integrity. Finally, analysis of breast cancer samples reveals a positive correlation between Cyclin E1 amplification and RAD52 expression. These findings demonstrate the importance of suppressing mitotic defects in Cyclin E1-overexpressing cells through RAD52.


Asunto(s)
Ciclina E , Inestabilidad Genómica , Mitosis , Proteínas Oncogénicas , Proteína Recombinante y Reparadora de ADN Rad52 , Humanos , Ciclina E/metabolismo , Ciclina E/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Replicación del ADN , Línea Celular Tumoral , Daño del ADN , ADN/metabolismo , ADN/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología
12.
Aging (Albany NY) ; 16(5): 4631-4653, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38446584

RESUMEN

Psoriasis is a chronic inflammatory proliferative dermatological ailment that currently lacks a definitive cure. Employing data mining techniques, this study identified a collection of substantially downregulated miRNAs (top 10). Notably, 32 targets were implicated in both the activation of the IL-17 signaling pathway and cell cycle dysregulation. In silico analysis revealed that one of these miRNAs, miR-26a-5p, is a highly conserved cross-species miRNA. Strikingly, the miR-26a-5p sequences in humans and mice are identical, and mmu-miR-26a-5p was found to target the same 7 cell cycle targets as its human counterpart, hsa-miR-26a-5p. Among these targets, CDC6 and CCNE1 were the most effective targets of miR-26a-5p, which was further validated in vitro using a dual luciferase reporter system and qPCR assay. The therapeutic assessment of miR-26a-5p revealed its remarkable efficacy in inhibiting the proliferation and G1/S transition of keratinocytes (HaCaT and HEKs) in vitro. In vivo experiments corroborated these findings, demonstrating that miR-26a-5p effectively suppressed imiquimod (IMQ)-induced psoriasis-like skin lesions in mice over an 8-day treatment period. Histological analysis via H&E staining revealed that miR-26a-5p treatment resulted in reduced keratinocyte thickness and immune cell infiltration into the spleens of IMQ-treated mice. Mechanistic investigations revealed that miR-26a-5p induced a cascade of downregulated genes associated with the IL-23/IL-17A axis, which is known to be critical in psoriasis pathogenesis, while concomitantly suppressing CDC6 and CCNE1 expression. These findings were corroborated by qPCR and Western blot analyses. Collectively, our study provides compelling evidence supporting the therapeutic potential of miR-26a-5p as a safe and reliable endogenous small nucleic acid for the treatment of psoriasis.


Asunto(s)
MicroARNs , Psoriasis , Humanos , Animales , Ratones , Queratinocitos/metabolismo , MicroARNs/metabolismo , Psoriasis/genética , Psoriasis/tratamiento farmacológico , Transducción de Señal , Proliferación Celular/genética , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Oncogénicas/metabolismo , Ciclina E/genética
13.
Clin Cancer Res ; 30(11): 2461-2474, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38536067

RESUMEN

PURPOSE: Shallow whole-genome sequencing (sWGS) can detect copy-number (CN) aberrations. In high-grade serous ovarian cancer (HGSOC) sWGS identified CN signatures such as homologous recombination deficiency (HRD) to direct therapy. We applied sWGS with targeted sequencing to p53abn endometrial cancers to identify additional prognostic stratification and therapeutic opportunities. EXPERIMENTAL DESIGN: sWGS and targeted panel sequencing was performed on formalin-fixed, paraffin-embedded p53abn endometrial cancers. CN alterations, mutational data and CN signatures were derived, and associations to clinicopathologic and outcomes data were assessed. RESULTS: In 187 p53abn endometrial cancers, 5 distinct CN signatures were identified. Signature 5 was associated with BRCA1/2 CN loss with features similar to HGSOC HRD signature. Twenty-two percent of potential HRD cases were identified, 35 patients with signature 5, and 8 patients with BRCA1/2 somatic mutations. Signatures 3 and 4 were associated with a high ploidy state, and CCNE1, ERBB2, and MYC amplifications, with mutations in PIK3CA enriched in signature 3. We observed improved overall survival (OS) for patients with signature 2 and worse OS for signatures 1 and 3. Twenty-eight percent of patients had CCNE1 amplification and this subset was enriched with carcinosarcoma histotype. Thirty-four percent of patients, across all histotypes, had ERBB2 amplification and/or HER2 overexpression on IHC, which was associated with worse outcomes. Mutations in PPP2R1A (29%) and FBXW7 (16%) were among the top 5 most common mutations. CONCLUSIONS: sWGS and targeted sequencing identified therapeutic opportunities in 75% of patients with p53abn endometrial cancer. Further research is needed to determine the efficacy of treatments targeting these identified pathways within p53abn endometrial cancers.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias Endometriales , Proteína 7 que Contiene Repeticiones F-Box-WD , Mutación , Proteína p53 Supresora de Tumor , Secuenciación Completa del Genoma , Humanos , Femenino , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/mortalidad , Neoplasias Endometriales/terapia , Proteína p53 Supresora de Tumor/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Persona de Mediana Edad , Anciano , Proteína BRCA2/genética , Proteína BRCA1/genética , Pronóstico , Fosfatidilinositol 3-Quinasa Clase I/genética , Ciclina E/genética , Adulto , Ubiquitina-Proteína Ligasas/genética , Biomarcadores de Tumor/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/mortalidad , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/terapia , Anciano de 80 o más Años , Proteínas Oncogénicas
14.
PLoS One ; 19(2): e0298884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394175

RESUMEN

The methyltransferase N6AMT1 has been associated with the progression of different pathological conditions, such as tumours and neurological malfunctions, but the underlying mechanism is not fully understood. Analysis of N6AMT1-depleted cells revealed that N6AMT1 is involved in the cell cycle and cell proliferation. In N6AMT1-depleted cells, the cell doubling time was increased, and cell progression out of mitosis and the G0/G1 and S phases was disrupted. It was discovered that in N6AMT1-depleted cells, the transcription of cyclin E was downregulated, which indicates that N6AMT1 is involved in the regulation of cyclin E transcription. Understanding the functions and importance of N6AMT1 in cell proliferation and cell cycle regulation is essential for developing treatments and strategies to control diseases that are associated with N6AMT1.


Asunto(s)
Metiltransferasas , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica) , Metiltransferasas/genética , Metiltransferasas/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Ciclina E/genética , Ciclo Celular , División Celular
15.
Mol Oncol ; 18(1): 6-20, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37067201

RESUMEN

Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed and accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Inestabilidad Genómica , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo
16.
Organogenesis ; 19(1): 2285836, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38031805

RESUMEN

Prostate cancer (PCa) poses a serious burden to men. Interferon-ß (IFN-ß) is implicated in cancer cell growth. This study hence explored the regulation of IFN-ß-modified human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) in PCa cells. In vitro-cultured hUCMSCs were transfected with pcDNA3.1-IFN-ß plasmid or IFN-ß siRNA. hUCMSC-Exos were extracted by ultracentrifugation and identified. PCa cells (PC3 and LNCap) were treated with Exos. Cellular internalization of Exos by cells was detected by uptake assay. Cell proliferation, cycle, and apoptosis were evaluated by CCK-8, EdU staining, and flow cytometry. Levels of cell cycle-related proteins (cyclin D/cyclin E) were determined by Western blot. The effect of IFN-ß-modified hUCMSC-Exos in vivo was analyzed. IFN-ß-modified hUCMSC-Exos (Exooe-IFN-ß or Exosi-IFN-ß) were successfully isolated. IFN-ß was encapsulated in Exos, and PCa cells could uptake Exos. After treating with Exooe-IFN-ß, PCa cell proliferation was impeded, the percentage of cells in the G0/G1 phase, cyclin D/cyclin E levels, and cell apoptotic rate were elevated, while cells treated with Exooe-IFN-ß exhibited contrary trends. IFN-ß-modified hUCMSC-Exos reduced PCa tumor size and weight in vivo. Conjointly, IFN-ß-modified hUCMSC-Exos suppress PCa cell proliferation and facilitate apoptosis.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Neoplasias de la Próstata , Masculino , Humanos , Ciclina E/metabolismo , Interferón beta/metabolismo , Exosomas/genética , Exosomas/metabolismo , Apoptosis/genética , Factores Inmunológicos/metabolismo , Neoplasias de la Próstata/metabolismo , Proliferación Celular , Cordón Umbilical/metabolismo , Ciclina D/metabolismo
17.
Pituitary ; 26(5): 597-610, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37642928

RESUMEN

PURPOSE: Cushing's disease (CD) results from autonomous adrenocorticotropic hormone (ACTH) secretion by corticotroph adenomas, leading to excessive cortisol production, ultimately affecting morbidity and mortality. Pasireotide is the only FDA approved tumor directed treatment for CD, but it is effective in only about 25% of patients, and is associated with a high rate of hyperglycemia. Neuromedin B (NMB), a member of the bombesin-like peptide family, regulates endocrine secretion and cell proliferation. Here, we assessed NMB and NMB receptor (NMBR) expression in human corticotroph adenomas and the effects of NMBR antagonist PD168368 on murine and human corticotroph tumors. METHODS: To investigate NMB and NMBR expression, real-time qPCR and immunostaining on human pathological specimens of corticotroph, non-functional and somatotroph adenomas were performed. The effects of PD168368 on hormone secretion and cell proliferation were studied in vitro, in vivo and in seven patient-derived corticotroph adenoma cells. NMB and NMBR were expressed in higher extent in human corticotroph adenomas compared with non-functional or somatotroph adenomas. RESULTS: In murine AtT-20 cells, PD168368 reduced proopiomelanocortin (Pomc) mRNA/protein expression and ACTH secretion as well as cell proliferation. In mice with tumor xenografts, tumor growth, ACTH and corticosterone were downregulated by PD168368. In patient-derived adenoma cells, PD168368 reduced POMC mRNA expression in four out of seven cases and ACTH secretion in two out of five cases. A PD168368-mediated cyclin E suppression was also identified in AtT-20 and patient-derived cells. CONCLUSION: NMBR antagonist represents a potential treatment for CD and its effect may be mediated by cyclin E suppression.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH , Adenoma , Adenoma Hipofisario Secretor de Hormona del Crecimiento , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Animales , Humanos , Ratones , Adenoma Hipofisario Secretor de ACTH/tratamiento farmacológico , Adenoma Hipofisario Secretor de ACTH/metabolismo , Adenoma/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Ciclina E , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptores de Bombesina/metabolismo , Receptores Acoplados a Proteínas G , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Mol Cell ; 83(20): 3720-3739.e8, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37591242

RESUMEN

Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.


Asunto(s)
Anemia de Fanconi , Neoplasias , Humanos , Supervivencia Celular/genética , Cromatina/genética , Ciclina E/genética , Ciclina E/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Neoplasias/genética
19.
Cell Death Dis ; 14(8): 549, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620309

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most severe malignancies with increasing incidence and limited treatment options. Typically, HCC develops during a multistep process involving chronic liver inflammation and liver fibrosis. The latter is characterized by the accumulation of extracellular matrix produced by Hepatic Stellate Cells (HSCs). This process involves cell cycle re-entry and proliferation of normally quiescent HSCs in an ordered sequence that is highly regulated by cyclins and associated cyclin-dependent kinases (CDKs) such as the Cyclin E1 (CCNE1)/CDK2 kinase complex. In the present study, we examined the role of Cyclin E1 (Ccne1) and Cdk2 genes in HSCs for liver fibrogenesis and hepatocarcinogenesis. To this end, we generated conditional knockout mice lacking Ccne1 or Cdk2 specifically in HSCs (Ccne1∆HSC or Cdk2∆HSC). Ccne1∆HSC mice showed significantly reduced liver fibrosis formation and attenuated HSC activation in the carbon tetrachloride (CCl4) model. In a combined model of fibrosis-driven hepatocarcinogenesis, Ccne1∆HSC mice revealed decreased HSC activation even after long-term observation and substantially reduced tumor load in the liver when compared to wild-type controls. Importantly, the deletion of Cdk2 in HSCs also resulted in attenuated liver fibrosis after chronic CCl4 treatment. Single-cell RNA sequencing revealed that only a small fraction of HSCs expressed Ccne1/Cdk2 at a distinct time point after CCl4 treatment. In summary, we provide evidence that Ccne1 expression in a small population of HSCs is sufficient to trigger extensive liver fibrosis and hepatocarcinogenesis in a Cdk2-dependent manner. Thus, HSC-specific targeting of Ccne1 or Cdk2 in patients with liver fibrosis and high risk for HCC development could be therapeutically beneficial.


Asunto(s)
Carcinoma Hepatocelular , Ciclina E , Cirrosis Hepática , Neoplasias Hepáticas , Animales , Ratones , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Células Estrelladas Hepáticas , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Ciclina E/genética
20.
Cell Biochem Biophys ; 81(3): 569-576, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37572218

RESUMEN

Colorectal cancer is a malignant tumor with higher morbidity and mortality. The purpose of this study is to investigate whether inhibition of Protein Kinase, Membrane Associated Tyrosine/Threonine 1 (PKMYT1) affects tumor cell proliferation, survival and migration in colon tumors with high Cyclin E1 (CCNE1) expression. PcDNA3.1-CCNE1 vector and si-PKMYT1 were transfected in SW480 cells by Lipofectamine 2000. Q-PCR and western blot assay were processed to detect the expression. Transwell assay and Edu assay were undertaken to verify the migration and proliferation. CCNE1 promotes the proliferation and migration of SW480. Silencing of PKMYT1 inhibited the proliferation of tumor cells. Silencing the expression of PKMYT1 under the premise of overexpression of CCNE1, the level of Cyclin Dependent Kinase 1 (CDK1)-PT14 was reduced, indicating that the cell cycle was blocked. The expression of γH2AX increased significantly, indicating that the DDR pathway of tumor cells was activated and DNA damage accumulated. The results of immunofluorescence microscopy showed significantly increased expression of DNA damage-associated marker (γH2AX: H2AX Variant Histone). In CCNE1 amplificated colorectal tumor cells, knockdown of PKMYT1 reduced cells in S phase, inhibited cell proliferation and promoted cell apoptosis, confirming that PKMYT1 was a potential therapeutic target for colorectal tumor. This study may verify a potential therapeutic target and provide a new idea for the treatment of colorectal cancer in the future.


Asunto(s)
Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...