Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.592
1.
Bioorg Chem ; 147: 107403, 2024 Jun.
Article En | MEDLINE | ID: mdl-38691909

A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).


Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors , Protein Kinase Inhibitors , Pyrazoles , Thiourea , Urea , Vascular Endothelial Growth Factor Receptor-2 , Humans , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Molecular Structure , Urea/pharmacology , Urea/chemistry , Urea/analogs & derivatives , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Drug Discovery , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis
2.
Sci Rep ; 14(1): 11291, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760355

In the current study, we utilized molecular modeling and simulation approaches to define putative potential molecular targets for Burdock Inulin, including inflammatory proteins such as iNOS, COX-2, TNF-alpha, IL-6, and IL-1ß. Molecular docking results revealed potential interactions and good binding affinity for these targets; however, IL-1ß, COX-2, and iNOS were identified as the best targets for Inulin. Molecular simulation-based stability assessment demonstrated that inulin could primarily target iNOS and may also supplementarily target COX-2 and IL-1ß during DSS-induced colitis to reduce the role of these inflammatory mechanisms. Furthermore, residual flexibility, hydrogen bonding, and structural packing were reported with uniform trajectories, showing no significant perturbation throughout the simulation. The protein motions within the simulation trajectories were clustered using principal component analysis (PCA). The IL-1ß-Inulin complex, approximately 70% of the total motion was attributed to the first three eigenvectors, while the remaining motion was contributed by the remaining eigenvectors. In contrast, for the COX2-Inulin complex, 75% of the total motion was attributed to the eigenvectors. Furthermore, in the iNOS-Inulin complex, the first three eigenvectors contributed to 60% of the total motion. Furthermore, the iNOS-Inulin complex contributed 60% to the total motion through the first three eigenvectors. To explore thermodynamically favorable changes upon mutation, motion mode analysis was carried out. The Free Energy Landscape (FEL) results demonstrated that the IL-1ß-Inulin achieved a single conformation with the lowest energy, while COX2-Inulin and iNOS-Inulin exhibited two lowest-energy conformations each. IL-1ß-Inulin and COX2-Inulin displayed total binding free energies of - 27.76 kcal/mol and - 37.78 kcal/mol, respectively, while iNOS-Inulin demonstrated the best binding free energy results at - 45.89 kcal/mol. This indicates a stronger pharmacological potential of iNOS than the other two complexes. Thus, further experiments are needed to use inulin to target iNOS and reduce DSS-induced colitis and other autoimmune diseases.


Cyclooxygenase 2 , Interleukin-1beta , Inulin , Molecular Docking Simulation , Nitric Oxide Synthase Type II , Inulin/chemistry , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/chemistry , Interleukin-1beta/metabolism , Animals , Molecular Dynamics Simulation , Colitis/chemically induced , Colitis/metabolism , Colitis/prevention & control , Protein Binding , Hydrogen Bonding , Mice , Models, Molecular , Tumor Necrosis Factor-alpha/metabolism
3.
Bioorg Chem ; 147: 107393, 2024 Jun.
Article En | MEDLINE | ID: mdl-38691908

Cyclooxygenase-2 plays a vital role in inflammation by catalyzing arachidonic acid conversion toward prostaglandins, making it a prime therapeutic objective. Selective COX-2 inhibitors represent significant progress in anti-inflammatory therapy, offering improved efficacy and fewer side effects. This study describes the synthesis of novel anti-inflammatory compounds from established pharmaceutically marketed agents like fenamates III-V and ibuprofen VI. Through rigorous in vitro testing, compounds 7b-c, and 12a-b demonstrated substantial in vitro selective inhibition, with IC50 values of 0.07 to 0.09 µM, indicating potent pharmacological activity. In vivo assessment, particularly focusing on compound 7c, revealed significant anti-inflammatory effects. Markedly, it demonstrated the highest inhibition of paw thickness (58.62 %) at the 5-hr mark compared to the carrageenan group, indicating its potency in mitigating inflammation. Furthermore, it exhibited a rapid onset of action, with a 54.88 % inhibition observed at the 1-hr mark. Subsequent comprehensive evaluations encompassing analgesic efficacy, histological characteristics, and toxicological properties indicated that compound 7c did not induce gastric ulcers, in contrast to the ulcerogenic tendency associated with mefenamic acid. Moreover, compound 7c underwent additional investigations through in silico methodologies such as molecular modelling, field alignment, and density functional theory. These analyses underscored the therapeutic potential and safety profile of this novel compound, warranting further exploration and development in the realm of pharmaceutical research.


Anti-Inflammatory Agents, Non-Steroidal , Carrageenan , Cyclooxygenase 2 Inhibitors , Cyclooxygenase 2 , Fenamates , Ibuprofen , Ibuprofen/pharmacology , Ibuprofen/chemistry , Ibuprofen/chemical synthesis , Cyclooxygenase 2/metabolism , Animals , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Molecular Structure , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Structure-Activity Relationship , Fenamates/pharmacology , Fenamates/chemistry , Fenamates/chemical synthesis , Dose-Response Relationship, Drug , Humans , Mice , Edema/drug therapy , Edema/chemically induced , Molecular Docking Simulation , Rats , Male
4.
Mol Med Rep ; 30(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38785151

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Cyclooxygenase 2 , Fibroblasts , Flavonoids , Periodontitis , RANK Ligand , Animals , Rats , Flavonoids/pharmacology , Periodontitis/metabolism , Periodontitis/drug therapy , Periodontitis/pathology , RANK Ligand/metabolism , RANK Ligand/genetics , Male , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Lipopolysaccharides , Gingiva/metabolism , Gingiva/drug effects , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cells, Cultured , Rats, Sprague-Dawley
5.
Sci Rep ; 14(1): 11670, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778047

Colorectal cancer (CRC) arises via the progressive accumulation of dysregulation in key genes including oncogenes and tumor-suppressor genes. Prostaglandin-endoperoxide synthase 2 (PTGS2, also called COX2) acts as an oncogenic driver in CRC. Here, we explored the upstream transcription factors (TFs) responsible for elevating PTGS2 expression in CRC cells. The results showed that PTGS2 silencing repressed cell growth, migration and invasion in HCT116 and SW480 CRC cells. The two fragments (499-981 bp) and (1053-1434 bp) were confirmed as the core TF binding profiles of the PTGS2 promoter. PTGS2 expression positively correlated with RUNX1 level in colon adenocarcinoma (COAD) samples using the TCGA-COAD dataset. Furthermore, RUNX1 acted as a positive regulator of PTGS2 expression by promoting transcriptional activation of the PTGS2 promoter via the 1086-1096 bp binding motif. In conclusion, our study demonstrates that PTGS2 upregulation induced by the TF RUNX1 promotes CRC cell growth, migration and invasion, providing an increased rationale for the use of PTGS2 inhibitors in CRC prevention and treatment.


Cell Movement , Cell Proliferation , Colorectal Neoplasms , Core Binding Factor Alpha 2 Subunit , Cyclooxygenase 2 , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Promoter Regions, Genetic , Up-Regulation , Humans , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Cell Movement/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , HCT116 Cells
6.
BMC Pharmacol Toxicol ; 25(1): 32, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778384

BACKGROUND: Pruritus, or itching, is a distressing symptom associated with various dermatological and systemic diseases. L-carnitine (ßeta hydroxy-γ-tri methyl amino-butyric acid), is a naturally occurring substance, it controls numerous physiological processes. The present research aims to identify L-carnitine for its anti-pruritic effect via nitric oxide-dependent mechanism. METHODS: Chloroquine-induced pruritus serves as an experimental model to investigate possible therapeutic interventions. In this study, we evaluated the efficacy of L-carnitine in combating oxidative stress, nitric oxide, and inflammatory cytokines in a chloroquine-induced pruritus model. RESULTS: L-carnitine treatment significantly reduced scratching behavior compared to the disease group (***P < 0.001 vs. chloroquine group), indicating its antipruritic potential. The markers of oxidative stress, GST, GSH, Catalase, and LPO were dysregulated in the disease model, but administration of L-carnitine restored GST, GSH, and Catalase levels and decreased LPO levels (***P < 0.001 vs. chloroquine group), thereby alleviating oxidative stress. L-carnitine also reduced nitric oxide synthase (NOS) activity, suggesting that it modulates nitric oxide signaling pathways involved in pruritus. In addition, L-carnitine lowered levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), inflammatory marker nuclear factor kappa B (p-NFκB) and also reduces an inflammatory enzyme, cyclooxygenase-2 (COX-2), determined by ELISA (Enzyme-Linked Immunosorbent Assay) (***P < 0.001 vs. chloroquine group). It downregulates nNOS mRNA expression confirmed by real-time polymerase chain reaction (RT-PCR). CONCLUSION: These findings highlight the therapeutic effects of L-carnitine in alleviating chloroquine-induced pruritus.


Carnitine , Chloroquine , Nitric Oxide , Oxidative Stress , Pruritus , Chloroquine/pharmacology , Chloroquine/therapeutic use , Pruritus/drug therapy , Pruritus/chemically induced , Pruritus/metabolism , Nitric Oxide/metabolism , Carnitine/pharmacology , Carnitine/therapeutic use , Animals , Oxidative Stress/drug effects , Male , Antipruritics/therapeutic use , Antipruritics/pharmacology , Signal Transduction/drug effects , Mice , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Cytokines/metabolism
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732097

The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.


Neuroprotective Agents , Olive Oil , Phenols , Olive Oil/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Spain , Cyclooxygenase 2/metabolism , Acetylcholinesterase/metabolism , Chromatography, High Pressure Liquid , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Flavonoids/chemistry
8.
Mar Drugs ; 22(5)2024 May 06.
Article En | MEDLINE | ID: mdl-38786602

Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.


Cyclooxygenase 2 , Nitric Oxide Synthase Type II , Osteoarthritis , Polysaccharides , Nitric Oxide Synthase Type II/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/chemically induced , Animals , Cyclooxygenase 2/metabolism , Polysaccharides/pharmacology , Male , Mice , Disease Models, Animal , Iodoacetic Acid , Oxidative Stress/drug effects , Humans , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Iodoacetates
9.
Mar Drugs ; 22(5)2024 May 17.
Article En | MEDLINE | ID: mdl-38786617

Utilizing plant-based resources, particularly their by-products, aligns with sustainability principles and circular bioeconomy, contributing to environmental preservation. The therapeutic potential of plant extracts is garnering increasing interest, and this study aimed to demonstrate promising outcomes from an extract obtained from an underutilized plant waste. Chaetomorpha linum, an invasive macroalga found in the Orbetello Lagoon, thrives in eutrophic conditions, forming persistent mats covering approximately 400 hectares since 2005. The biomass of C. linum undergoes mechanical harvesting and is treated as waste, requiring significant human efforts and economic resources-A critical concern for municipalities. Despite posing challenges to local ecosystems, the study identified C. linum as a natural source of bioactive metabolites. Phytochemical characterization revealed lipids, amino acids, and other compounds with potential anti-inflammatory activity in C. linum extract. In vitro assays with LPS-stimulated RAW 264.7 and TNF-α/IFN-γ-stimulated HaCaT cells showed the extract inhibited reactive oxygen species (ROS), nitric oxide (NO), and prostaglandin E2 (PGE2) productions, and reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions via NF-κB nuclear translocation, in RAW 264.7 cells. It also reduced chemokines (TARC/CCL17, RANTES/CCL5, MCP-1/CCL2, and IL-8) and the cytokine IL-1ß production in HaCaT cells, suggesting potential as a therapeutic candidate for chronic diseases like atopic dermatitis. Finally, in silico studies indicated palmitic acid as a significant contributor to the observed effect. This research not only uncovered the untapped potential of C. linum but also laid the foundation for its integration into the circular bioeconomy, promoting sustainable practices, and innovative applications across various industries.


Anti-Inflammatory Agents , Phytochemicals , Plant Extracts , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Mice , RAW 264.7 Cells , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , HaCaT Cells , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , NF-kappa B/metabolism , Dinoprostone/metabolism , Chlorophyta , Seaweed
10.
Commun Biol ; 7(1): 599, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762541

Accumulating evidence suggests that endothelial cells can be useful therapeutic targets. One of the potential targets is an endothelial cell-specific protein, Roundabout4 (ROBO4). ROBO4 has been shown to ameliorate multiple diseases in mice, including infectious diseases and sepsis. However, its mechanisms are not fully understood. In this study, using RNA-seq analysis, we found that ROBO4 downregulates prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2. Mechanistic analysis reveals that ROBO4 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1) and TNF receptor-associated factor 7 (TRAF7), a ubiquitin E3 ligase. In this complex, ROBO4 enhances IQGAP1 ubiquitination through TRAF7, inhibits prolonged RAC1 activation, and decreases PTGS2 expression in inflammatory endothelial cells. In addition, Robo4-deficiency in mice exacerbates PTGS2-associated inflammatory diseases, including arthritis, edema, and pain. Thus, we reveal the molecular mechanism by which ROBO4 suppresses the inflammatory response and vascular hyperpermeability, highlighting its potential as a promising therapeutic target for inflammatory diseases.


Cyclooxygenase 2 , Inflammation , Receptors, Cell Surface , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Animals , Mice , Inflammation/metabolism , Inflammation/genetics , Humans , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mice, Knockout , Mice, Inbred C57BL , Male , Endothelial Cells/metabolism , Roundabout Proteins
11.
Zhongguo Fei Ai Za Zhi ; 27(4): 245-256, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38769827

BACKGROUND: Tumor microenvironment (TME) is one of the important factors in tumorigenesis and progression, in which tumor-associated macrophages (TAMs) play an important role in non-small cell lung cancer (NSCLC) progression. However, the mechanism of TAMs in NSCLC progression remains unclear, so this study aimed to investigate the role of TAMs in NSCLC progression and to find potential therapeutic targets. METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) database was used to analyze the expression of prostaglandin E2 receptor 4 (EP4) mRNA in NSCLC and normal lung tissues; the protein expression levels of cyclooxygenase-2 (COX-2), EP4, cluster of differentiation 86 (CD86), CD163 and CD31 were detected by immunohistochemistry (IHC) in 120 NSCLC tissues and 24 paracancerous tissues specimens. The nude mouse lung adenocarcinoma cell A549 and macrophage RAW264.7 co-transplanted tumor model was established. And the samples were collected by gavage with EP4 inhibitor E7046, and then stained with hematoxylin-eosin (HE), IHC, and immunofluorescence (IF), and then detected by Western blot for the epithelial mesenchymal transformation (EMT) of the tumor tissues of the nude mice in each group. Western blot was used to detect the expressions of EMT related protiens in each group of nude mice; full-length transcriptome sequencing was used to screen the key genes causing liver metastasis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed. RESULTS: EP4 mRNA expression level in NSCLC tissues was generally lower than that in normal lung tissues (P<0.05); COX-2, EP4, CD163, CD31 proteins were differentially expressed in NSCLC tissues and adjacent tissues, and differences were observed in many clinicopathological parameters of NSCLC patients; RAW264.7 shortened the latency period of tumorigenesis of A549 and promoted the proliferation of tumors and liver metastasis of tumors, and E7046 could reduce tumor cell proliferation activity, tumor tissue vascular density and M2-type macrophage infiltration in nude mice; IF staining showed that macrophages were mainly distributed around the metastatic foci of tumors; Western blot results showed that compared with A549 alone transplantation group, the relative expression of E-cadherin protein in tumor tissues of mice in A549 and RAW264.7 co-transplantation group was significantly decreased, and the difference was statistically significant (P<0.05), while the relative expression of N-cadherin protein was up-regulated, but the difference was not statistically significant (P>0.05); the main pathways enriched in the differential genes of the full-length transcriptome were the PI3K-AKT and MAPK signaling pathways. CONCLUSIONS: During NSCLC development, the COX-2/PGE2/EP4 axis may promote tumor progression by inducing macrophage functional activation, and EP4 may be a potential new target for tumor immunotherapy. This study provides new perspectives and ideas for in-depth exploration of the mechanisms of NSCLC development, as well as a theoretical basis for the development of new therapeutic strategies for NSCLC.


Carcinoma, Non-Small-Cell Lung , Cyclooxygenase 2 , Dinoprostone , Lung Neoplasms , Receptors, Prostaglandin E, EP4 Subtype , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Humans , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Animals , Dinoprostone/metabolism , Mice , Macrophages/metabolism , Macrophage Activation , Male , Female , A549 Cells , RAW 264.7 Cells
12.
Bioorg Chem ; 147: 107312, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599053

A series of water-soluble PEGylated 1,2,4-triazoles 5-8 were successfully synthesized from methyl 5-(chloromethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates 1. All of the water-soluble PEGylated 1,2,4-triazoles were characterized by FT-IR and 1H NMR spectroscopy. The solubility, in vitro plasma stability, and anti-inflammatory activity were also determined and compared to original methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates. For SAR study, all PEGylated 1,2,4-triazoles 5-8 performed potential anti-inflammatory activity on LPS-induced RAW 264.7 cells (IC50 = 3.42-7.81 µM). Moreover, the western blot result showed PEGylated 1,2,4-triazole 7d performed 5.43 and 2.37 folds inhibitory activity over iNOS and COX-2 expressions. On the other hand, the cell viability study revealed PEGylated 1,2,4-triazoles 7 and 8 with PEG molecular weight more than 600 presented better cell safety (cell viability > 95 %). Through the solubility and in vitro plasma stability studies, PEGylated 1,2,4-triazoles 7a-d exhibited higher hydrophilicity and prolonged 2.01 folds of half-life in compound 7d. Furthermore, the in vivo anti-inflammatory and gastric safety results indicated PEGylated 1,2,4-triazole 7d more effectively decreased the inflammatory response in edema and COX-2 expression and exhibited higher gastric safety than Indomethacin. Following the in vitro and in vivo study results, PEGylated 1,2,4-triazole 7d possessed favorable solubility, plasma stability features, safety, and significant anti-inflammatory activity to become the potential water-soluble anti-inflammatory candidate.


Polyethylene Glycols , Solubility , Triazoles , Water , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Animals , Mice , Water/chemistry , Polyethylene Glycols/chemistry , Structure-Activity Relationship , Edema/drug therapy , Edema/chemically induced , Cyclooxygenase 2/metabolism , Cell Survival/drug effects , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Rats , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Male , Dose-Response Relationship, Drug , Carrageenan
13.
Biomed Chromatogr ; 38(6): e5859, 2024 Jun.
Article En | MEDLINE | ID: mdl-38618996

The clinical effectiveness of nux-vomica in treating rheumatism and arthralgia is noteworthy; however, its nephrotoxicity has sparked global concerns. Hence, there is value in conducting studies on detoxification methods based on traditional Chinese medicine compatibility theory. Blood biochemistry, enzyme-linked immunosorbent assay, and pathological sections were used to evaluate both the nephrotoxicity of nux-vomica and the efficacy of the Jian Pi Tong Luo (JPTL) compound in mitigating this toxicity. Kidney metabolomics, using ultra-high-performance liquid chromatography-quadrupole-time-of-flight-MS (UPLC-Q-TOF-MS), was applied to elucidate the alterations in small-molecule metabolites in vivo. In addition, network pharmacology analysis was used to verify the mechanism and pathways underlying the nephrotoxicity associated with nux-vomica. Finally, essential targets were validated through molecular docking and western blotting. The findings indicated significant nephrotoxicity associated with nux-vomica, while the JPTL compound demonstrated the ability to alleviate this toxicity. The mechanism potentially involves nux-vomica activating the "PTGS2/CYP2C9-phosphatidylcholine-arachidonic acid metabolic pathway." This study establishes a scientific foundation for the clinical use of nux-vomica and lays groundwork for further research and safety assessment of toxic Chinese herbal medicines.


Arachidonic Acid , Cyclooxygenase 2 , Drugs, Chinese Herbal , Kidney , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Kidney/drug effects , Kidney/metabolism , Arachidonic Acid/metabolism , Male , Cyclooxygenase 2/metabolism , Molecular Docking Simulation , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C9/genetics , Chromatography, High Pressure Liquid/methods , Rats, Sprague-Dawley , Rats , Metabolomics/methods , Mice
14.
Bioorg Chem ; 147: 107372, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653152

Joining the global demand for the discovery of potent NSAIDs with minimized ulcerogenic effect, new pyrazole clubbed thiazole derivatives 5a-o were designed and synthesized. The new derivatives were initially evaluated for their analgesic activity. Eight compounds 5a, 5c, 5d, 5e, 5f, 5h, 5m, and 5o showed higher activity than Indomethacin (potency = 105-130 % vs. 100 %). Subsequently, they were picked for further evaluation of their anti-inflammatory activity, ulcerogenic liability as well as toxicological studies. Derivatives 5h and 5m showed a potential % edema inhibition after 3 h (79.39 % and 72.12 %, respectively), with a promising safety profile and low ulcer indices (3.80 and 3.20, respectively). The two compounds 5h and 5m were subjected to in vitro COX-1 and COX-2 inhibition assay. The candidate 5h showed nearly equipotent COX-1 inhibition (IC50 = 38.76 nM) compared to the non-selective reference drug Indomethacin (IC50 = 35.72 nM). Compound 5m expressed significant inhibitory activities and a higher COX-2 selectivity index (IC50 = 87.74 nM, SI = 2.05) in comparison with Indomethacin (SI = 0.52), with less selectivity than Celecoxib (SI = 8.31). Simulation docking studies were carried out to gain insights into the binding interaction of compounds 5h and 5m in the vicinity of COX-1 and COX-2 enzymes that illustrated the importance of pyrazole clubbed thiazole core in hydrogen bonding interactions. The thiazole motif of compounds 5h and 5m exhibited a well orientation toward COX-1 Arg120 key residue by hydrogen bonding interactions. Compound 5h revealed an additional arene-cation interaction with Arg120 that could rationalize its superior COX-1 inhibitory activity. Compounds 5h and 5m overlaid the co-crystallized ligand Celecoxib I differently in the active site of COX-2. Compound 5m showed an enhanced accommodation with binding energy of - 6.13 vs. - 1.70 kcal/mol of compounds 5h. The naphthalene ring of compound 5m adopted the Celecoxib I benzene sulfonamide region that is stabilized by hydrogen-arene interactions with the hydrophobic sidechains of the key residues Ser339 and Phe504. Further, the core structure of compound 5m, pyrazole clubbed thiazole, revealed deeper hydrophobic interactions with Ala513, Leu517 and Val509 residues. Finally, a sensitive and accurate UPLC-MS/MS method was developed for the simultaneous estimation of some selected promising pyrazole derivatives in rat plasma. Accordingly, compounds 5h and 5m were suggested to be promising potent analgesic and anti-inflammatory agents with improved safety profiles and a novel COX isozyme modulation activity.


Analgesics , Anti-Inflammatory Agents, Non-Steroidal , Cyclooxygenase 2 , Edema , Molecular Docking Simulation , Thiazoles , Animals , Male , Mice , Rats , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/chemical synthesis , Dose-Response Relationship, Drug , Drug Discovery , Edema/drug therapy , Edema/chemically induced , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis
15.
Biomolecules ; 14(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38672413

Individuals who are overweight or obese are at increased risk of developing prediabetes and type 2 diabetes, yet the direct molecular mechanisms that connect diabetes to obesity are not clear. Chronic, sustained inflammation is considered a strong risk factor in these interactions, directed in part by the short-lived gene expression programs encoding for cytokines and pro-inflammatory mediators. In this study, we show that triptolide administration in the C57BL/6 diet-induced obese mice at up to 10 µg/kg/day for 10 weeks attenuated the development of insulin resistance and diabetes, but not obesity, in these animals. Significant reductions in adipose tissue inflammation and improved insulin sensitivity were observed in the absence of changes in food intake, body weight, body composition, or energy expenditure. Analysis of the core cluster of biomarkers that drives pro-inflammatory responses in the metabolic tissues suggested TNF-α as a critical point that affected the co-development of inflammation and insulin resistance, but also pointed to the putatively protective roles of increased COX-2 and IL-17A signaling in the mediation of these pathophysiological states. Our results show that reduction of diet-induced inflammation confers partial protection against insulin resistance, but not obesity, and suggest the possibility of achieving overweight phenotypes that are accompanied by minimal insulin resistance if inflammation is controlled.


Diterpenes , Epoxy Compounds , Insulin Resistance , Mice, Inbred C57BL , Obesity , Phenanthrenes , Animals , Epoxy Compounds/pharmacology , Epoxy Compounds/administration & dosage , Diterpenes/pharmacology , Diterpenes/administration & dosage , Phenanthrenes/pharmacology , Phenanthrenes/administration & dosage , Obesity/metabolism , Obesity/immunology , Mice , Male , Inflammation/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Interleukin-17/metabolism , Interleukin-17/genetics , Diet, High-Fat/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/immunology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Energy Metabolism/drug effects
16.
Int J Nanomedicine ; 19: 3031-3044, 2024.
Article En | MEDLINE | ID: mdl-38562612

Purpose: Peripheral nerve damage lacks an appropriate diagnosis consistent with the patient's symptoms, despite expensive magnetic resonance imaging or electrodiagnostic assessments, which cause discomfort. Ultrasonography is valuable for diagnosing and treating nerve lesions; however, it is unsuitable for detecting small lesions. Poly(vanillin-oxalate) (PVO) nanoparticles are prepared from vanillin, a phytochemical with antioxidant and anti-inflammatory properties. Previously, PVO nanoparticles were cleaved by H2O2 to release vanillin, exert therapeutic efficacy, and generate CO2 to increase ultrasound contrast. However, the role of PVO nanoparticles in peripheral nerve lesion models is still unknown. Herein, we aimed to determine whether PVO nanoparticles can function as contrast and therapeutic agents for nerve lesions. Methods: To induce sciatic neuritis, rats were administered a perineural injection of carrageenan using a nerve stimulator under ultrasonographic guidance, and PVO nanoparticles were injected perineurally to evaluate ultrasonographic contrast and therapeutic effects. Reverse transcription-quantitative PCR was performed to detect mRNA levels of pro-inflammatory cytokines, ie, tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2. Results: In the rat model of sciatic neuritis, PVO nanoparticles generated CO2 bubbles to increase ultrasonographic contrast, and a single perineural injection of PVO nanoparticles suppressed the expression of tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2, reduced the expression of F4/80, and increased the expression of GAP43. Conclusion: The results of the current study suggest that PVO nanoparticles could be developed as ultrasonographic contrast agents and therapeutic agents for nerve lesions.


Benzaldehydes , Nanoparticles , Sciatic Neuropathy , Rats , Humans , Animals , Hydrogen Peroxide/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Carbon Dioxide , Cyclooxygenase 2/metabolism , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/pathology , Nanoparticles/chemistry , Sciatic Nerve/diagnostic imaging , Sciatic Nerve/metabolism
17.
Cell Biol Toxicol ; 40(1): 20, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578518

The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.


Epithelial-Mesenchymal Transition , Fibroblasts , Intercellular Signaling Peptides and Proteins , Animals , Mice , Cyclooxygenase 2/metabolism , Epithelial-Mesenchymal Transition/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Lung/metabolism
18.
Shanghai Kou Qiang Yi Xue ; 33(1): 85-89, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38583031

PURPOSE: To study the relationship between the expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) and the osteogenic activity and oxygen level of alveolar bone. METHODS: The alveolar bones of 56 patients with chronic periodontitis who received dental treatment from March 2021 to March 2023 were collected as the experimental (periodontitis) group, and the healthy alveolar bones of 53 patients who received dental treatment during the same period were selected as the control group. The osteoblasts were cultured by tissue block culture, and modified Kaplow's alkaline phosphatase (ALP) staining was used to identify the cells. COX-2, PGE2 and osteoclastogenesis inhibitory factor (OPG) receptor activator of nuclear factor-κb ligand (RANKL) and other indicators were determined by ELISA. PGE2, COX-2, OPG, internal oxygen level, ALP, RANKL and their correlation were compared between the two groups. Statistical analysis was performed with SPSS 27.0 software package. RESULTS: PGE2, COX-2 and RANKL in periodontitis group were significantly higher than those in the control group, but OPG, internal oxygen level and ALP were significantly lower than those in the control group (P<0.05). PGE2 and COX2 were highly positively correlated with OPG, internal oxygen level and ALP, but were highly positively correlated with RANKL(P<0.05). CONCLUSIONS: The expression of PGE2 and COX-2 is highly negatively correlated with ALP and oxygen levels. Clinical treatment may consider increasing oxygen levels, increasing oxygen partial pressure, and regulating ALP levels by drugs, so as to change the inflammatory condition of periodontitis or other dental diseases.


Dinoprostone , Periodontitis , Humans , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Dinoprostone/pharmacology , Osteoblasts/metabolism , Osteogenesis , Osteoprotegerin/metabolism , RANK Ligand/metabolism
19.
Eur J Med Chem ; 270: 116376, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38569433

A variety of novel indole-derived γ-hydroxy propiolate esters were designed, synthesized, and evaluated for their anti-inflammatory activity in-vitro and in-vivo. According to the nitric oxide (NO) inhibitory analysis, all compounds showed potent NO inhibitory ability in a dose-dependent manner, with no apparent cytotoxicity. The model compound, L-37, also exhibited significant potency in PGE2 inhibition. In addition, compounds L-37 and L-39 can downregulate the expression of COX-2 enzyme at 5 µM via ELISA experiment. Compound L-37 (1 µM) also inhibited the PGF1 production as well as the expression of COX-1, but displayed weak inhibition activity towards the Leukotrienes (LT) and Thromboxane-B2 (TXB-2) production. However, the expression of 5-LOX was significantly inhibited by compound L-39 at 5 µM. Xylene-induced ear edema model was explored for in-vivo anti-inflammatory evaluation, compound L-37 showed similar inhibitory activity compared with celecoxib, approximately 80% at 50 mg/kg dosage. Every outcome showed that the newly synthesized compounds can effectively inhibit inflammation.


Anti-Inflammatory Agents, Non-Steroidal , Anti-Inflammatory Agents , Humans , Anti-Inflammatory Agents/adverse effects , Celecoxib , Cyclooxygenase 2/metabolism , Indoles , Edema/chemically induced , Edema/drug therapy , Molecular Docking Simulation , Cyclooxygenase 2 Inhibitors/pharmacology , Structure-Activity Relationship
20.
J Ovarian Res ; 17(1): 77, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594780

PURPOSE: Our explorative study assessed a panel of molecules for their association with epithelial ovarian carcinomas and their prognostic implications. The panel included tissue expression of VEGF-C, COX-2, Ki-67 and eNOS alongside plasma levels of VEGF-C and nitric oxide. METHODS: 130 cases were enrolled in the study. Plasma levels were quantified by ELISA and tissue expressions were scored by immunohistochemistry. The Chi square and Fischer's exact test were applied to examine the impact of markers on clinicopathological factors. Non-parametric Spearman's rank correlation test was applied to define the association among test factors. RESULTS: Plasma VEGF-C levels and COX-2 tissue expression strongly predicted recurrence and poor prognosis (< 0.001). Tissue Ki-67 was strongly indicative of late-stage disease (< 0.001). The aforementioned markers significantly associated with clinicopathological factors. Nuclear staining of VEGF-C was intriguing and was observed to correlate with high grade-stage malignancies, highly elevated plasma VEGF-C, and with recurrence. eNOS tissue expression showed no significant impact while nitric oxide associated positively with ascites levels. Tissue expression of VEGF-C did not associate significantly with poor prognosis although the expression was highly upregulated in most of the cases. CONCLUSION: Plasma VEGF-C holds immense promise as a prognostic marker and the nuclear staining of VEGF-C seems to have some significant implication in molecular carcinogenesis and is a novel finding that commands further robust scrutiny. We present a first such study that assesses a set of biomarkers for prognostic implications in clinical management of epithelial ovarian carcinomas in a pan-Indian (Asian) population.


Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial/pathology , Prognosis , Ovarian Neoplasms/pathology , Cyclooxygenase 2/metabolism , Vascular Endothelial Growth Factor C , Ki-67 Antigen , Nitric Oxide , Neoplasm Staging , Biomarkers, Tumor/metabolism
...