Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 63(5): 699-710, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386885

RESUMEN

Campylobacter jejuni is a Gram-negative pathogenic bacterium commonly found in chickens and is the leading cause of human diarrheal disease worldwide. The various serotypes of C. jejuni produce structurally distinct capsular polysaccharides (CPSs) on the exterior surfaces of the cell wall. The capsular polysaccharide from C. jejuni serotype HS:5 is composed of a repeating sequence of d-glycero-d-manno-heptose and d-glucitol-6-phosphate. We previously defined the pathway for the production of d-glycero-d-manno-heptose in C. jejuni. Here, we elucidate the biosynthetic pathway for the assembly of cytidine diphosphate (CDP)-6-d-glucitol by the combined action of two previously uncharacterized enzymes. The first enzyme catalyzes the formation of CDP-6-d-fructose from cytidine triphosphate (CTP) and d-fructose-6-phosphate. The second enzyme reduces CDP-6-d-fructose with NADPH to generate CDP-6-d-glucitol. Using sequence similarity network (SSN) and genome neighborhood network (GNN) analyses, we predict that these pairs of proteins are responsible for the biosynthesis of CDP-6-d-glucitol and/or CDP-d-mannitol in the lipopolysaccharides (LPSs) and capsular polysaccharides in more than 200 other organisms. In addition, high resolution X-ray structures of the second enzyme are reported, which provide novel insight into the manner in which an open-chain nucleotide-linked sugar is harbored in an active site cleft.


Asunto(s)
Campylobacter jejuni , Animales , Humanos , Sorbitol/metabolismo , Pollos/metabolismo , Polisacáridos/metabolismo , Citidina Difosfato/metabolismo , Fructosa/metabolismo , Polisacáridos Bacterianos/metabolismo
2.
Plant J ; 114(2): 338-354, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36789486

RESUMEN

Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Glucógeno Sintasa/metabolismo , Citidina Difosfato/metabolismo , Diglicéridos/metabolismo , Diacilglicerol Colinafosfotransferasa/metabolismo , Mitocondrias/metabolismo , Fosfatidilgliceroles/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
EMBO J ; 41(23): e110771, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36300838

RESUMEN

Autophagy, a conserved eukaryotic intracellular catabolic pathway, maintains cell homeostasis by lysosomal degradation of cytosolic material engulfed in double membrane vesicles termed autophagosomes, which form upon sealing of single-membrane cisternae called phagophores. While the role of phosphatidylinositol 3-phosphate (PI3P) and phosphatidylethanolamine (PE) in autophagosome biogenesis is well-studied, the roles of other phospholipids in autophagy remain rather obscure. Here we utilized budding yeast to study the contribution of phosphatidylcholine (PC) to autophagy. We reveal for the first time that genetic loss of PC biosynthesis via the CDP-DAG pathway leads to changes in lipid composition of autophagic membranes, specifically replacement of PC by phosphatidylserine (PS). This impairs closure of the autophagic membrane and autophagic flux. Consequently, we show that choline-dependent recovery of de novo PC biosynthesis via the CDP-choline pathway restores autophagosome formation and autophagic flux in PC-deficient cells. Our findings therefore implicate phospholipid metabolism in autophagosome biogenesis.


Asunto(s)
Autofagosomas , Fosfolípidos , Autofagosomas/metabolismo , Fosfolípidos/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Colina/metabolismo , Citidina Difosfato/metabolismo
4.
J Bacteriol ; 204(10): e0024722, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36094307

RESUMEN

The disease-producing capacity of the opportunistic pathogen Enterococcus faecalis is enhanced by the ability of the bacterium to evade killing by antimicrobial agents. Survival of E. faecalis in the presence of the human antimicrobial enzyme lysozyme is mediated in part by the site 2 metalloprotease Eep; however, a complete model of enterococcal lysozyme resistance has not been elucidated. To better understand the molecular basis for lysozyme resistance in E. faecalis, we analyzed Δeep suppressor mutants that acquire resistance to lysozyme through mutation of the gene OG1RF_11713, a predicted teichoic acid biosynthesis-encoding gene located within the variable region of the enterococcal polysaccharide antigen (epa) locus. Sequence comparisons revealed that OG1RF_11713 is most similar to the cytidine-5'-diphosphate (CDP)-glycerol:poly-(glycerolphosphate)glycerophosphotransferase TagF from Staphylococcus epidermidis. Inactivation of OG1RF_11713 in both the wild-type and Δeep genetic backgrounds was sufficient to increase the resistance of E. faecalis OG1RF to lysozyme. Minimal amounts of N-acetylgalactosamine were detectable in cell wall carbohydrate extracts of OG1RF_11713 deletion mutants, and this was associated with a reduction in negative cell surface charge. Targeted disruption of OG1RF_11713 was also associated with increased susceptibility to the antibiotic polymyxin B and membrane-targeting detergents and decreased susceptibility to the lantibiotic nisin. This work implicates OG1RF_11713 as a major determinant of cell envelope integrity and provides further validation that lysozyme resistance is intrinsically linked to the modification of enterococcal cell wall polysaccharides. IMPORTANCE Enterococcus faecalis is a leading cause of health-care-associated infections for which there are limited treatment options. E. faecalis is resistant to several antibiotics and to high concentrations of the human antimicrobial enzyme lysozyme. The molecular mechanisms that mediate lysozyme resistance in E. faecalis are complex and remain incompletely characterized. This work demonstrates that a gene located within the variable region of the enterococcal polysaccharide antigen locus of E. faecalis strain OG1RF (OG1RF_11713), which is predicted to encode a component of the teichoic acid biosynthesis machinery, is part of the lysozyme resistance circuitry and is important for enterococcal cell wall integrity. These findings suggest that OG1RF_11713 is a potential target for new therapeutic strategies to combat enterococcal infections.


Asunto(s)
Enterococcus faecalis , Nisina , Humanos , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Nisina/genética , Muramidasa/metabolismo , Detergentes/metabolismo , Polimixina B , Acetilgalactosamina , Glicerofosfatos , Difosfatos/metabolismo , Glicerol/metabolismo , Polisacáridos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Fenotipo , Citidina , Citidina Difosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Arch Biochem Biophys ; 729: 109376, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36007576

RESUMEN

Selenoprotein I (selenoi) is a unique selenocysteine (Sec)-containing protein widely expressed throughout the body. Selenoi belongs to two different protein families: the selenoproteins that are characterized by a redox reactive Sec residue and the lipid phosphotransferases that contain the highly conserved cytidine diphosphate (CDP)-alcohol phosphotransferase motif. Selenoi catalyzes the third reaction of the CDP-ethanolamine branch of the Kennedy pathway within the endoplasmic reticulum membrane. This is not a redox reaction and does not directly involve the Sec residue, making selenoi quite distinct among selenoproteins. Selenoi is also unique among lipid phosphotransferases as the only family member containing a Sec residue near its C-terminus that serves an unknown function. The reaction catalyzed by selenoi involves the transfer of the ethanolamine phosphate group from CDP-ethanolamine to one of two lipid donors, 1,2-diacylglycerol (DAG) or 1-alkyl-2-acylglycerol (AAG), to produce PE or plasmanyl PE, respectively. Plasmanyl PE is subsequently converted to plasmenyl PE by plasmanylethanolamine desaturase. Both PE and plasmenyl PE are critical phospholipids in the central nervous system (CNS), as demonstrated through clinical studies involving SELENOI mutations as well as studies in cell lines and mice. Deletion of SELENOI in mice is embryonic lethal, while loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a form of hereditary spastic paraplegia (HSP). HSP is an upper motor disease characterized by spasticity of the lower limbs, which is often manifested with other symptoms such as impaired vision/hearing, ataxia, cognitive/intellectual impairment, and seizures. This article will summarize the current understanding of selenoi as a metabolic enzyme and discuss its role in the CNS physiology and pathophysiology.


Asunto(s)
Fosfolípidos , Selenocisteína , Animales , Sistema Nervioso Central/metabolismo , Citidina Difosfato/análogos & derivados , Citidina Difosfato/metabolismo , Etanolaminas/metabolismo , Humanos , Ratones , Fosfolípidos/metabolismo , Fosfotransferasas , Selenoproteínas/metabolismo
6.
J Biochem ; 170(2): 183-194, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255834

RESUMEN

α-Dystroglycan (α-DG) is a highly glycosylated cell-surface protein. Defective O-mannosyl glycan on α-DG is associated with muscular dystrophies and cancer. In the biosynthetic pathway of the O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP) transfer ribitol phosphate (RboP). Previously, we reported that FKTN and FKRP can also transfer glycerol phosphate (GroP) from CDP-glycerol (CDP-Gro) and showed the inhibitory effects of CDP-Gro on functional glycan synthesis by preventing glycan elongation in vitro. However, whether mammalian cells have CDP-Gro or associated synthetic machinery has not been elucidated. Therefore, the function of CDP-Gro in mammals is largely unknown. Here, we reveal that cultured human cells and mouse tissues contain CDP-Gro using liquid chromatography tandem-mass spectrometry (LC-MS/MS). By performing the enzyme activity assay of candidate recombinant proteins, we found that ethanolamine-phosphate cytidylyltransferase (PCYT2), the key enzyme in de novo phosphatidylethanolamine biosynthesis, has CDP-Gro synthetic activity from glycerol-3-phosphate (Gro3P) and CTP. In addition, knockdown of PCYT2 dramatically reduced cellular CDP-Gro. These results indicate that PCYT2 is a CDP-Gro synthase in mammals. Furthermore, we found that the expression of functionally glycosylated α-DG is increased by reducing PCYT2 expression. Our results suggest an important role for CDP-Gro in the regulation of α-DG function in mammals.


Asunto(s)
Distroglicanos/metabolismo , Azúcares de Nucleósido Difosfato/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Animales , Cromatografía Liquida/métodos , Citidina Difosfato/metabolismo , Glicerol/metabolismo , Glicosilación , Células HEK293 , Humanos , Masculino , Mamíferos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Pentosiltransferasa/metabolismo , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Polisacáridos/metabolismo , Espectrometría de Masas en Tándem/métodos
7.
PLoS Genet ; 16(10): e1009070, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33064773

RESUMEN

The major glycerophospholipid phosphatidylethanolamine (PE) in the nervous system is essential for neural development and function. There are two major PE synthesis pathways, the CDP-ethanolamine pathway in the endoplasmic reticulum (ER) and the phosphatidylserine decarboxylase (PSD) pathway in mitochondria. However, the role played by mitochondrial PE synthesis in maintaining cellular PE homeostasis is unknown. Here, we show that Drosophila pect (phosphoethanolamine cytidylyltransferase) mutants lacking the CDP-ethanolamine pathway, exhibited alterations in phospholipid composition, defective phototransduction, and retinal degeneration. Induction of the PSD pathway fully restored levels and composition of cellular PE, thus rescued the retinal degeneration and defective visual responses in pect mutants. Disrupting lipid exchange between mitochondria and ER blocked the ability of PSD to rescue pect mutant phenotypes. These findings provide direct evidence that the synthesis of PE in mitochondria contributes to cellular PE homeostasis, and suggest the induction of mitochondrial PE synthesis as a promising therapeutic approach for disorders associated with PE deficiency.


Asunto(s)
Carboxiliasas/genética , Citidina Difosfato/análogos & derivados , Retículo Endoplásmico/genética , Degeneración Retiniana/genética , Animales , Carboxiliasas/metabolismo , Citidina Difosfato/deficiencia , Citidina Difosfato/genética , Citidina Difosfato/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Retículo Endoplásmico/metabolismo , Etanolaminas/metabolismo , Homeostasis/genética , Humanos , Metabolismo de los Lípidos/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Transducción de Señal/genética
8.
Gastric Cancer ; 23(6): 974-987, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32388635

RESUMEN

BACKGROUND: Increasing evidence indicates that angiogenesis plays an important role in tumor progression. The function of cathepsin L (CTSL), an endosomal proteolytic enzyme, in promoting tumor metastasis is well recognized. The mechanisms by which CTSL has promoted the angiogenesis of gastric cancer (GC), however, remains unclear. METHODS: The nuclear expression levels of CTSL were assessed in GC samples. The effects of CTSL on GC angiogenesis were determined by endothelial tube formation analysis, HUVEC migration assay, and chick embryo chorioallantoic membrane (CAM) assay. The involvement of the CDP/Cux/VEGF-D pathway was analyzed by angiogenesis antibody array, Western blot, co-immunoprecipitation (Co-IP) and dual-luciferase reporter assay. RESULTS: In this study, we found that the nuclear CTSL expression level in GC was significantly higher than that in adjacent nontumor gastric tissues and was a potential important clinical prognostic factor. Loss- and gain-of-function assays indicated that CTSL promotes the tubular formation and migration of HUVEC cells in vitro. The CAM assay also showed that CTSL promotes angiogenesis of GC in vivo. Mechanistic analysis demonstrated that CTSL can proteolytically process CDP/Cux and produce the physiologically relevant p110 isoform, which stably binds to VEGF-D and promotes the transcription of VEGF-D, thus contributing to the angiogenesis of GC. CONCLUSION: The findings of the present study suggested that CTSL plays a constructive role in the regulation of angiogenesis in human GC and could be a potential therapeutic target for GC.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Catepsina L/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Transducción de Señal/genética , Neoplasias Gástricas/genética , Animales , Embrión de Pollo , Citidina Difosfato/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Factor D de Crecimiento Endotelial Vascular/metabolismo
9.
Pak J Pharm Sci ; 33(1(Supplementary)): 241-244, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32122854

RESUMEN

Cerebrovascular diseases are known as serious public health problem worldwide, which can be addressed more precisely through molecular imaging of non-functional brain cells. CDP-choline is an active cerebrovascular chemotherapeutic agent that can be used for diagnosis of cerebrovascular diseases post radiolabeling with γ-emitter radioisotopes. In this study we developed 99mTc labeled CDP-choline for imaging of cerebrovascular diseases particularly alzheimer, stroke, and parkinson's diseases. The radiosynthesis reaction resulted 97.47±2.34% radiochemical with promising stability, that is, >95% up to 6 h in blood serum. The biodistribution study in healthy mice revealed non-accumulated uptake of radiochemical in key body organs; in brain it was 8.59±1.11% ID/g at 1h post-injection which washed-out leaving behind 0.87±0.61% ID/g at 24 h post-injection. The over-all data revealed the 99mTc-CDP-choline could be a good candidate for further imaging investigations in diseased animal model.


Asunto(s)
Trastornos Cerebrovasculares/metabolismo , Colina/metabolismo , Citidina Difosfato/metabolismo , Compuestos de Organotecnecio/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Trastornos Cerebrovasculares/diagnóstico por imagen , Humanos , Distribución Tisular/fisiología , Tomografía Computarizada de Emisión de Fotón Único/tendencias
10.
J Biol Chem ; 295(51): 17877-17886, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33454021

RESUMEN

The two branches of the Kennedy pathways (CDP-choline and CDP-ethanolamine) are the predominant pathways responsible for the synthesis of the most abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively, in mammalian membranes. Recently, hereditary diseases associated with single gene mutations in the Kennedy pathways have been identified. Interestingly, genetic diseases within the same pathway vary greatly, ranging from muscular dystrophy to spastic paraplegia to a childhood blinding disorder to bone deformations. Indeed, different point mutations in the same gene (PCYT1; CCTα) result in at least three distinct diseases. In this review, we will summarize and review the genetic diseases associated with mutations in genes of the Kennedy pathway for phospholipid synthesis. These single-gene disorders provide insight, indeed direct genotype-phenotype relationships, into the biological functions of specific enzymes of the Kennedy pathway. We discuss potential mechanisms of how mutations within the same pathway can cause disparate disease.


Asunto(s)
Citidina Difosfato Colina/metabolismo , Citidina Difosfato/análogos & derivados , Etanolaminas/metabolismo , Animales , Colina Quinasa/química , Colina Quinasa/genética , Citidililtransferasa de Colina-Fosfato/química , Citidililtransferasa de Colina-Fosfato/genética , Citidina Difosfato/metabolismo , Estudios de Asociación Genética , Humanos , Distrofias Musculares/congénito , Distrofias Musculares/genética , Distrofias Musculares/patología , Osteocondrodisplasias/congénito , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Polimorfismo de Nucleótido Simple
11.
Sci Adv ; 5(11): eaax7525, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31807705

RESUMEN

Metabolic reprogramming has emerged as a key regulator of cell fate decisions. Roles of glucose and amino acid metabolism have been extensively documented, whereas lipid metabolism in pluripotency remains largely unexplored. Using a high-coverage lipidomics approach, we reveal dynamic changes in phospholipids occurring during reprogramming and show that the CDP-ethanolamine (CDP-Etn) pathway for phosphatidylethanolamine (PE) synthesis is required at the early stage of reprogramming. Mechanistically, the CDP-Etn pathway inhibits NF-κB signaling and mesenchymal genes in a Pebp1-dependent manner, without affecting autophagy, resulting in accelerated mesenchymal-to-epithelial transition (MET) and enhanced reprogramming. Furthermore, PE binding to Pebp1 enhances the interaction of Pebp1 with IKKα/ß and reduces the phosphorylation of IKKα/ß. The CDP-Etn-Pebp1 axis is associated with EMT/MET in hepatocyte differentiation, indicating that Etn/PE is a broad-spectrum MET/EMT-regulating metabolite. Collectively, our study reveals an unforeseen connection between phospholipids, cell migration, and pluripotency and highlights the importance of phospholipids in cell fate transitions.


Asunto(s)
Diferenciación Celular , Transición Epitelial-Mesenquimal , Hepatocitos/metabolismo , Fosfatidiletanolaminas/metabolismo , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Animales , Línea Celular , Movimiento Celular , Citidina Difosfato/análogos & derivados , Citidina Difosfato/metabolismo , Etanolaminas/metabolismo , Hepatocitos/citología , Quinasa I-kappa B/metabolismo , Ratones , FN-kappa B/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Células Madre Pluripotentes/citología
12.
Acta Crystallogr D Struct Biol ; 75(Pt 6): 564-577, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31205019

RESUMEN

Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process.


Asunto(s)
Proteínas Bacterianas/química , N-Acilneuraminato Citidililtransferasa/química , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/fisiología , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X/métodos , Citidina Difosfato/química , Citidina Difosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , N-Acilneuraminato Citidililtransferasa/farmacología , N-Acilneuraminato Citidililtransferasa/fisiología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Ácidos Siálicos/metabolismo
13.
Elife ; 72018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29460780

RESUMEN

Ribonucleotide reductases (RNRs) convert ribonucleotides into deoxyribonucleotides, a reaction essential for DNA replication and repair. Human RNR requires two subunits for activity, the α subunit contains the active site, and the ß subunit houses the radical cofactor. Here, we present a 3.3-Å resolution structure by cryo-electron microscopy (EM) of a dATP-inhibited state of human RNR. This structure, which was determined in the presence of substrate CDP and allosteric regulators ATP and dATP, has three α2 units arranged in an α6 ring. At near-atomic resolution, these data provide insight into the molecular basis for CDP recognition by allosteric specificity effectors dATP/ATP. Additionally, we present lower-resolution EM structures of human α6 in the presence of both the anticancer drug clofarabine triphosphate and ß2. Together, these structures support a model for RNR inhibition in which ß2 is excluded from binding in a radical transfer competent position when α exists as a stable hexamer.


Asunto(s)
Multimerización de Proteína , Ribonucleótido Reductasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Microscopía por Crioelectrón , Citidina Difosfato/química , Citidina Difosfato/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ribonucleótido Reductasas/metabolismo
14.
Biosci Rep ; 38(1)2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29335298

RESUMEN

2-C-Methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF) is a key enzyme in the 2-C-Methyl-d-erythritol-4-phosphate (MEP) pathway of isoprenoid biosynthesis. This enzyme catalyzes the 4-diphosphocytidyl-2-C-methyl-d-erythritol 2-phosphate (CDPME2P) to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) with concomitant release of cytidine 5'-diphospate (CMP). Bacillus subtilis is a potential host cell for the production of isoprenoids, but few studies are performed on the key enzymes of MEP pathway in B. subtilis In this work, the high-resolution crystal structures of IspF in native and complex with CMP from B. subtilis have been determined. Structural comparisons indicate that there is a looser packing of the subunits of IspF in B. subtilis, whereas the solvent accessible surface of its active pockets is smaller than that in Escherichia coli. Meanwhile, the protein-protein associations of 2-C-Methyl-d-erythritol-4-phosphatecytidyltransferase (IspD), CDPME kinase (IspE) and IspF from B. subtilis and E. coli, which catalyze three consecutive steps in the MEP pathway, are analyzed by native gel shift and size exclusion chromatography methods. The data here show that protein complex assembly is not detectable. These results will be useful for isoprenoid biosynthesis by metabolic engineering.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Bacillus subtilis/enzimología , Eritritol/análogos & derivados , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfatos de Azúcar/metabolismo , Isomerasas Aldosa-Cetosa/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Citidina Difosfato/metabolismo , Eritritol/metabolismo , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Ingeniería Metabólica , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Terpenos/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-28115347

RESUMEN

Streptococcus mitis/oralis is an important pathogen, causing life-threatening infections such as endocarditis and severe sepsis in immunocompromised patients. The ß-lactam antibiotics are the usual therapy of choice for this organism, but their effectiveness is threatened by the frequent emergence of resistance. The lipopeptide daptomycin (DAP) has been suggested for therapy against such resistant S. mitis/oralis strains due to its in vitro bactericidal activity and demonstrated efficacy against other Gram-positive pathogens. Unlike other bacteria, however, S. mitis/oralis has the unique ability to rapidly develop stable, high-level resistance to DAP upon exposure to the drug both in vivo and in vitro Using isogenic DAP-susceptible and DAP-resistant S. mitis/oralis strain pairs, we describe a mechanism of resistance to both DAP and cationic antimicrobial peptides that involves loss-of-function mutations in cdsA (encoding a phosphatidate cytidylyltransferase). CdsA catalyzes the synthesis of cytidine diphosphate-diacylglycerol, an essential phospholipid intermediate for the production of membrane phosphatidylglycerol and cardiolipin. DAP-resistant S. mitis/oralis strains demonstrated a total disappearance of phosphatidylglycerol, cardiolipin, and anionic phospholipid microdomains from membranes. In addition, these strains exhibited cross-resistance to cationic antimicrobial peptides from human neutrophils (i.e., hNP-1). Interestingly, CdsA-mediated changes in phospholipid metabolism were associated with DAP hyperaccumulation in a small subset of the bacterial population, without any binding by the remaining larger population. Our results indicate that CdsA is the major mediator of high-level DAP resistance in S. mitis/oralis and suggest a novel mechanism of bacterial survival against attack by antimicrobial peptides of both innate and exogenous origins.


Asunto(s)
Antibacterianos/farmacología , Daptomicina/farmacología , Nucleotidiltransferasas/metabolismo , Streptococcus oralis/efectos de los fármacos , Streptococcus oralis/enzimología , Citidina Difosfato/metabolismo , Farmacorresistencia Bacteriana/genética , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/enzimología , Pruebas de Sensibilidad Microbiana , Neutrófilos/metabolismo
16.
Biochemistry ; 56(6): 856-868, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28103007

RESUMEN

Escherichia coli class Ia ribonucleotide reductase (RNR) is composed of two subunits that form an active α2ß2 complex. The nucleoside diphosphate substrates (NDP) are reduced in α2, 35 Å from the essential diferric-tyrosyl radical (Y122•) cofactor in ß2. The Y122•-mediated oxidation of C439 in α2 occurs by a pathway (Y122 ⇆ [W48] ⇆ Y356 in ß2 to Y731 ⇆ Y730 ⇆ C439 in α2) across the α/ß interface. The absence of an α2ß2 structure precludes insight into the location of Y356 and Y731 at the subunit interface. The proximity in the primary sequence of the conserved E350 to Y356 in ß2 suggested its importance in catalysis and/or conformational gating. To study its function, pH-rate profiles of wild-type ß2/α2 and mutants in which 3,5-difluorotyrosine (F2Y) replaces residue 356, 731, or both are reported in the presence of E350 or E350X (X = A, D, or Q) mutants. With E350, activity is maintained at the pH extremes, suggesting that protonated and deprotonated states of F2Y356 and F2Y731 are active and that radical transport (RT) can occur across the interface by proton-coupled electron transfer at low pH or electron transfer at high pH. With E350X mutants, all RNRs were inactive, suggesting that E350 could be a proton acceptor during oxidation of the interface Ys. To determine if E350 plays a role in conformational gating, the strong oxidants, NO2Y122•-ß2 and 2,3,5-F3Y122•-ß2, were reacted with α2, CDP, and ATP in E350 and E350X backgrounds and the reactions were monitored for pathway radicals by rapid freeze-quench electron paramagnetic resonance spectroscopy. Pathway radicals are generated only when E350 is present, supporting its essential role in gating the conformational change(s) that initiates RT and masking its role as a proton acceptor.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Radicales Libres/metabolismo , Ácido Glutámico/química , Modelos Moleculares , Ribonucleótido Reductasas/metabolismo , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Unión Competitiva , Biocatálisis , Citidina Difosfato/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/genética , Tirosina/análogos & derivados , Tirosina/química
17.
Int Rev Cell Mol Biol ; 321: 29-88, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26811286

RESUMEN

Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic cells. The existence of four only partially redundant biochemical pathways that produce PE, highlights the importance of this essential phospholipid. The CDP-ethanolamine and phosphatidylserine decarboxylase pathways occur in different subcellular compartments and are the main sources of PE in cells. Mammalian development fails upon ablation of either pathway. Once made, PE has diverse cellular functions that include serving as a precursor for phosphatidylcholine and a substrate for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis, and autophagy. The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer's disease, Parkinson's disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms.


Asunto(s)
Fosfatidiletanolaminas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Autofagia , Candida , Carboxiliasas/metabolismo , Membrana Celular/metabolismo , Citidina Difosfato/análogos & derivados , Citidina Difosfato/metabolismo , Etanolaminas/metabolismo , Humanos , Metabolismo de los Lípidos , Metilación , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosforilación Oxidativa , Enfermedad de Parkinson/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolípidos/metabolismo , Priones/metabolismo , Procesamiento Proteico-Postraduccional , Virulencia
18.
J Am Chem Soc ; 138(41): 13706-13716, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-28068088

RESUMEN

Escherichia coli class Ia ribonucleotide reductase (RNR) converts ribonucleotides to deoxynucleotides. A diferric-tyrosyl radical (Y122•) in one subunit (ß2) generates a transient thiyl radical in another subunit (α2) via long-range radical transport (RT) through aromatic amino acid residues (Y122 ⇆ [W48] ⇆ Y356 in ß2 to Y731 ⇆ Y730 ⇆ C439 in α2). Equilibration of Y356•, Y731•, and Y730• was recently observed using site specifically incorporated unnatural tyrosine analogs; however, equilibration between Y122• and Y356• has not been detected. Our recent report of Y356• formation in a kinetically and chemically competent fashion in the reaction of ß2 containing 2,3,5-trifluorotyrosine at Y122 (F3Y122•-ß2) with α2, CDP (substrate), and ATP (effector) has now afforded the opportunity to investigate equilibration of F3Y122• and Y356•. Incubation of F3Y122•-ß2, Y731F-α2 (or Y730F-α2), CDP, and ATP at different temperatures (2-37 °C) provides ΔE°'(F3Y122•-Y356•) of 20 ± 10 mV at 25 °C. The pH dependence of the F3Y122• ⇆ Y356• interconversion (pH 6.8-8.0) reveals that the proton from Y356 is in rapid exchange with solvent, in contrast to the proton from Y122. Insertion of 3,5-difluorotyrosine (F2Y) at Y356 and rapid freeze-quench EPR analysis of its reaction with Y731F-α2, CDP, and ATP at pH 8.2 and 25 °C shows F2Y356• generation by the native Y122•. FnY-RNRs (n = 2 and 3) together provide a model for the thermodynamic landscape of the RT pathway in which the reaction between Y122 and C439 is ∼200 meV uphill.


Asunto(s)
Escherichia coli/enzimología , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Tirosina/análogos & derivados , Adenosina Trifosfato/metabolismo , Citidina Difosfato/metabolismo , Transporte de Electrón , Radicales Libres/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Protones , Solventes/química , Temperatura , Tirosina/química
19.
Cell Metab ; 21(5): 718-30, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25955207

RESUMEN

Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis.


Asunto(s)
Citidina Difosfato/análogos & derivados , Diglicéridos/metabolismo , Etanolaminas/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Animales , Citidina Difosfato/metabolismo , Glucosa/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo
20.
Environ Microbiol ; 17(7): 2492-504, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25472423

RESUMEN

We describe a novel biosynthetic pathway for glycerophosphoinositides in Rhodothermus marinus in which inositol is activated by cytidine triphosphate (CTP); this is unlike all known pathways that involve activation of the lipid group instead. This work was motivated by the detection in the R. marinus genome of a gene with high similarity to CTP:L-myo-inositol-1-phosphate cytidylyltransferase, the enzyme that synthesizes cytidine diphosphate (CDP)-inositol, a metabolite only known in the synthesis of di-myo-inositol phosphate. However, this solute is absent in R. marinus. The fate of radiolabelled CDP-inositol was investigated in cell extracts to reveal that radioactive inositol was incorporated into the chloroform-soluble fraction. Mass spectrometry showed that the major lipid product has a molecular mass of 810 Da and contains inositol phosphate and alkyl chains attached to glycerol by ether bonds. The occurrence of ether-linked lipids is rare in bacteria and has not been described previously in R. marinus. The relevant synthase was identified by functional expression of the candidate gene in Escherichia coli. The enzyme catalyses the transfer of L-myo-inositol-1-phosphate from CDP-inositol to dialkylether glycerol yielding dialkylether glycerophosphoinositol. Database searching showed homologous proteins in two bacterial classes, Sphingobacteria and Alphaproteobacteria. This is the first report of the involvement of CDP-inositol in phospholipid synthesis.


Asunto(s)
Citidina Difosfato/metabolismo , Citidina Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Inositol/metabolismo , Fosfatidilinositoles/biosíntesis , Rhodothermus/metabolismo , Vías Biosintéticas , Nucleotidiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...