Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 75(Pt 6): 564-577, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31205019

RESUMEN

Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process.


Asunto(s)
Proteínas Bacterianas/química , N-Acilneuraminato Citidililtransferasa/química , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/fisiología , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X/métodos , Citidina Difosfato/química , Citidina Difosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , N-Acilneuraminato Citidililtransferasa/farmacología , N-Acilneuraminato Citidililtransferasa/fisiología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Ácidos Siálicos/metabolismo
2.
Elife ; 82019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985278

RESUMEN

Nucleotide-sugar transporters (NSTs) are critical components of the cellular glycosylation machinery. They transport nucleotide-sugar conjugates into the Golgi lumen, where they are used for the glycosylation of proteins and lipids, and they then subsequently transport the nucleotide monophosphate byproduct back to the cytoplasm. Dysregulation of human NSTs causes several debilitating diseases, and NSTs are virulence factors for many pathogens. Here we present the first crystal structures of a mammalian NST, the mouse CMP-sialic acid transporter (mCST), in complex with its physiological substrates CMP and CMP-sialic acid. Detailed visualization of extensive protein-substrate interactions explains the mechanisms governing substrate selectivity. Further structural analysis of mCST's unique lumen-facing partially-occluded conformation, coupled with the characterization of substrate-induced quenching of mCST's intrinsic tryptophan fluorescence, reveals the concerted conformational transitions that occur during substrate transport. These results provide a framework for understanding the effects of disease-causing mutations and the mechanisms of this diverse family of transporters.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Animales , Transporte Biológico , Cristalografía por Rayos X , Ratones , Unión Proteica , Conformación Proteica
3.
Glycobiology ; 27(6): 513-517, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922867

RESUMEN

Sialic acids have a special place in vertebrate glycobiology, where they constitute the dominant terminal saccharides on many cell surface glycans. From early studies that identified sialoglycans as receptors for important pathogens and toxins to more recent discoveries of sialic acid-binding proteins essential for immune system (and other) functions in humans, sialic acids and sialoglycans have become cornerstones in understanding vertebrate glycobiology and pathology. During a remarkable 3-year period in the late 1950s, a newly minted postdoctoral fellow (Donald G. Comb) and his young mentor (Saul Roseman) made a surprising series of discoveries that put sialic acid research on sound chemical and biochemical footing. A detailed personal letter written by Dr. Roseman that describes this period of intense sialic acid discovery, complete with inserted figures, was given to one of us (Y.C.L.) several years later. The text and figures of this letter provide a look back at the enthusiasm, rigor and serendipity that led to their important findings through the eyes of one of the key figures in sialic acid research.


Asunto(s)
Bioquímica de los Carbohidratos/historia , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Historia del Siglo XX
4.
Chembiochem ; 18(13): 1251-1259, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28395125

RESUMEN

Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human ß-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.


Asunto(s)
Antígenos CD/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/análogos & derivados , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo , Antígenos CD/química , Antígenos CD/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clonación Molecular , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Expresión Génica , Glucolípidos/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Células HEK293 , Humanos , Cinética , N-Acilneuraminato Citidililtransferasa/genética , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimología , Polisacáridos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Sialiltransferasas/química , Sialiltransferasas/genética , Especificidad por Sustrato , beta-Galactosida alfa-2,3-Sialiltransferasa
5.
Glycobiology ; 26(4): 353-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26582604

RESUMEN

Many important biological functions are mediated by complex glycan structures containing the nine-carbon sugar sialic acid (Sia) at terminal, non-reducing positions. Sia are introduced onto glycan structures by enzymes known as sialyltransferases (STs). Bacterial STs from the glycosyltransferase family GT80 are a group of well-studied enzymes used for the synthesis of sialylated glycan structures. While highly efficient at sialyl transfer, these enzymes also demonstrate sialidase and trans-sialidase activities for which there is some debate surrounding the corresponding enzymatic mechanisms. Here we propose a mechanism for STs from the glycosyltransferase family GT80 in which sialidase and trans-sialidase activities occur through reverse sialylation of CMP. The resulting CMP-Sia is then enzymatically hydrolyzed or used as a donor in subsequent ST reactions resulting in sialidase and trans-sialidase activities, respectively. We provide evidence for this mechanism by demonstrating that CMP is required for sialidase and trans-sialidase activities and that its removal with phosphatase ablates activity. We also confirm the formation of CMP-Sia using a coupled enzyme assay. A clear understanding of the sialidase and trans-sialidase mechanisms for this class of enzymes allows for more effective use of these enzymes in the synthesis of glycoconjugates.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glicosiltransferasas/química , Sialiltransferasas/química , Bacterias/enzimología , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosiltransferasas/genética , Neuraminidasa/química , Neuraminidasa/genética , Polisacáridos/química , Polisacáridos/metabolismo , Sialiltransferasas/genética
6.
Chemistry ; 21(41): 14614-29, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26397189

RESUMEN

Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/química , Citidina Monofosfato/análogos & derivados , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Receptores ErbB/química , Riñón/enzimología , Ácidos Siálicos/química , Ácidos Siálicos/síntesis química , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/química , Citidina Monofosfato/síntesis química , Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Humanos , Riñón/química , Sialiltransferasas/metabolismo , Transducción de Señal/efectos de los fármacos
7.
J Biol Chem ; 290(19): 12000-13, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25809486

RESUMEN

Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and organ formation. Aberrant regulation of EMT often leads to tumor progression. Changes in cell surface sialylation have recently been implicated in mediating EMT. Herein we report the visualization of dynamic changes of sialylation and glycoproteomic analysis of newly synthesized sialylated proteins in EMT by metabolic labeling of sialylated glycans with azides, followed by click labeling with fluorophores or affinity tags. We discovered that sialylation was down-regulated during EMT but then reverted and up-regulated in the mesenchymal state after EMT, accompanied by mRNA expression level changes of genes involved in the sialic acid biosynthesis. Quantitative proteomic analysis identified a list of sialylated proteins whose biosynthesis was dynamically regulated during EMT. Sialylation of cell surface adherent receptor integrin ß4 was found to be down-regulated, which may regulate integrin functions during EMT. Furthermore, a global sialylation inhibitor was used to probe the functional role of sialylation during EMT. We found that inhibition of sialylation promoted EMT. Taken together, our findings suggest the important role of sialylation in regulating EMT and imply its possible function in related pathophysiological events, such as cancer metastasis.


Asunto(s)
Membrana Celular/metabolismo , Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica , Ácido N-Acetilneuramínico/química , Factor de Crecimiento Transformador beta1/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Regulación hacia Abajo , Glicosilación , Humanos , Integrina beta4/metabolismo , Microscopía Confocal , Metástasis de la Neoplasia , Proteómica , ARN Mensajero/metabolismo
8.
Top Curr Chem ; 366: 139-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24141690

RESUMEN

Sialoglycoconjugates form the outermost layer of animal cells and play a crucial role in cellular communication processes. An essential step in the biosynthesis of sialylated glycoconjugates is the activation of sialic acid to the monophosphate diester CMP-sialic acid. Only the activated sugar is transported into the Golgi apparatus and serves as a substrate for the linkage-specific sialyltransferases. Interference with sugar activation abolishes sialylation and is embryonic lethal in mammals. In this chapter we focus on the enzyme catalyzing the activation of sialic acid, the CMP-sialic acid synthetase (CMAS), and compare the enzymatic properties of CMASs isolated from different species. Information concerning the reaction mechanism and active site architecture is included. Moreover, the unusual nuclear localization of vertebrate CMASs as well as the biotechnological application of bacterial CMAS enzymes is addressed.


Asunto(s)
Bacterias/enzimología , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Células Eucariotas/enzimología , Glicoconjugados/metabolismo , N-Acilneuraminato Citidililtransferasa/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/química , Transporte Biológico , Dominio Catalítico , Comunicación Celular , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Células Eucariotas/química , Glicoconjugados/química , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , N-Acilneuraminato Citidililtransferasa/química , Homología de Secuencia de Aminoácido , Especificidad de la Especie
9.
FEBS Lett ; 588(17): 2978-84, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24945729

RESUMEN

Bacterial sialyltransferases of the glycosyltransferase family GT-80 exhibit pronounced hydrolase activity toward CMP-activated sialyl donor substrates. Using in situ proton NMR, we show that hydrolysis of CMP-Neu5Ac by Pasteurella dagmatis α2,3-sialyltransferase (PdST) occurs with axial-to-equatorial inversion of the configuration at the anomeric center to release the α-Neu5Ac product. We propose a catalytic reaction through a single displacement-like mechanism where water replaces the sugar substrate as a sialyl group acceptor. PdST variants having His(284) in the active site replaced by Asn, Asp or Tyr showed up to 10(4)-fold reduced activity, but catalyzed CMP-Neu5Ac hydrolysis with analogous inverting stereochemistry. The proposed catalytic role of His(284) in the PdST hydrolase mechanism is to facilitate the departure of the CMP leaving group.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Pasteurella/enzimología , Sialiltransferasas/metabolismo , Biocatálisis , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Hidrólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Sialiltransferasas/química , Sialiltransferasas/genética , Estereoisomerismo , Especificidad por Sustrato
10.
Vet Microbiol ; 161(1-2): 113-21, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22868182

RESUMEN

The incorporation of N-acetyl-5-neuraminic acid (Neu5Ac), or sialic acid, onto surface components of some bacterial species may enhance their virulence. We have previously shown that Neu5Ac can be incorporated onto the lipooligosaccharide (LOS) of the bovine pathogen Histophilus somni, resulting in diminished antibody binding and enhanced serum resistance (Inzana et al., 2002. Infect. Immun. 70, 4870). In the present study, we assessed the effect of sialylation of H. somni LOS on the interaction with bovine innate host defenses. Incubation of non-sialylated H. somni with pre-colostral calf serum (PCS) resulted in dose-dependent, complement-mediated killing of the bacteria by the alternative pathway. However, sialylated H. somni was significantly more resistant to killing at any of the concentrations of PCS used. Sialylated H. somni LOS activated and consumed less complement than non-sialylated LOS, as determined by reduction in hemolysis of opsonized red blood cells, and by Western blotting of C(3) activation products. Sialylated H. somni bound more factor H and iC(3)b and less C(3) than non-sialylated bacteria, as determined by enzyme-linked immunosorbent assay, supporting the deficiencies observed in complement activation and consumption by sialylated LOS. Sialylation of H. somni LOS inhibited both polymorphonuclear leukocyte phagocytosis of (3)H-thymidine-labeled bacteria and intracellular killing of the bacteria, compared to non-sialylated bacteria. Furthermore, sialylated H. somni bound less non-specific antibodies in normal bovine sera than non-sialylated bacteria. Therefore, sialylation of H. somni LOS had profound effects on resistance of the bacteria to innate bovine host defenses, which should be taken into consideration during in vitro studies of H. somni.


Asunto(s)
Factor H de Complemento/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Haemophilus somnus/metabolismo , Haemophilus somnus/patogenicidad , Lipopolisacáridos/metabolismo , Neutrófilos/microbiología , Suero/microbiología , Animales , Anticuerpos Antibacterianos/metabolismo , Bovinos , Activación de Complemento , Ensayo de Inmunoadsorción Enzimática , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/inmunología , Fagocitosis/inmunología , Unión Proteica , Suero/inmunología
11.
J Biol Chem ; 286(43): 37237-48, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21880735

RESUMEN

The first x-ray crystallographic structure of a CAZY family-52 glycosyltransferase, that of the membrane associated α2,3/α2,6 lipooligosaccharide sialyltransferase from Neisseria meningitidis serotype L1 (NST), has been solved to 1.95 Å resolution. The structure of NST adopts a GT-B-fold common with other glycosyltransferase (GT) families but exhibits a novel domain swap of the N-terminal 130 residues to create a functional homodimeric form not observed in any other class to date. The domain swap is mediated at the structural level by a loop-helix-loop extension between residues Leu-108 and Met-130 (we term the swapping module) and a unique lipid-binding domain. NST catalyzes the creation of α2,3- or 2,6-linked oligosaccharide products from a CMP-sialic acid (Neu5Ac) donor and galactosyl-containing acceptor sugars. Our structures of NST bound to the non-hydrolyzable substrate analog CMP-3F((axial))-Neu5Ac show that the swapping module from one monomer of NST mediates the binding of the donor sugar in a composite active site formed at the dimeric interface. Kinetic analysis of designed point mutations observed in the CMP-3F((axial))-Neu5Ac binding site suggests potential roles of a requisite general base (Asp-258) and general acid (His-280) in the NST catalytic mechanism. A long hydrophobic tunnel adjacent to the dimer interface in each of the two monomers contains electron density for two extended linear molecules that likely belong to either the two fatty acyl chains of a diglyceride lipid or the two polyethylene glycol groups of the detergent Triton X-100. In this work, Triton X-100 maintains the activity and increases the solubility of NST during purification and is critical to the formation of ordered crystals. Together, the mechanistic implications of the NST structure provide insight into lipooligosaccharide sialylation with respect to the association of substrates and the essential membrane-anchored nature of NST on the bacterial surface.


Asunto(s)
Proteínas Bacterianas/química , Neisseria meningitidis/enzimología , Sialiltransferasas/química , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glucolípidos/química , Glucolípidos/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sialiltransferasas/metabolismo
12.
Chemistry ; 17(27): 7645-55, 2011 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-21598321

RESUMEN

Sialyloligosaccharides are synthesised by various glycosyltransferases and sugar nucleotides. All of these nucleotides are diphosphate compounds except for cytidine-5'-monophosphosialic acid (CMP-Neu5Ac). To obtain an insight into why cytidine-5'-diphosphosialic acid (CDP-Neu5Ac) has not been used for the sialyltransferase reaction and why it is not found in biological organisms, the compound was synthesised. This synthesis provided the interesting finding that the carboxylic acid moiety of the sialic acid attacks the attached phosphate group. This interaction yields an activated anhydride between carboxylic acid and the phosphate group and leads to hydrolysis of the pyrophosphate linkage. The mechanism was demonstrated by stable isotope-labelling experiments. This finding suggested that CMP-Neu5Ac might also form the corresponding anhydride structure between carboxylic acid and phosphate, and this seems to be the reason why CMP-Neu5Ac is acid labile in relation to other sugar nucleotides. To confirm the role of the carboxylic acid, CMP-Neu5Ac derivatives in which the carboxylic acid moiety in the sialic acid was substituted with amide or ester groups were synthesised. These analogues clearly exhibited resistance to acid hydrolysis. This result indicated that the carboxylic acid of Neu5Ac is associated with its stability in solution. This finding also enabled the development of a novel chemical synthetic method for CMP-Neu5Ac and CMP-sialic acid derivatives.


Asunto(s)
Citidina Difosfato/análogos & derivados , Ácido N-Acetilneuramínico Citidina Monofosfato/síntesis química , Citidina Monofosfato/análogos & derivados , Ácidos Siálicos/síntesis química , Citidina Difosfato/síntesis química , Citidina Difosfato/química , Citidina Monofosfato/síntesis química , Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Estructura Molecular , Ácidos Siálicos/química , Estereoisomerismo
13.
FEBS J ; 277(13): 2779-90, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20491913

RESUMEN

Sialylated oligosaccharides, present on mammalian outer-cell surfaces, play vital roles in cellular interactions and some bacteria are able to mimic these structures to evade their host's immune system. It would be of great benefit to the study of infectious and autoimmune diseases and cancers, to understand the pathway of sialylation in detail to enable the design and production of inhibitors and mimetics. Sialylation occurs in two stages, the first to activate sialic acid and the second to transfer it to the target molecule. The activation step is catalysed by the enzyme CMP-Neu5Ac synthetase (CNS). Here we used crystal structures of CNS and similar enzymes to predict residues of importance in the CNS from Neisseria meningitidis. Nine residues were mutated to alanine, and the steady-state enzyme kinetic parameters were measured using a continuous assay to detect one of the products of the reaction, pyrophosphate. Mutations that caused the greatest loss in activity included K142A, D211A, D209A and a series of mutations at residue Q104, highlighted from sequence-alignment studies of related enzymes, demonstrating significant roles for these residues in the catalytic mechanism of CNS. The mutations of D211A and D209A provide strong evidence for a previously proposed metal-binding site in the enzyme, and the results of our mutations at residue Q104 lead us to include this residue in the metal-binding site of an intermediate complex. This suggests that, like the sugar-activating lipopolysaccharide-synthesizing CMP-2-keto-3-deoxy-manno-octonic acid synthetase enzyme KdsB, CNS recruits two Mg(2+) ions during the catalytic cycle.


Asunto(s)
Biocatálisis , N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/enzimología , Dominio Catalítico , Ácido N-Acetilneuramínico Citidina Monofosfato/síntesis química , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Cinética , N-Acilneuraminato Citidililtransferasa/genética , Mutación Puntual
14.
Org Biomol Chem ; 7(9): 1778-80, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19590770

RESUMEN

Active inclusion bodies of polyphosphate kinase 3 and cytidine 5'-monophosphate kinase were combined with whole cells that co-express sialic acid aldolase and CMP-sialic acid synthetase. The biocatalytic mixture was used for the synthesis of CMP-sialic acid, which was then converted to 3'-sialyllactose by whole cells.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Rhodobacteraceae/enzimología , Biocatálisis , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Estructura Molecular , Nucleósido-Difosfato Quinasa/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Especificidad por Sustrato
15.
Biochemistry ; 47(1): 320-30, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18067323

RESUMEN

Sialyltransferases transfer sialic acid from cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to an acceptor molecule. Trans-sialidases of parasites transfer alpha2,3-linked sialic acid from one molecule to another without the involvement of CMP-NeuAc. Here we report another type of sialylation, termed reverse sialylation, catalyzed by mammalian sialyltransferase ST3Gal-II. This enzyme synthesizes CMP-NeuAc by transferring NeuAc from the NeuAcalpha2,3Galbeta1,3GalNAcalpha unit of O-glycans, 3-sialyl globo unit of glycolipids, and sialylated macromolecules to 5'-CMP. CMP-NeuAc produced in situ is utilized by the same enzyme to sialylate other O-glycans and by other sialyltransferases such as ST6Gal-I and ST6GalNAc-I, forming alpha2,6-sialylated compounds. ST3Gal-II also catalyzed the conversion of 5'-uridine monophosphate (UMP) to UMP-NeuAc, which was found to be an inactive sialyl donor. Reverse sialylation proceeded without the need for free sialic acid, divalent metal ions, or energy. Direct sialylation with CMP-NeuAc as well as the formation of CMP-NeuAc from 5'-CMP had a wide optimum range (pH 5.2-7.2 and 4.8-6.4, respectively), whereas the entire reaction comprising in situ production of CMP-NeuAc and sialylation of acceptor had a sharp optimum at pH 5.6 (activity level 50% at pH 5.2 and 6.8, 25% at pH 4.8 and 7.2). Several properties distinguish forward/conventional versus reverse sialylation: (i) sodium citrate inhibited forward sialylation but not reverse sialylation; (ii) 5'-CDP, a potent forward sialyltransferase inhibitor, did not inhibit the conversion of 5'-CMP to CMP-NeuAc; and (iii) the mucin core 2 compound 3-O-sulfoGalbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-benzyl, an efficient acceptor for ST3Gal-II, inhibited the conversion of 5'-CMP to CMP-NeuAc. A significant level of reverse sialylation activity is noted in human prostate cancer cell lines LNCaP and PC3. Overall, the study demonstrates that the sialyltransferase reaction is readily reversible in the case of ST3Gal-II and can be exploited for the enzymatic synthesis of diverse sialyl products.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/metabolismo , Glucolípidos/metabolismo , Sialiltransferasas/metabolismo , Animales , Pollos , Cromatografía de Afinidad , Cromatografía Liquida , Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Glucolípidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Polisacáridos/química , Polisacáridos/metabolismo , Ratas , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , beta-Galactosida alfa-2,3-Sialiltransferasa
17.
Carbohydr Res ; 342(12-13): 1680-8, 2007 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-17572399

RESUMEN

Cytidine-5'-monophospho-sialic acid (CMP-Neu5Ac) derivatives bearing a phenyl group in which the tether length between the phenyl group and the 9-position of Neu5Ac varied were synthesized and evaluated as substrates for sialyltransferases. In the synthesis of the compounds, a coupling reaction between methyl 5-acetamido-4,7,8-tri-O-acetyl-9-azido-3,5,9-trideoxy-beta-D-glycero-D-galacto-2-nonulopyranosonate and 2-cyanoethyl 2',3'-O,N4, triacetylcytidine-5'-yl N,N-diisopropylphosphoramidite was carried out and the phosphite derivative thus obtained was oxidized and then deprotected to yield CMP-9''-azido-Neu5Ac. Modification of the 9-amino group prepared by reduction of the azido groups was performed by the use of several phenyl-substituted alkylcarboxylic acid derivatives. Using these CMP-9''-modified-Neu5Ac analogues bearing the phenyl-substituted alkyl-amide group, sialyltransferase assays were performed with both rat liver alpha-(2-->6)-sialyltransferase and Photobacterium alpha-(2-->6)-sialyltransferase. These 9-modified analogues could be transferred to disaccharide acceptors, and a practical enzymatic synthesis using CMP-9''-modified-Neu5Ac yielded sialoside analogues and sialylglycoproteins in good yield. These experiments demonstrate that the Photobacterium sialyltransferase can be used in the synthesis of sialoside analogues having a large substituent at the 9-position of Neu5Ac.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/análogos & derivados , Ácido N-Acetilneuramínico Citidina Monofosfato/síntesis química , Sialiltransferasas/metabolismo , Animales , Bacterias/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Mamíferos , Modelos Moleculares , Especificidad por Sustrato
18.
Glycobiology ; 17(9): 945-54, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17580313

RESUMEN

The terminal sugar sialic acid (Sia) plays a pivotal role in cell-cell interaction and recognition. A prerequisite for the biosynthesis of sialoglycoconjugates is the activation of Sia to cytidine monophosphate-Sia (CMP-Sia), by CMP-Sia synthetases (CMP-Sia-syn). CMP-Sia-syn are conserved from bacteria to man, and have been found to reside in the nucleus of all vertebrate species analysed to date. We previously cloned the CMP-Sia-syn from rainbow trout (rt) and identified three clusters of basic amino acids (BC) that might act as nuclear localization signals (NLS). Here, we utilised chimeric proteins and rt CMP-Sia-syn mutants in which putative NLS sequences were deleted, to identify the nuclear transport signal. Divergent from the mouse enzyme, where the crucial NLS is part of the enzyme's active site, in the rt CMP-Sia-syn the NLS and active site are disparate. The crucial NLS in the fish enzyme is bipartite and the functionality depends on a free N-terminus. Comparative analysis of all putative rt NLS in mouse and fish cells identified a second inferior motif (rtBC5-6), which was functional only in fish cells suggesting some differences in transport mechanism or folding variabilities in fish. Moreover, based on computational analyses of putative CMP-Sia-syn from distant deuterostomian organisms it was concluded that CMP-Sia-syn nuclear localization is a relatively recent invention, originating in echinoderms. In summary, our data describing structural differences in the NLS of vertebrate CMP-Sia-syn, and the independence of Sia activation from the subcellular localization of the enzyme, provide supporting evidence that nuclear localization is linked to a second yet unknown function.


Asunto(s)
N-Acilneuraminato Citidililtransferasa/química , N-Acilneuraminato Citidililtransferasa/metabolismo , Señales de Localización Nuclear , Secuencia de Aminoácidos , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Oncorhynchus mykiss , Transducción de Señal , Especificidad de la Especie
19.
Artículo en Inglés | MEDLINE | ID: mdl-16511286

RESUMEN

Sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine-5-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to the carbohydrate group of various glycoproteins. These glycoproteins are involved in inflammation, embryogenesis, immune defence and metastasis of cancer cells by cell-cell interactions or cell-matrix interactions. The alpha-2,6-sialyltransferase PM0188 from Pasteurella multocida was purified using affinity-column chromatographic methods and crystallized using the hanging-drop vapour-diffusion method at 293 K. MAD data were collected to 1.9 A resolution from an SeMet-substituted crystal. The crystal belongs to space group P2(1), with unit-cell parameters a = 52.9, b = 61.0, c = 64.6 A, alpha = gamma = 90, beta = 112.3 degrees. Assuming the presence of one molecule in the asymmetric unit, the solvent content is estimated to be about 45%.


Asunto(s)
Proteínas Bacterianas/química , Pasteurella multocida/enzimología , Sialiltransferasas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Cristalización , Cristalografía por Rayos X , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/aislamiento & purificación , Solventes , beta-D-Galactósido alfa 2-6-Sialiltransferasa
20.
Biochemistry ; 44(20): 7526-34, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15895995

RESUMEN

Previous studies have reported that insect cell lines lack the capacity to generate endogenously the nucleotide sugar, CMP-Neu5Ac, required for sialylation of glycoconjugates. In this study, the biosynthesis of this activated form of sialic acid completely from endogenous metabolites is demonstrated for the first time in insect cells by expressing the mammalian genes required for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac. The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9-phosphate synthase (SAS), and CMP-sialic acid synthetase (CSAS) were coexpressed in insect cells using baculovirus expression vectors, but the CMP-Neu5Ac and precursor Neu5Ac levels synthesized were found to be lower than those achieved with ManNAc supplementation due to feedback inhibition of the EK enzyme by CMP-Neu5Ac. When sialuria-like mutant EK genes, in which the site for feedback regulation has been mutated, were used, CMP-Neu5Ac was synthesized at levels more than 4 times higher than that achieved with the wild-type EK and 2.5 times higher than that achieved with ManNAc feeding. Addition of N-acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu5Ac even more to a level 7.5 times higher than that achieved with ManNAc supplementation, creating a bottleneck in the conversion of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc. The present study provides a useful biochemical strategy to synthesize and enhance the levels of the sialylation donor molecule, CMP-Neu5Ac, a critical limiting substrate for the generation of complex glycoproteins in insect cells and other cell culture systems.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Líquido Intracelular/química , Líquido Intracelular/metabolismo , Mutagénesis Sitio-Dirigida , N-Acilneuraminato Citidililtransferasa/biosíntesis , Spodoptera/enzimología , Spodoptera/genética , Animales , Arginina/genética , Baculoviridae/enzimología , Baculoviridae/genética , Carbohidrato Epimerasas/antagonistas & inhibidores , Carbohidrato Epimerasas/biosíntesis , Carbohidrato Epimerasas/genética , Células Cultivadas , Hexosaminas/química , Hexosaminas/metabolismo , Humanos , Leucina/genética , Manosafosfatos , Mariposas Nocturnas/virología , N-Acetilhexosaminiltransferasas/biosíntesis , N-Acetilhexosaminiltransferasas/genética , N-Acilneuraminato Citidililtransferasa/genética , Ratas , Enfermedad por Almacenamiento de Ácido Siálico/genética , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...