Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.043
1.
Adv Exp Med Biol ; 1451: 301-316, 2024.
Article En | MEDLINE | ID: mdl-38801586

The smallpox infection with the variola virus was one of the most fatal disorders until a global eradication was initiated in the twentieth century. The last cases were reported in Somalia 1977 and as a laboratory infection in the UK 1978; in 1980, the World Health Organization (WHO) declared smallpox for extinct. The smallpox virus with its very high transmissibility and mortality is still a major biothreat, because the vaccination against smallpox was stopped globally in the 1980s. For this reason, new antivirals (cidofovir, brincidofovir, and tecovirimat) and new vaccines (ACAM2000, LC16m8 and Modified Vaccine Ankara MVA) were developed. For passive immunization, vaccinia immune globulin intravenous (VIGIV) is available. Due to the relationships between orthopox viruses such as vaccinia, variola, mpox (monkeypox), cowpox, and horsepox, the vaccines (LC16m8 and MVA) and antivirals (brincidofovir and tecovirimat) could also be used in the mpox outbreak with positive preliminary data. As mutations can result in drug resistance against cidofovir or tecovirimat, there is need for further research. Further antivirals (NIOCH-14 and ST-357) and vaccines (VACΔ6 and TNX-801) are being developed in Russia and the USA. In conclusion, further research for treatment and prevention of orthopox infections is needed and is already in progress. After a brief introduction, this chapter presents the smallpox and mpox disease and thereafter full overviews on antiviral treatment and vaccination including the passive immunization with vaccinia immunoglobulins.


Antiviral Agents , Mpox (monkeypox) , Smallpox Vaccine , Smallpox , Smallpox/prevention & control , Smallpox/epidemiology , Smallpox/immunology , Smallpox/history , Humans , Antiviral Agents/therapeutic use , Smallpox Vaccine/immunology , Smallpox Vaccine/therapeutic use , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/prevention & control , Mpox (monkeypox)/immunology , Vaccination/methods , Variola virus/immunology , Variola virus/genetics , Animals , Cytosine/analogs & derivatives , Cytosine/therapeutic use , Monkeypox virus/immunology , Monkeypox virus/pathogenicity , Monkeypox virus/genetics , Immunization, Passive/methods , Organophosphonates/therapeutic use , Isoindoles/therapeutic use , Cidofovir/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Benzamides , Phthalimides
2.
Comput Biol Med ; 175: 108529, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718667

Many health challenges are attributed to viral infections, which represent significant concerns in public health. Among these infections, diseases such as herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV) infections have garnered attention due to their prevalence and impact on human health. There are specific antiviral medications available for the treatment of these viral infections. Drugs like Cidofovir, Valacyclovir, and Acyclovir are commonly prescribed. These antiviral drugs are known for their efficacy against herpesviruses and related viral infections, leveraging their ability to inhibit viral DNA polymerase. A molecular descriptor is a numerical value that correlates with specific physicochemical properties of a molecular graph. This article explores the calculation of distance-based topological descriptors, including the Trinajstic, Mostar, Szeged, and PI descriptors for the aforementioned antiviral drugs. These descriptors provide insights into these drugs' structural and physicochemical characteristics, aiding in understanding their mechanism of action and the development of new therapeutic agents.


Antiviral Agents , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Acyclovir/therapeutic use , Acyclovir/chemistry , Acyclovir/pharmacology , Computational Biology/methods , Cidofovir/therapeutic use , Cidofovir/chemistry , Cytosine/analogs & derivatives , Cytosine/therapeutic use , Cytosine/chemistry , Valacyclovir/therapeutic use
3.
J Phys Chem B ; 128(19): 4621-4630, 2024 May 16.
Article En | MEDLINE | ID: mdl-38697651

Thymine DNA glycosylase (TDG)-mediated excision of 5-formylcytosine and 5-carboxylcytosine (5-caC) is a critical step in active DNA demethylation. Herein, we employed a combined quantum mechanics/molecular mechanics approach to investigate the reaction mechanism of TDG-catalyzed N-glycosidic bond cleavage of 5-caC. The calculated results show that TDG-catalyzed 5-caC excision follows a concerted (SN2) mechanism in which glycosidic bond dissociation is coupled with nucleophile attack. Protonation of the 5-caC anion contributes to the cleavage of the N-glycoside bond, in which the N3-protonated zwitterion and imino tautomers are more favorable than carboxyl-protonated amino tautomers. This is consistent with the experimental data. Furthermore, our results reveal that the configuration rearrangement process of the protonated 5-caC would lower the stability of the N-glycoside bond and substantially reduce the barrier height for the subsequent C1'-N1 bond cleavage. This should be attributed to the smaller electrostatic repulsion between the leaving base and the negative phosphate group as a result of the structural rearrangement.


Cytosine , Glycosides , Quantum Theory , Thymine DNA Glycosylase , Thymine DNA Glycosylase/metabolism , Thymine DNA Glycosylase/chemistry , Cytosine/chemistry , Cytosine/metabolism , Cytosine/analogs & derivatives , Glycosides/chemistry , Glycosides/metabolism , Molecular Dynamics Simulation
4.
Indian J Pharmacol ; 56(2): 129-135, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38687317

ABSTRACT: The virus known as monkeypox is the source of the zoonotic disease monkeypox, which was historically widespread in Central Africa and West Africa. The cases of monkeypox in humans are uncommon outside of West and Central Africa, but copious nonendemic nations outside of Africa have recently confirmed cases. People when interact with diseased animals, then, they may inadvertently contact monkeypox. There are two drugs in the market: brincidofovir and tecovirimat and both of these drugs are permitted for the cure of monkeypox by the US Food and Drug Administration. The present review summarizes the various parameters of monkeypox in context with transmission, signs and symptoms, histopathological and etiological changes, and possible treatment. Monkeypox is clinically similar to that of smallpox infection but epidemiologically, these two are different, the present study also signifies the main differences and similarities of monkeypox to that of other infectious diseases. As it is an emerging disease, it is important to know about the various factors related to monkeypox so as to control it on a very early stage of transmission.


Antiviral Agents , Communicable Diseases, Emerging , Cytosine/analogs & derivatives , Mpox (monkeypox) , Phthalimides , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Humans , Animals , Antiviral Agents/therapeutic use , Communicable Diseases, Emerging/epidemiology , Cytosine/therapeutic use , Monkeypox virus , Isoindoles/therapeutic use , Organothiophosphorus Compounds , Organophosphonates/therapeutic use , Benzamides/therapeutic use
5.
Int J Infect Dis ; 143: 107015, 2024 Jun.
Article En | MEDLINE | ID: mdl-38521447

An mpox outbreak was declared in July 2022 by the world health organization (WHO). It causes a mild self-limiting disease however; in immunosuppressed hosts, it tends to cause severe disseminated infection. Most cases of mpox in sold organ transplant (SOT) recipients reported in the literature were treated with tecovirimat. Here we report two cases of severe disseminated mpox infection in renal transplant recipients that were successfully treated with brincidofovir. Both patients were discharged from the hospital with no immediate significant side effects from brincidofovir reported until the submission of this report.


Antiviral Agents , Cytosine , Cytosine/analogs & derivatives , Immunocompromised Host , Kidney Transplantation , Organophosphonates , Humans , Kidney Transplantation/adverse effects , Antiviral Agents/therapeutic use , Cytosine/therapeutic use , Male , Organophosphonates/therapeutic use , Adult , Transplant Recipients , Treatment Outcome , Middle Aged
6.
Viruses ; 16(3)2024 03 18.
Article En | MEDLINE | ID: mdl-38543829

Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.


Cytosine/analogs & derivatives , Herpesviridae , Herpesvirus 1, Suid , Organophosphonates , Pseudorabies , Swine Diseases , Humans , Animals , Mice , Swine , Herpesvirus 1, Suid/genetics , Pseudorabies/pathology , Virus Replication , Cell Proliferation , Swine Diseases/pathology
7.
Anal Chem ; 96(11): 4726-4735, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38450632

DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution is still highly desirable. Herein, we propose a chemical labeling enrichment and deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (APOBEC3A or A3A) and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mESCs. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.


Cytidine Deaminase , Cytosine , Cytosine/analogs & derivatives , Epigenesis, Genetic , Proteins , Animals , Mice , Deamination , Cytosine/metabolism , 5-Methylcytosine/metabolism , Chromosome Mapping , DNA/genetics , DNA/metabolism , DNA Methylation , Mammals/metabolism
8.
Nucleic Acids Res ; 52(6): 3375-3389, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38366792

The i-motif is an intriguing non-canonical DNA structure, whose role in the cell is still controversial. Development of methods to study i-motif formation under physiological conditions in living cells is necessary to study its potential biological functions. The cytosine analog 1,3-diaza-2-oxophenoxazine (tCO) is a fluorescent nucleobase able to form either hemiprotonated base pairs with cytosine residues, or neutral base pairs with guanines. We show here that when tCO is incorporated in the proximity of a G:C:G:C minor groove tetrad, it induces a strong thermal and pH stabilization, resulting in i-motifs with Tm of 39ºC at neutral pH. The structural determination by NMR methods reveals that the enhanced stability is due to a large stacking interaction between the guanines of the tetrad with the tCO nucleobase, which forms a tCO:C+ in the folded structure at unusually-high pHs, leading to an increased quenching in its fluorescence at neutral conditions. This quenching is much lower when tCO is base-paired to guanines and totally disappears when the oligonucleotide is unfolded. By taking profit of this property, we have been able to monitor i-motif folding in cells.


Cytosine , DNA , Base Pairing , Cytosine/analogs & derivatives , DNA/chemistry , Nucleic Acid Conformation , Oxazines/chemistry , Oxazines/metabolism , HeLa Cells , Humans , Fluorescence
9.
J Biol Chem ; 300(4): 105786, 2024 Apr.
Article En | MEDLINE | ID: mdl-38401843

Histone proteins can become trapped on DNA in the presence of 5-formylcytosine (5fC) to form toxic DNA-protein conjugates. Their repair may involve proteolytic digestion resulting in DNA-peptide cross-links (DpCs). Here, we have investigated replication of a model DpC comprised of an 11-mer peptide (NH2-GGGKGLGK∗GGA) containing an oxy-lysine residue (K∗) conjugated to 5fC in DNA. Both CXG and CXT (where X = 5fC-DpC) sequence contexts were examined. Replication of both constructs gave low viability (<10%) in Escherichia coli, whereas TLS efficiency was high (72%) in HEK 293T cells. In E. coli, the DpC was bypassed largely error-free, inducing only 2 to 3% mutations, which increased to 4 to 5% with SOS. For both sequences, semi-targeted mutations were dominant, and for CXG, the predominant mutations were G→T and G→C at the 3'-base to the 5fC-DpC. In HEK 293T cells, 7 to 9% mutations occurred, and the dominant mutations were the semi-targeted G → T for CXG and T → G for CXT. These mutations were reduced drastically in cells deficient in hPol η, hPol ι or hPol ζ, suggesting a role of these TLS polymerases in mutagenic TLS. Steady-state kinetics studies using hPol η confirmed that this polymerase induces G → T and T → G transversions at the base immediately 3' to the DpC. This study reveals a unique replication pattern of 5fC-conjugated DpCs, which are bypassed largely error-free in both E. coli and human cells and induce mostly semi-targeted mutations at the 3' position to the lesion.


Cytosine , Cytosine/analogs & derivatives , DNA , Escherichia coli , Mutation , Humans , Escherichia coli/metabolism , Escherichia coli/genetics , HEK293 Cells , Cytosine/metabolism , Cytosine/chemistry , DNA/metabolism , DNA/chemistry , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , DNA Replication/drug effects
10.
Clin Pharmacol Drug Dev ; 13(3): 288-296, 2024 03.
Article En | MEDLINE | ID: mdl-38171911

Smallpox was eradicated in 1980 but remains a biothreat due to the potential release of variola virus into the general population. Brincidofovir, the second medicine approved by the US Food and Drug Administration to treat smallpox, is metabolized by oxidative and hydrolytic pathways. The oxidative pathway is initiated by cytochrome P450 4F2 (CYP4F2), an enzyme lacking clinical probes for drug interaction studies. The aim of this work was to assess the impact of reduced activity CYP4F2 variants (rs2108622, C/T and T/T) on brincidofovir pharmacokinetics as a surrogate for drug inhibition. Genotyping was performed on blood from healthy participants receiving oral (n = 261) and intravenous (IV, n = 49) brincidofovir across 6 phase 1 trials. Plasma concentrations were measured by validated liquid chromatography tandem mass spectrometry methods. After oral administration, subjects with the lowest activity CYP4F2 genotype (T/T) had up to 36% higher AUCinf and 29% higher Cmax while subjects with the moderate activity CYP4F2 genotype (C/T) had similar Cmax and AUCinf compared to those with the wild-type genotype. Little to no increase in brincidofovir exposure parameters was observed following IV administration. Based on the lack of significant increases in brincidofovir plasma concentrations in subjects with low activity CYP4F2, a clinically meaningful drug-drug interaction is not expected with CYP4F2 inhibitor and brincidofovir coadministration.


Cytosine/analogs & derivatives , Organophosphonates , Smallpox , United States , Humans , Genotype , Drug Interactions , Cytochrome P-450 Enzyme System
11.
Angew Chem Int Ed Engl ; 63(17): e202318837, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38284298

Mammalian genomes are regulated by epigenetic cytosine (C) modifications in palindromic CpG dyads. Including canonical cytosine 5-methylation (mC), a total of four different 5-modifications can theoretically co-exist in the two strands of a CpG, giving rise to a complex array of combinatorial marks with unique regulatory potentials. While tailored readers for individual marks could serve as versatile tools to study their functions, it has been unclear whether a natural protein scaffold would allow selective recognition of marks that vastly differ from canonical, symmetrically methylated CpGs. We conduct directed evolution experiments to generate readers of 5-carboxylcytosine (caC) dyads based on the methyl-CpG-binding domain (MBD), the widely conserved natural reader of mC. Despite the stark steric and chemical differences to mC, we discover highly selective, low nanomolar binders of symmetric and asymmetric caC-dyads. Together with mutational and modelling studies, our findings reveal a striking evolutionary flexibility of the MBD scaffold, allowing it to completely abandon its conserved mC recognition mode in favour of noncanonical dyad recognition, highlighting its potential for epigenetic reader design.


Cytosine , Cytosine/analogs & derivatives , DNA Methylation , Animals , CpG Islands , Cytosine/chemistry , Epigenesis, Genetic , Mammals/metabolism
12.
Anal Chem ; 96(5): 2191-2198, 2024 02 06.
Article En | MEDLINE | ID: mdl-38282288

N6-Methyladenine (6mdA) and N4-methylcytosine (4mdC) are the two most dominant DNA modifications in both prokaryotes and eukaryotes, but standard hybridization-based techniques cannot be applied for the 6mdA/4mdC assay. Herein, we demonstrate the silver-coordinated Watson-Crick pairing-driven three-dimensional (3D) DNA walker for locus-specific detection of genomic 6mdA/4mdC at the single-molecule level. 6mdA-DNA and 4mdC-DNA can selectively hybridize with the binding probes (BP1 and BP2) to form 6mdA-DNA-BP1 and 4mdC-DNA-BP2 duplexes. The 6mdA-C/4mdC-A mismatches cannot be stabilized by AgI, and thus, 18-nt BP1/BP2 cannot be extended by the catalysis of KF exonuclease. Through toehold-mediated strand displacement (TMSD), the signal probe (SP1/SP2) functionalized on the gold nanoparticles (AuNPs) can competitively bind to BP1/BP2 in 6mdA-DNA-BP1/4mdC-DNA-BP2 duplex to obtain SP1-18-nt BP1 and SP2-18-nt BP2 duplexes. The resulting DNA duplexes can act as the substrates of lambda exonuclease, leading to the cleavage of SP1/SP2 and the release of Cy3/Cy5 and 18-nt BP1/BP2. The released 18-nt BP1/BP2 can subsequently serve as the walker DNA, moving along the surface of the AuNP to activate dynamic 3D DNA walking and releasing abundant Cy3/Cy5. The released Cy3/Cy5 can be quantified by single-molecule imaging. This nanosensor exhibits high sensitivity with a limit of detection (LOD) of 9.80 × 10-15 M for 6mdA-DNA and 9.97 × 10-15 M for 4mdC-DNA. It can discriminate 6mdA-/4mdC-DNA from unmodified genomic DNAs, distinguish 0.01% 6mdA-/4mdC-DNA from excess unmethylated DNAs, and quantify 6mdA-/4mdC-DNA at specific sites in genomic DNAs of liver cancer cells and Escherichia coli plasmid cloning vector, providing a new platform for locus-specific analysis of 6mdA/4mdC in genomic DNAs.


Adenine/analogs & derivatives , Carbocyanines , Cytosine/analogs & derivatives , Metal Nanoparticles , Silver , Gold , Metal Nanoparticles/chemistry , DNA , Genomics , Exonucleases
13.
J Chem Inf Model ; 64(7): 2839-2853, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-37646411

In tasks related to DNA sequence classification, choosing the appropriate encoding methods is challenging. Some of the methods encode sequences based on prior knowledge that limits the ability of the model to obtain multiperspective information from the sequences. We introduced a new trainable ensemble method based on the attention mechanism SDBA, which stands for Score Domain-Based Attention. Unlike other methods, we fed the task-independent encoding results into the models and dynamically ensembled features from different perspectives using the SDBA mechanism. This approach allows the model to acquire and weight sequence features voluntarily. SDBA is conceptually general and empirically powerful. It has achieved new state-of-the-art results on the benchmark data sets associated with DNA N4-methylcytosine site prediction.


Cytosine , DNA , DNA/chemistry , Cytosine/analogs & derivatives
14.
Curr Pharm Biotechnol ; 25(4): 411-425, 2024.
Article En | MEDLINE | ID: mdl-37711132

Monkeypox is a disease caused by the monkeypox virus, which is a type of orthopox virus that comes from the virus family Poxviridae. Its first case reported in animals and humans was in 1958 and 1970, respectively. It is a viral zoonosis disease with two modes of transmission: animal to human (via direct contact or eating the meat of an infected animal) and human to human (via contact or contact with skin lesions, body fluids, and infected person's contaminated objects). The literature depicts that monkeypox is less contagious among individuals in contrast to smallpox; the infection chain of monkeypox is nearly five to six patients approximately. It has two clades, the West African and the Central African (the Congo basin). The Congo basin subgroup of monkeypox is highly transmissible and severe. The symptoms of monkeypox include fever, lethargy, headache, lymphadenopathy, myalgia, myodynia, fainting, shivers, backache, and rashes on the face and extremities. The most common symptom of monkeypox is lymphatic hyperplasia or, lymph adenopathy or swollen lymph nodes. It is proven to be very useful in the diagnosis of monkeypox. The antiviral drugs that are used for its treatment are tecovirimat, brincidofovir and cidofovir. Tecovirimat has fewer side effects and it shows better therapeutic action in comparison to brincidofovir and cidofovir. For the prevention of monkeypox, the Center for Disease Control and Prevention recommends the administration of the same vaccine used for smallpox named INVAMUNE, which is currently in its third generation. Its first and second generations have adverse side effects in patients having HIV or atopic dermatitis.


Cytosine/analogs & derivatives , Mpox (monkeypox) , Organophosphonates , Smallpox , Variola virus , Animals , Humans , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/drug therapy , Cidofovir
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2055-2065, 2024 04.
Article En | MEDLINE | ID: mdl-37837475

Recent years have witnessed the rise of more recent pandemic outbreaks including COVID-19 and monkeypox. A multinational monkeypox outbreak creates a complex situation that necessitates countermeasures to the existing quo. The first incidence of monkeypox was documented in the 1970s, and further outbreaks led to a public health emergency of international concern. Yet as of right now, neither vaccines nor medicines are certain to treat monkeypox. Even the inability of conducting human clinical trials has prevented thousands of patients from receiving effective disease management. The current state of the disease's understanding, the treatment options available, financial resources, and lastly international policies to control an epidemic state are the major obstacles to controlling epidemics. The current review focuses on the epidemiology of monkeypox, scientific ideas, and available treatments, including potential monkeypox therapeutic methods. As a result, a thorough understanding of monkeypox literature will facilitate in the development of new therapeutic medications for the prevention and treatment of monkeypox.


Cytosine/analogs & derivatives , Mpox (monkeypox) , Organophosphonates , Humans , Cidofovir , Benzamides
16.
J Org Chem ; 87(19): 12688-12697, 2022 10 07.
Article En | MEDLINE | ID: mdl-36075053

We report a Pd-catalyzed ring-opening/arylation/cyclization reaction sequence between 2-aminothiazoles and aryl (pseudo)halides that provides modular access to isocytosine analogues. The scope of the reaction is broad with respect to both coupling partners and a robustness test demonstrated the functional group tolerance of the methodology. Visual kinetic analysis revealed that the product may inhibit catalyst turnover for some substrates.


Palladium , Cyclization , Cytosine/analogs & derivatives , Kinetics , Thiazoles
17.
Nature ; 607(7919): 593-603, 2022 07.
Article En | MEDLINE | ID: mdl-35768510

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


5-Methylcytosine , Cytosine/analogs & derivatives , Glycolysis , Mitochondria , Neoplasm Metastasis , Oxidative Phosphorylation , RNA, Mitochondrial , 5-Methylcytosine/biosynthesis , 5-Methylcytosine/metabolism , CD36 Antigens , Cell Survival , Cytosine/metabolism , Disease Progression , Glycolysis/drug effects , Humans , Methylation/drug effects , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Oxidative Phosphorylation/drug effects , Protein Biosynthesis/drug effects , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Transfer, Met/genetics , RNA, Transfer, Met/metabolism
18.
J Hazard Mater ; 436: 129146, 2022 08 15.
Article En | MEDLINE | ID: mdl-35594676

Given the improved photoactivity of Bi2S3 by MXene, an article photoelectrochemical biosensor was designed for 5-formyl-2'-deoxycytidine (5fdCTP) detection, where Bi2S3: MXene was selected as photoactive material, polydopamine was used as solid electron donor and 5fdCTP capture reagent, calcined ZIF-8(C-ZIF-8) was chosen as the artificial enzyme. With the catalyzed by C-ZIF-8, 4-chloro-1-naphthol was allegro oxidized by H2O2 to form the insoluble benzo-4-chlorohexadienone, and then deposited on the surface of the electrode, Resulting in a decrease of the PEC response. Under the optimum conditions, the sensor has a linear range of 0.001-200 nM and a detection limit of 0.51 pM (3σ). The suitability of the developed method was appraised by investigating the effect of antibiotics on 5fdCTP content in the genomic DNA of the roots of maize seedlings. As a new detection platform, the application of this approach can be expanded to investigative the impact of other pollutants on the content of 5fdCTP in plant or animal tissues, explore the feasibility of 5fdCTP as a new indicator for the ecotoxicological effect of pollutants, and the photoelectrochemical method as a new assessment technique for the ecotoxicological effects of pollutants.


Biosensing Techniques , Environmental Pollutants , Animals , Anti-Bacterial Agents , Biosensing Techniques/methods , Cytosine/analogs & derivatives , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry , Limit of Detection , Seedlings
19.
J Biol Chem ; 298(4): 101788, 2022 04.
Article En | MEDLINE | ID: mdl-35247384

A subset of eukaryotic tRNAs is methylated in the anticodon loop, forming 3-methylcytosine (m3C) modifications. In mammals, the number of tRNAs containing m3C modifications has been expanded to include mitochondrial (mt) tRNA-Ser-UGA and mt-tRNA-Thr-UGU. However, whereas the enzymes catalyzing m3C formation in nuclear-encoded tRNAs have been identified, the proteins responsible for m3C modification in mt-tRNAs are unknown. Here, we show that m3C formation in human mt-tRNAs is dependent upon the methyltransferase-Like 8 (METTL8) enzyme. We find that METTL8 is a mitochondria-associated protein that interacts with mitochondrial seryl-tRNA synthetase, as well as with mt-tRNAs containing m3C. We demonstrate that human cells deficient in METTL8 exhibit loss of m3C modification in mt-tRNAs, but not nuclear-encoded tRNAs. Consistent with the mitochondrial import of METTL8, the formation of m3C in METTL8-deficient cells could be rescued by re-expression of WT METTL8, but not by a METTL8 variant lacking the N-terminal mitochondrial localization signal. Notably, we found METTL8-deficiency in human cells causes alterations in the native migration pattern of mt-tRNA-Ser-UGA, suggesting a role for m3C in tRNA folding. Altogether, these findings demonstrate that METTL8 is required for m3C formation in mt-tRNAs and uncover a potential function for m3C modification in mitochondrial tRNA structure.


Anticodon , Methyltransferases , RNA, Transfer , Anticodon/metabolism , Cytosine/analogs & derivatives , Cytosine/metabolism , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Mitochondria/enzymology , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism
20.
Molecules ; 27(4)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35209001

New isopropylated fused azaisocytosine-containing congeners (I-VI) have previously been reported as promising anticancer drug candidates, so further research on these molecules in the preclinical development phase is fully justified and necessary. For this reason, in the present paper, we assess the toxicity/safety profiles of all the compounds using Danio rerio and red blood cell models, and examine the effect of the most selective congeners on the activation of apoptotic caspases in cancer and normal cells. In order to evaluate the effect of each molecule on the development of zebrafish embryos/larvae and to select the safest compounds for further study, various phenotypic parameters (i.e., mortality, hatchability, heart rate, heart oedema, yolk sac utilization, swim bladder development and body shape) were observed, and the half maximal lethal concentration, the maximal non-lethal concentration and no observed adverse effect concentration for each compound were established. The effect of all the isopropylated molecules was compared to that of an anticancer agent pemetrexed. The lipophilicity-dependent structure-toxicity correlations were also determined. To establish the possible interaction of the compounds with red blood cells, an ex vivo hemolysis test was performed. It was shown that almost all of the investigated isopropylated congeners have no adverse phenotypic effect on zebrafish development during five-day exposure at concentrations up to 50 µM (I-III) or up to 20 µM (IV-V), and that they are less toxic for embryos/larvae than pemetrexed, demonstrating their safety. At the same time, all the molecules did not adversely affect the red blood cells, which confirms their very good hemocompatibility. Moreover, they proved to be activators of apoptotic caspases, as they increased caspase-3, -7 and -9 levels in human breast carcinoma cells. The conducted research allows us to select-from among the anticancer active drug candidates-compounds that are safe for developing zebrafish and red blood cells, suitable for further in vivo pharmacological tests.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Cytosine/chemistry , Embryo, Nonmammalian/drug effects , Erythrocytes/drug effects , Animals , Cell Line, Tumor , Cytosine/analogs & derivatives , Dose-Response Relationship, Drug , Hemolysis/drug effects , Humans , Molecular Structure , Toxicity Tests , Zebrafish
...