Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Nature ; 615(7951): 331-338, 2023 03.
Article En | MEDLINE | ID: mdl-36813958

Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5' terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.


Cryoelectron Microscopy , DEAD-box RNA Helicases , MicroRNAs , RNA Precursors , Ribonuclease III , Humans , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/ultrastructure , MicroRNAs/biosynthesis , MicroRNAs/chemistry , MicroRNAs/metabolism , MicroRNAs/ultrastructure , Mutation , Ribonuclease III/chemistry , Ribonuclease III/genetics , Ribonuclease III/metabolism , Ribonuclease III/ultrastructure , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA Precursors/ultrastructure , RNA, Double-Stranded/metabolism , Substrate Specificity
2.
Nature ; 596(7871): 296-300, 2021 08.
Article En | MEDLINE | ID: mdl-34349264

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Splicing , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Spliceosomes/enzymology , Actins/genetics , Adenosine/metabolism , Binding Sites , Cryoelectron Microscopy , DEAD-box RNA Helicases/ultrastructure , Models, Molecular , Mutation , Protein Domains , RNA Precursors/metabolism , RNA Precursors/ultrastructure , RNA Splicing/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U2 Small Nuclear/chemistry , Ribonucleoprotein, U2 Small Nuclear/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Spliceosomes/chemistry , Spliceosomes/metabolism
3.
J Struct Biol ; 209(1): 107399, 2020 01 01.
Article En | MEDLINE | ID: mdl-31586599

G-quadruplexes (G4) are secondary structures of nucleic acids that can form in cells and have diverse biological functions. Several biologically important proteins interact with G-quadruplexes, of which RHAU (or DHX36) - a helicase from the DEAH-box superfamily, was shown to bind and unwind G-quadruplexes efficiently. We report a X-ray co-crystal structure at 1.5 Šresolution of an N-terminal fragment of RHAU bound to an exposed tetrad of a parallel-stranded G-quadruplex. The RHAU peptide folds into an L-shaped α-helix, and binds to a G-quadruplex through π-stacking and electrostatic interactions. X-ray crystal structure of our complex identified key amino acid residues important for G-quadruplex-peptide binding interaction at the 3'-end G•G•G•G tetrad. Together with previous solution and crystal structures of RHAU bound to the 5'-end G•G•G•G and G•G•A•T tetrads, our crystal structure highlights the occurrence of a robust G-quadruplex recognition motif within RHAU that can adapt to different accessible tetrads.


DEAD-box RNA Helicases/ultrastructure , DNA-Binding Proteins/ultrastructure , G-Quadruplexes , Nucleic Acid Conformation , Amino Acid Motifs/genetics , Crystallography, X-Ray , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , Humans , Peptides/chemistry , Peptides/genetics , Protein Binding/genetics , Protein Conformation, alpha-Helical/genetics
4.
Nat Commun ; 10(1): 3085, 2019 07 12.
Article En | MEDLINE | ID: mdl-31300642

DEAD-box helicases (DDXs) regulate RNA processing and metabolism by unwinding short double-stranded (ds) RNAs. Sharing a helicase core composed of two RecA-like domains (D1D2), DDXs function in an ATP-dependent, non-processive manner. As an attractive target for cancer and AIDS treatment, DDX3X and its orthologs are extensively studied, yielding a wealth of biochemical and biophysical data, including structures of apo-D1D2 and post-unwound D1D2:single-stranded RNA complex, and the structure of a D2:dsRNA complex that is thought to represent a pre-unwound state. However, the structure of a pre-unwound D1D2:dsRNA complex remains elusive, and thus, the mechanism of DDX action is not fully understood. Here, we describe the structure of a D1D2 core in complex with a 23-base pair dsRNA at pre-unwound state, revealing that two DDXs recognize a 2-turn dsRNA, each DDX mainly recognizes a single RNA strand, and conformational changes induced by ATP binding unwinds the RNA duplex in a cooperative manner.


DEAD-box RNA Helicases/ultrastructure , RNA, Double-Stranded/metabolism , DEAD-box RNA Helicases/isolation & purification , DEAD-box RNA Helicases/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Scattering, Small Angle , Substrate Specificity , X-Ray Diffraction
5.
Science ; 360(6385): 219-222, 2018 04 13.
Article En | MEDLINE | ID: mdl-29519915

The RNA exosome complex processes and degrades a wide range of transcripts, including ribosomal RNAs (rRNAs). We used cryo-electron microscopy to visualize the yeast nuclear exosome holocomplex captured on a precursor large ribosomal subunit (pre-60S) during 7S-to-5.8S rRNA processing. The cofactors of the nuclear exosome are sandwiched between the ribonuclease core complex (Exo-10) and the remodeled "foot" structure of the pre-60S particle, which harbors the 5.8S rRNA precursor. The exosome-associated helicase Mtr4 recognizes the preribosomal substrate by docking to specific sites on the 25S rRNA, captures the 3' extension of the 5.8S rRNA, and channels it toward Exo-10. The structure elucidates how the exosome forms a structural and functional unit together with its massive pre-60S substrate to process rRNA during ribosome maturation.


Exosome Multienzyme Ribonuclease Complex/chemistry , Exosomes/chemistry , Ribosomes/chemistry , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Cell Nucleus/chemistry , Cell Nucleus/ultrastructure , Cryoelectron Microscopy , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/ultrastructure , Exosome Multienzyme Ribonuclease Complex/ultrastructure , Exosomes/ultrastructure , Protein Conformation , RNA Precursors/chemistry , RNA Precursors/ultrastructure , RNA, Ribosomal/chemistry , RNA, Ribosomal/ultrastructure , RNA, Ribosomal, 5.8S/chemistry , RNA, Ribosomal, 5.8S/ultrastructure , Ribosomes/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure
6.
Science ; 359(6375): 537-545, 2018 02 02.
Article En | MEDLINE | ID: mdl-29301961

Splicing by the spliceosome involves branching and exon ligation. The branching reaction leads to the formation of the catalytic step I spliceosome (C complex). Here we report the cryo-electron microscopy structure of the human C complex at an average resolution of 4.1 angstroms. Compared with the Saccharomyces cerevisiae C complex, the human complex contains 11 additional proteins. The step I splicing factors CCDC49 and CCDC94 (Cwc25 and Yju2 in S. cerevisiae, respectively) closely interact with the DEAH-family adenosine triphosphatase/helicase Prp16 and bridge the gap between Prp16 and the active-site RNA elements. These features, together with structural comparison of the human C and C* complexes, provide mechanistic insights into ribonucleoprotein remodeling and allow the proposition of a working mechanism for the C-to-C* transition.


DEAD-box RNA Helicases/chemistry , RNA Splicing Factors/chemistry , RNA Splicing , Spliceosomes/chemistry , Amino Acid Sequence , Biocatalysis , Catalytic Domain , Cryoelectron Microscopy , DEAD-box RNA Helicases/ultrastructure , Humans , Models, Molecular , RNA Splicing Factors/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure , Spliceosomes/ultrastructure
7.
Science ; 358(6368): 1278-1283, 2017 12 08.
Article En | MEDLINE | ID: mdl-29146870

The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, Bact, C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5'-splice site (ss) recognition, branching, and intron release, but lacked information on 3'-ss recognition, exon ligation, and exon release. Here we report a cryo-electron microscopy structure of the postcatalytic P complex at 3.3-angstrom resolution, revealing that the 3' ss is mainly recognized through non-Watson-Crick base pairing with the 5' ss and branch point. Furthermore, one or more unidentified proteins become stably associated with the P complex, securing the 3' exon and potentially regulating activity of the helicase Prp22. Prp22 binds nucleotides 15 to 21 in the 3' exon, enabling it to pull the intron-exon or ligated exons in a 3' to 5' direction to achieve 3'-ss proofreading or exon release, respectively.


DEAD-box RNA Helicases/chemistry , Multienzyme Complexes/chemistry , RNA Splicing Factors/chemistry , RNA Splicing , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Spliceosomes/chemistry , Base Pairing , Biocatalysis , Catalytic Domain , Cryoelectron Microscopy , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/ultrastructure , Exons , Introns , Multienzyme Complexes/genetics , Multienzyme Complexes/ultrastructure , Mutation , Protein Conformation , RNA Splice Sites , RNA Splicing Factors/genetics , RNA Splicing Factors/ultrastructure , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/ultrastructure , Ribonucleoprotein, U5 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Spliceosomes/ultrastructure
8.
Nature ; 542(7641): 377-380, 2017 02 16.
Article En | MEDLINE | ID: mdl-28076345

The spliceosome excises introns from pre-mRNAs in two sequential transesterifications-branching and exon ligation-catalysed at a single catalytic metal site in U6 small nuclear RNA (snRNA). Recently reported structures of the spliceosomal C complex with the cleaved 5' exon and lariat-3'-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5' splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site. Here we present, at 3.8 Å resolution, the cryo-electron microscopy structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but before exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75° compared to the C complex and is stabilized in a new position by Prp17, Cef1 and the reoriented Prp8 RNase H-like domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3' exon docking, and restructures the pairing of the 5' splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNase H-like domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3' exon, suggesting a possible basis for mRNA release after exon ligation. Together with the structure of the C complex, our structure of the C* complex reveals the two major conformations of the spliceosome during the catalytic stages of splicing.


Cryoelectron Microscopy , Exons , RNA Splicing , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Spliceosomes/metabolism , Spliceosomes/ultrastructure , Adenosine/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/ultrastructure , Biocatalysis , Catalytic Domain , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/ultrastructure , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/ultrastructure , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Exons/genetics , Protein Binding , Protein Domains , RNA Helicases/metabolism , RNA Helicases/ultrastructure , RNA Splice Sites/genetics , RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , RNA Splicing Factors/ultrastructure , RNA, Small Nuclear/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/ultrastructure , Ribonuclease H/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/ultrastructure , Ribonucleoprotein, U5 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/ultrastructure , Ribonucleoproteins, Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Spliceosomes/chemistry
9.
Nature ; 542(7641): 318-323, 2017 02 16.
Article En | MEDLINE | ID: mdl-28076346

Spliceosome rearrangements facilitated by RNA helicase PRP16 before catalytic step two of splicing are poorly understood. Here we report a 3D cryo-electron microscopy structure of the human spliceosomal C complex stalled directly after PRP16 action (C*). The architecture of the catalytic U2-U6 ribonucleoprotein (RNP) core of the human C* spliceosome is very similar to that of the yeast pre-Prp16 C complex. However, in C* the branched intron region is separated from the catalytic centre by approximately 20 Å, and its position close to the U6 small nuclear RNA ACAGA box is stabilized by interactions with the PRP8 RNase H-like and PRP17 WD40 domains. RNA helicase PRP22 is located about 100 Å from the catalytic centre, suggesting that it destabilizes the spliced mRNA after step two from a distance. Comparison of the structure of the yeast C and human C* complexes reveals numerous RNP rearrangements that are likely to be facilitated by PRP16, including a large-scale movement of the U2 small nuclear RNP.


Cryoelectron Microscopy , RNA Splicing , Spliceosomes/metabolism , Spliceosomes/ultrastructure , Adenosine/metabolism , Base Sequence , Biocatalysis , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/ultrastructure , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/ultrastructure , Exons/genetics , Humans , Introns/genetics , Models, Molecular , Movement , Protein Domains , RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , RNA Splicing Factors/ultrastructure , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/ultrastructure , Ribonuclease H/chemistry , Ribonuclease H/metabolism , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/ultrastructure , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/enzymology , Spliceosomes/chemistry
10.
Nat Struct Mol Biol ; 20(6): 662-70, 2013 Jun.
Article En | MEDLINE | ID: mdl-23624860

Dicer has a central role in RNA-interference pathways by cleaving double-stranded RNAs (dsRNAs) to produce small regulatory RNAs. Human Dicer can process long double-stranded and hairpin precursor RNAs to yield short interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. Previous studies have shown that pre-miRNAs are cleaved more rapidly than pre-siRNAs in vitro and are the predominant natural Dicer substrates. We have used EM and single-particle analysis of Dicer-RNA complexes to gain insight into the structural basis for human Dicer's substrate preference. Our studies show that Dicer traps pre-siRNAs in a nonproductive conformation, whereas interactions of Dicer with pre-miRNAs and dsRNA-binding proteins induce structural changes in the enzyme that enable productive substrate recognition in the central catalytic channel. These findings implicate RNA structure and cofactors in determining substrate recognition and processing efficiency by human Dicer.


DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , Ribonuclease III/chemistry , Ribonuclease III/metabolism , DEAD-box RNA Helicases/ultrastructure , Humans , MicroRNAs/metabolism , Microscopy, Electron , Models, Biological , Models, Molecular , Protein Conformation , RNA, Double-Stranded/ultrastructure , RNA, Small Interfering/metabolism , Ribonuclease III/ultrastructure
11.
Structure ; 20(12): 1995-2002, 2012 Dec 05.
Article En | MEDLINE | ID: mdl-23217681

Single-particle electron microscopy (EM) is a powerful tool for studying the structures of large biological molecules. However, the achievable resolution does not always allow for direct recognition of individual protein domains. Labels that can be visualized by EM have been developed for protein termini, but tagging internal domains remains a challenge. We describe a robust strategy for determining the position of internal sites within EM maps, termed domain localization by RCT sampling (DOLORS). DOLORS uses monovalent streptavidin added posttranslationally to tagged sites in the target protein. Internal labels generally display less conformational flexibility than terminal labels, providing more precise positional information. Automated methods are used to rapidly generate assemblies of unique 3D models allowing the attachment sites of labeled domains to be accurately identified and thus provide an overall architectural map of the molecule.


Microscopy, Electron/methods , Staining and Labeling , Amino Acid Sequence , Animals , Biotinylation , Carbon-Nitrogen Ligases/chemistry , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/ultrastructure , Escherichia coli Proteins/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Peptide Mapping , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/ultrastructure , Repressor Proteins/chemistry , Ribonuclease III/chemistry , Ribonuclease III/ultrastructure , Sf9 Cells , Streptavidin/chemistry
12.
Proc Natl Acad Sci U S A ; 109(45): 18437-41, 2012 Nov 06.
Article En | MEDLINE | ID: mdl-23090998

Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.


DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA, Double-Stranded/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Animals , DEAD-box RNA Helicases/ultrastructure , HEK293 Cells , Humans , Image Processing, Computer-Assisted , Interferon-Induced Helicase, IFIH1 , Mice , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary , RNA, Double-Stranded/ultrastructure , Signal Transduction , Structural Homology, Protein
13.
Histochem Cell Biol ; 133(6): 627-39, 2010 Jun.
Article En | MEDLINE | ID: mdl-20401665

The localization of vasa homolog protein in the spermatogenic cells of mice, rats, and guinea pigs was studied by immunofluorescence and electron microscopies with the antibody against mouse vasa homolog (MVH) protein. By immunofluorescence microscopy, four types of granular staining patterns were identified: (1) fine particles observed in diplotene and meiotic cells, (2) small granules associated with a mitochondrial marker and appearing in pachytene spermatocytes after stage V, (3) strands lacking the mitochondrial marker in late spermatocytes, and (4) large irregularly shaped granules in round spermatids. Immunoelectron microscopy defined the ultrastructural profiles of these MVH protein-positive granules: the first type consisted of small dense particles, the second had intermitochondrial cement (IMC), the third type, consisting of strands, had loose aggregates of either material dissociated from IMC or 70-90-nm particles, and the fourth had typical chromatoid bodies (CBs). The results suggest that MVH proteins function in these components of nuage. MVH protein-positive structures other than CBs disappeared during meiosis and CB appeared first in early spermatids. The results suggest that the formation of nuage is discontinued between spermatocytes and spermatids. The formation of nuage in spermatocytes and of CB in spermatids is discussed.


Chromatids/chemistry , DEAD-box RNA Helicases/chemistry , Spermatocytes/chemistry , Spermatogenesis , Animals , Blotting, Western , DEAD-box RNA Helicases/ultrastructure , Fluorescent Antibody Technique , Guinea Pigs , Male , Mice , Rabbits , Rats , Rats, Wistar
14.
Structure ; 17(10): 1326-32, 2009 Oct 14.
Article En | MEDLINE | ID: mdl-19836333

Dicer is a specialized ribonuclease that initiates RNA interference (RNAi) by cleaving double-stranded RNA (dsRNA) into small RNA fragments about 22 nucleotides long. Here, we present the three-dimensional structure of human Dicer bound to the protein TRBP at approximately 20 A resolution determined by negative-stain electron microscopy (EM) and single-particle analysis. Our analysis reveals that the Dicer-TRBP complex is an L-shaped molecule with a long edge of 150 A and a 100 A extension on one end. A surface trench runs the length of the long edge of the molecule, defining a putative dsRNA-binding site. Docking the crystal structure of Giardia Dicer, which represents the nuclease core of human Dicer, into the EM map suggests two possible overall molecular architectures for human Dicer. These results offer insights into the structure of Dicer proteins found in multicellular organisms and provide a conceptual framework for understanding the initiation of RNAi.


DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/ultrastructure , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/ultrastructure , Ribonuclease III/chemistry , Ribonuclease III/ultrastructure , Binding Sites , DEAD-box RNA Helicases/metabolism , Humans , RNA-Binding Proteins/metabolism , Recombinant Proteins/chemistry , Ribonuclease III/metabolism
15.
J Cell Sci ; 121(Pt 9): 1526-37, 2008 May 01.
Article En | MEDLINE | ID: mdl-18411249

The major-histocompatibility-complex protein UAP56 (BAT1) is a DEAD-box helicase that is deposited on mRNA during splicing. UAP56 is retained on spliced mRNA in an exon junction complex (EJC) or, alternatively, with the TREX complex at the 5' end, where it might facilitate the export of the spliced mRNA to the cytoplasm. Using confocal microscopy, UAP56 was found to be concentrated in RNA-splicing speckled domains of nuclei but was also enriched in adjacent nuclear regions, sites at which most mRNA transcription and splicing occur. At speckled domains, UAP56 was in complexes with the RNA-splicing and -export protein SRm160, and, as measured by FRAP, was in a dynamic binding equilibrium. The application of an in vitro FRAP assay, in which fluorescent nuclear proteins are photobleached in digitonin-extracted cells, revealed that the equilibrium binding of UAP56 in complexes at speckled domains was directly regulated by ATP binding. This was confirmed using a point mutant of UAP56 that did not bind ATP. Point mutation of UAP56 to eliminate ATP binding did not affect RNA splicing, but strongly inhibited the export of mRNA to the cytoplasm.


Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/metabolism , RNA Transport , Antigens, Nuclear/metabolism , Asparagine/genetics , Cytoplasm/metabolism , Cytoplasm/ultrastructure , DEAD-box RNA Helicases/ultrastructure , Fluorescence Recovery After Photobleaching , HeLa Cells , Humans , Lysine/genetics , Mitosis , Mutant Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Point Mutation/genetics , Protein Binding , RNA Splicing , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
16.
Biophys J ; 94(1): L01-3, 2008 Jan 01.
Article En | MEDLINE | ID: mdl-17951299

The Bacillus subtilis YxiN protein is a modular three-domain RNA helicase of the DEx(D/H)-box protein family. The first two domains form the highly conserved helicase core, and the third domain confers RNA target binding specificity. Small angle x-ray scattering on YxiN and two-domain fragments thereof shows that the protein has a distended structure in solution, in contrast to helicases involved in replication processes. These data are consistent with a chaperone activity in which the carboxy-terminal domain of YxiN tethers the protein to the vicinity of its targets and the helicase core is free to transiently interact with RNA duplexes, possibly to melt out misfolded elements of secondary structure.


Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/ultrastructure , Models, Chemical , Models, Molecular , Computer Simulation , Elasticity , Protein Conformation , Protein Denaturation , Protein Folding , Protein Structure, Tertiary
17.
Dev Growth Differ ; 48(2): 87-100, 2006 Feb.
Article En | MEDLINE | ID: mdl-16512853

We investigated whether Vasa was a germline-specific marker in the colonial ascidian Botryllus primigenus, and whether it was inducible epigenetically in the adult life span. We cloned a Botryllus Vasa homologue (BpVas). The deduced open reading frame encoded 687 amino acid residues. It was expressed specifically by germline cells such as the loose cell mass, oogonia and juvenile oocytes in the ovary, and the primordial testis (compact cell mass), spermatogonia and juvenile spermatocytes in the testis. The loose cell mass, the most primitive germline cells, showed an ultrastructure of undifferentiated cells known as hemoblasts. The hemoblasts did not contain electron-dense materials or a mitochondrial assembly in the cytoplasm. These organelles appeared later in the oogonia and oocytes. When the loose cell mass and developing germ cells were eliminated by extirpating all zooids and buds from the colonies, BpVas transcripts disappeared completely from the vascularized colonies. After 14 days, when the colonies regenerated by vascular budding, BpVas-positive cells reappeared in some cases, and in 30 day colonies, BpVas-positive germ cells were observed in all the regenerated colonies. These results show that in B. primigenus, germ cells are inducible de novo from the Vasa-negative cells even at postembryonic stages.


DEAD-box RNA Helicases/biosynthesis , Epigenesis, Genetic/genetics , Ovum/enzymology , Spermatozoa/enzymology , Urochordata/cytology , Urochordata/growth & development , Amino Acid Sequence , Animals , Cell Aggregation/physiology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/ultrastructure , Female , Gene Expression Regulation, Developmental , Humans , Male , Molecular Sequence Data , Oocytes/enzymology , Oocytes/ultrastructure , Oogonia/enzymology , Oogonia/ultrastructure , Ovary/enzymology , Ovary/ultrastructure , Ovum/ultrastructure , Spermatozoa/ultrastructure , Urochordata/ultrastructure
...