Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.692
1.
Nat Commun ; 15(1): 3684, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693181

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Aptamers, Nucleotide , DNA, Catalytic , Stomach Neoplasms , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Cell Line, Tumor , DNA, Catalytic/metabolism , DNA, Catalytic/chemistry , Animals , Receptor, ErbB-2/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Reactive Oxygen Species/metabolism , Mice , DNA Repair , DNA Damage , Glutathione/metabolism , Glutathione/chemistry , Nucleic Acids/metabolism , Nucleic Acids/chemistry
2.
Analyst ; 149(10): 3026-3033, 2024 May 13.
Article En | MEDLINE | ID: mdl-38618891

Alkaline phosphatase (ALP) is a class of hydrolase that catalyzes the dephosphorylation of phosphorylated species in biological tissues, playing an important role in many physiological and pathological processes. Sensitive imaging of ALP activity in living cells is contributory to the research on these processes. Herein, we propose an acid-responsive DNA hydrogel to deliver a cascaded enzymatic nucleic acid amplification system into cells for the sensitive imaging of intracellular ALP activity. The DNA hydrogel is formed by two kinds of Y-shaped DNA monomers and acid-responsive cytosine-rich linkers. The amplification system contained Bst DNA polymerase (Bst DP), Nt.BbvCI endonuclease, a Recognition Probe (RP, containing a DNAzyme sequence, a Nt.BbvCI recognition sequence, and a phosphate group at the 3'-end), and a Signal Probe (SP, containing a cleavage site for DNAzyme, Cy3 and BHQ2 at the two ends). The amplification system was trapped into the DNA hydrogel and taken up by cells, and the cytosine-rich linkers folded into a quadruplex i-motif in the acidic lysosomes, leading to the collapse of the hydrogel and releasing the amplification system. The phosphate groups on RPs were recognized and removed by the target ALP, triggering a polymerization-nicking cycle to produce large numbers of DNAzyme sequences, which then cleaved multiple SPs, restoring Cy3 fluorescence to indicate the ALP activity. This strategy achieved sensitive imaging of ALP in living HeLa, MCF-7, and NCM460 cells, and realized the sensitive detection of ALP in vitro with a detection limit of 2.0 × 10-5 U mL-1, providing a potential tool for the research of ALP-related physiological and pathological processes.


Alkaline Phosphatase , DNA, Catalytic , DNA , Nucleic Acid Amplification Techniques , Humans , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , Nucleic Acid Amplification Techniques/methods , DNA/chemistry , DNA/genetics , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Limit of Detection , Hydrogen-Ion Concentration , Hydrogels/chemistry , HeLa Cells
3.
Anal Chim Acta ; 1303: 342521, 2024 May 15.
Article En | MEDLINE | ID: mdl-38609263

BACKGROUND: Theranostic nanoplatforms with integrated diagnostic imaging and multiple therapeutic functions play a vital role in precise diagnosis and efficient treatment for breast cancer, but unfortunately, these nanoplatforms are usually stuck in single-site imaging and single mode of treatment, causing unsatisfactory diagnostic and therapeutic efficiency. Herein, a dual biomarkers-activatable facile hollow mesoporous MnO2 (H-MnO2)-based theranostic nanoplatform, DNAzyme@H-MnO2-MUC1 aptamer (DHMM), was constructed for the simultaneous multi-site diagnosis and multiple treatment of breast cancer. RESULTS: The DHMM acted as an integrated diagnostic and therapeutic nanoplatform that realizes multi-site fluorescence imaging-guided high-efficient photothermal/chemodynamic/gene synergistic therapy (PTT/CDT/GT) for breast cancer. The H-MnO2 exhibits high loading capacity for Cy5-MUC1 aptamer (3.05 pmoL µg-1) and FAM-DNAzyme (3.37 pmoL µg-1), and excellent quenching for the probes. In the presence of MUC1 on the cell membrane and GSH in the cytoplasm, Cy5-MUC1 aptamer and FAM-DNAzyme was activated triggering dual-channel fluorescence imaging at different sites. Moreover, the self-supplied Mn2+ was further supplied as DNAzyme cofactors to catalytic cleavage intracellular EGR-1 mRNA for high-efficient GT and stimulated the Fenton-like reaction for CDT. The H-MnO2 also showcases a favorable photothermal performance with a photothermal conversion efficiency of 44.16%, which ultimately contributes to multi-site fluorescence imaging-guided synergistic treatment with an apoptosis rate of 71.82%. SIGNIFICANCE: This dual biomarker-activatable multiple therapeutic nanoplatform was realized multi-site fluorescence imaging-guided PTT/CDT/GT combination therapy for breast cancer with higher specificity and efficiency, which provides a promising theranostic nanoplatform for the precision and efficiency of breast cancer treatment.


Carbocyanines , DNA, Catalytic , Neoplasms , Precision Medicine , Manganese Compounds , Oxides , Optical Imaging , Biomarkers
4.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38599073

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Biosensing Techniques , CRISPR-Cas Systems , DNA, Catalytic , Electrochemical Techniques , Limit of Detection , Luminescent Measurements , Metallocenes , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Humans , DNA, Catalytic/chemistry , Electrochemical Techniques/methods , Nitriles/chemistry , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , CRISPR-Associated Proteins/chemistry , Adenosine/analogs & derivatives , Adenosine/analysis , Adenosine/chemistry , Nanostructures/chemistry , Ferrous Compounds/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
5.
Biochemistry (Mosc) ; 89(Suppl 1): S249-S261, 2024 Jan.
Article En | MEDLINE | ID: mdl-38621754

Nucleic acids (NAs) are important components of living organisms responsible for the storage and transmission of hereditary information. They form complex structures that can self-assemble and bind to various biological molecules. DNAzymes are NAs capable of performing simple chemical reactions, which makes them potentially useful elements for creating DNA nanomachines with required functions. This review focuses on multicomponent DNA-based nanomachines, in particular on DNAzymes as their main functional elements, as well as on the structure of DNAzyme nanomachines and their application in the diagnostics and treatment of diseases. The article also discusses the advantages and disadvantages of DNAzyme-based nanomachines and prospects for their future applications. The review provides information about new technologies and the possibilities of using NAs in medicine.


Biosensing Techniques , DNA, Catalytic , DNA, Catalytic/chemistry , DNA, Catalytic/genetics , DNA, Catalytic/metabolism , DNA/metabolism
6.
Anal Chem ; 96(18): 7274-7280, 2024 May 07.
Article En | MEDLINE | ID: mdl-38655584

Inspired by natural DNA networks, programmable artificial DNA networks have become an attractive tool for developing high-performance biosensors. However, there is still a lot of room for expansion in terms of sensitivity, atom economy, and result self-validation for current microRNA sensors. In this protocol, miRNA-122 as a target model, an ultrasensitive fluorescence (FL) and photoelectrochemical (PEC) dual-mode biosensing platform is developed using a programmable entropy-driven circuit (EDC) cascaded self-feedback DNAzyme network. The well-designed EDC realizes full utilization of the DNA strands and improves the atomic economy of the signal amplification system. The unique and rational design of the double-CdSe quantum-dot-released EDC substrate and the cascaded self-feedback DNAzyme amplification network significantly avoids high background signals and enhances sensitivity and specificity. Also, the enzyme-free, programmable EDC cascaded DNAzyme network effectively avoids the risk of signal leakage and enhances the accuracy of the sensor. Moreover, the introduction of superparamagnetic Fe3O4@SiO2-cDNA accelerates the rapid extraction of E2-CdSe QDs and E3-CdSe QDs, which greatly improves the timeliness of sensor signal reading. In addition to the strengths of linear range (6 orders of magnitude) and stability, the biosensor design with dual signal reading makes the test results self-confirming.


Biosensing Techniques , DNA, Catalytic , Electrochemical Techniques , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Entropy , Quantum Dots/chemistry , MicroRNAs/analysis , Spectrometry, Fluorescence , Photochemical Processes , Fluorescence , Humans , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Limit of Detection
7.
Biosens Bioelectron ; 256: 116279, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38608496

MicroRNA (miRNA) is demonstrated to be associated with the occurrence and development of various diseases including cancer. Currently, most miRNA detection methods are confined to in vitro detection and cannot obtain information on the temporal and spatial expression of miRNA in relevant tissues and cells. In this work, we established a novel enzyme-free method that can be applied to both in vitro detection and in situ imaging of miRNA by integrating DNAzyme and catalytic hairpin assembly (CHA) circuits. This developed CHA-Amplified DNAzyme miRNA (CHAzymi) detection system can realize the quantitively in vitro detection of miR-146b (the biomarker of papillary thyroid carcinoma, PTC) ranging from 25 fmol to 625 fmol. This strategy has also been successfully applied to in situ imaging of miR-146b both in human PTC cell TPC-1 and clinical samples, showing its capacity as an alternative diagnostic method for PTC. Furthermore, this CHAzymi system can be employed as a versatile sensing platform for various miRNAs by revising the relevant sequences. The results imply that this system may expand the modality of miRNA detection and show promise as a novel diagnostic tool in clinical settings, providing valuable insights for effective treatment and management of the disease.


Biosensing Techniques , DNA, Catalytic , MicroRNAs , DNA, Catalytic/chemistry , Humans , MicroRNAs/analysis , MicroRNAs/genetics , Biosensing Techniques/methods , Cell Line, Tumor , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/diagnosis , Nucleic Acid Amplification Techniques/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Limit of Detection
8.
Anal Chim Acta ; 1304: 342553, 2024 May 22.
Article En | MEDLINE | ID: mdl-38637054

BACKGROUND: The human immunodeficiency virus (HIV) remains a major worldwide health problem. Nowadays, many methods have been developed for quantitative detecting human immunodeficiency virus DNA (HIV-DNA), such as fluorescence and colorimetry. However, these methods still have the disadvantages of being expensive and requiring professional technicians. Early diagnosis of pathogens is increasingly dependent on portable instruments and simple point-of-care testing (POCT). Therefore, it is meaningful and necessary to develop portable and cheap methods for detecting disease markers. RESULTS: In this work, a label-free chemiluminescence (CL) method was developed for detecting HIV-DNA via a handheld luminometer. To achieve label-free target detection, the CL catalyst, G-triplex-hemin DNAzyme (G3-hemin DNAzyme), was in-situ assembled in the presence of HIV-DNA. For improving sensitivity, HIV-DNA induced the cyclic strand displacement reaction (SDR), which can form three G3-hemin DNAzymes in one cycle. So, the chemiluminescence reaction between luminol and H2O2 was highly effectively catalyzed, and the CL intensity was linearly related with the concentration of HIV-DNA in the range of 0.05-10 nM with a detection limit of 29.0 pM. Due to the high specificity of hairpin DNA, single-base mismatch can be discriminated, which ensured the specific detection of HIV-DNA. SIGNIFICANCE: In-situ formation of G3-hemin DNAzyme led to label-free and selective detection without complex synthesis and functionalization. Therefore, it offers a cheap, selective, sensitive and portable method for detecting disease-related genes, which is promising for POCT of clinical diagnosis in resource-limited settings.


Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , HIV Infections , Humans , DNA, Catalytic/metabolism , Hemin , Hydrogen Peroxide , Luminescent Measurements/methods , DNA/genetics , HIV Infections/diagnosis , Biosensing Techniques/methods , Limit of Detection
9.
Biosens Bioelectron ; 255: 116272, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38581837

The development of an advanced analytical platform with regard to SARS-CoV-2 is crucial for public health. Herein, we present a machine learning platform based on paper-assisted ratiometric fluorescent sensors for highly sensitive detection of the SARS-CoV-2 RdRp gene. The assay involves target-induced rolling circle amplification to generate magnetic DNAzyme, which is then detectable using the paper-assisted ratiometric fluorescent sensor. This sensor detects the SARS-CoV-2 RdRp gene with a visible-fluorescence color response. Moreover, leveraging different fluorescence responses, the ResNet algorithm of machine learning assists in accurately identifying fluorescence images and differentiating the concentration of the SARS-CoV-2 RdRp gene with over 99% recognition accuracy. The machine learning platform exhibits exceptional sensitivity and color responsiveness, achieving a limit of detection of 30 fM for the SARS-CoV-2 RdRp gene. The integration of intelligent artificial vision with the paper-assisted ratiometric fluorescent sensor presents a novel approach for the on-site detection of COVID-19 and holds potential for broader use in disease diagnostics in the future.


Biosensing Techniques , COVID-19 , DNA, Catalytic , Humans , SARS-CoV-2 , COVID-19/diagnosis , Biosensing Techniques/methods , Fluorescent Dyes , Magnetic Phenomena , RNA-Dependent RNA Polymerase
10.
Luminescence ; 39(5): e4764, 2024 May.
Article En | MEDLINE | ID: mdl-38684508

Ultrasensitive, selective, and non-invasive detection of fibrin in human serum is critical for disease diagnosis. So far, the development of high-performance and ultrasensitive biosensors maintains core challenges for biosensing. Herein, we designed a novel ribbon nanoprobe for ultrasensitive detection of fibrin. The probe contains gold nanoparticles (AuNPs) that can not only link with homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) to recognize fibrin but also carry long DNA belts to form G-quadruplex-based DNAzyme, catalyzing the chemiluminescence of luminol-hydrogen peroxide (H2O2) reaction. Combined with the second amplification procedure of rolling circle amplification (RCA), the assay exhibits excellent sensitivity with a detection limit of 0.04 fmol L-1 fibrin based on the 3-sigma. Furthermore, the biosensor shows high specificity on fibrin in samples because the structure of antibody-fibrin-homing peptide was employed to double recognize fibrin. Altogether, the simple and inexpensive approach may present a great potential for reliable detection of biomarkers.


Biosensing Techniques , Fibrin , Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Fibrin/chemistry , Fibrin/analysis , Humans , DNA, Catalytic/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Limit of Detection , Luminol/chemistry , G-Quadruplexes
11.
Sci Total Environ ; 928: 172499, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38631645

In this work, a novel 3D-DNA walker signal amplification strategy was designed to construct a fluorescent aptasensor for the detection of kanamycin (KAN). The aptasensor utilizes split aptamers for the synergistic recognition of KAN. The presence of KAN induces the split aptamers recombination to form the Mg2+-DNAzyme structure, which is activated by Mg2+ to drive the 3D-DNA walker process for cascading signal amplification. Employing gold nanoflowers (AuNFs) as walking substrate material increases the local DNA concentration to enhance the walker efficiency. The prepared fluorescent aptasensor achieved efficient and sensitive detection of KAN with satisfactory results in the concentration range of 1 × 10-8 - 1 × 10-3 µg/kg and the detection limit of 5.63 fg/kg. Meanwhile, the designed fluorescent aptasensor exhibited favorable specificity, anti-interference, storage stability and reproducibility, and verified the feasibility of its application in milk samples. The present work provides an effective tool for the regulation of KAN contamination in animal-derived foods with promising prospects.


Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Kanamycin , Kanamycin/analysis , Aptamers, Nucleotide/chemistry , DNA, Catalytic/chemistry , Biosensing Techniques/methods , Gold/chemistry , Limit of Detection , Fluorescence , Magnesium/chemistry , Milk/chemistry
12.
Talanta ; 274: 126030, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38574540

Aberrant long noncoding RNA (lncRNA) expression is linked to varied pathological processes and malignant tumors, and lncRNA can serve as potential disease biomarkers. Herein, we demonstrate the autonomous enzymatic synthesis of functional nucleic acids for sensitive measurement of lncRNA in human lung tissues on the basis of multiple primer generation-mediated rolling circle amplification (mPG-RCA). This assay involves two padlock probes that act as both a detection probe for recognizing target lncRNA and a domain for producing complementary DNAzyme. Two padlock probes can hybridize with target lncRNA at different sites, followed by ligation to form a circular template with the aid of RNA ligase. The circular template can initiate mPG-RCA to generate abundant Mg2+-dependent DNAzymes that can specifically cleave signal probes to induce the recovery of Cy3 fluorescence. The inherent characteristics of ligase-based ligation reaction and DNAzymes endow this assay with excellent specificity, and the introduction of multiple padlock probes endows this assay with high sensitivity. This strategy can rapidly and sensitively measure lncRNA with a wide linear range of 1 fM - 1 nM and a detection limit of 678 aM within 1.5 h, and it shows distinct advantages of simplicity and immobilization-free without the need of precise temperature control and tedious procedures of nanomaterial preparation. Moreover, it enables accurate measurement of lncRNA level in normal cells and malignant tumor cells as well as differentiation of lncRNA expressions in tissues of non-small cell lung cancer (NSCLC) patients and normal individuals, with promising applications in biomedical studies and disease diagnosis.


DNA, Catalytic , Lung , Nucleic Acid Amplification Techniques , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Lung/metabolism , Nucleic Acid Amplification Techniques/methods , Limit of Detection
13.
Talanta ; 274: 126029, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38599120

Detecting heavy metal pollution, particularly lead ion (Pb2⁺) contamination, is imperative for safeguarding public health. In this study, we introduced an innovative approach by integrating DNAzyme with rolling circle amplification (RCA) to propose an amplification sensing method termed DNAzyme-based dimeric-G-quadruplex (dimer-G4) RCA. This sensing approach allows for precise and high-fidelity Pb2⁺ detection. Strategically, in the presence of Pb2⁺, the DNAzyme undergoes substrate strand (S-DNA) cleavage, liberating its enzyme strand (E-DNA) to prime isothermal amplification. This initiates the RCA process, producing numerous dimer-G-Quadruplexes (dimer-G4) as the signal reporting transducers. Compared to conventional strategies using monomeric G-quadruplex (mono-G4) as the reporting transducers, these dimer-G4 structures exhibit significantly enhanced fluorescence when bound with Thioflavin T (ThT), offering superior target signaling ability for even detection of Pb2⁺ at low concentration. Conversely, in the absence of Pb2⁺, the DNAzyme structure remains intact so that no primers can be produced to cause the RCA initiation. This nucleic acid amplification-based Pb2⁺ detection method combing with the high specificity of DNAzymes for Pb2⁺ recognition ensures highly sensitive detection of Pb2+ with a detection limit of 0.058 nM, providing a robust tool for food safety analysis and environmental monitoring.


DNA, Catalytic , G-Quadruplexes , Lead , Nucleic Acid Amplification Techniques , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , DNA, Catalytic/genetics , Lead/analysis , Lead/chemistry , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Biosensing Techniques/methods , Benzothiazoles/chemistry
14.
Anal Biochem ; 691: 115547, 2024 Aug.
Article En | MEDLINE | ID: mdl-38670419

MicroRNAs (miRNAs) can serve as biomarkers for early-diagnosis, therapy, and postoperative care of cervical cancer. Sensitive and reliable quantification of miRNA remains a huge challenge due to its low expressing levels and background interference. Herein, we propose a novel exonuclease-III (Exo-III)-propelled DNAzyme cascade for sensitive and high-efficient miRNA analysis. This method involves the engineering of compact DNAzyme hairpin probes, including the H1 probe and H2 probe. The H1 probe is designed with exposed analyte recognition subunits that can specifically recognize target miRNA. This recognition triggers two processes: Exo-iii-assisted target regeneration and successive substrate cleavage catalyzed by DNAzyme. The unique character of Exo-III that catalyzes removal of mononucleotides from the blunt or recessed 3'-OH termini of dsDNA confers the approach with a minimal background signal. The multiple signal cycles provided an abundant signal amplification and consequently, the method exhibited a low limit of detection of 3.12 fM, and a better specificity over several homologous miRNAs. In summary, this powerful Exo-III driven DNAzyme cascaded system offers broader and more adaptable methods for comprehending the activities of miRNA in various biological occurrences.


DNA, Catalytic , Exodeoxyribonucleases , MicroRNAs , Uterine Cervical Neoplasms , MicroRNAs/analysis , MicroRNAs/genetics , MicroRNAs/metabolism , DNA, Catalytic/metabolism , DNA, Catalytic/chemistry , DNA, Catalytic/genetics , Humans , Exodeoxyribonucleases/metabolism , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Female , Limit of Detection , Biosensing Techniques/methods
15.
ACS Sens ; 9(3): 1280-1289, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38456635

DNA motors have attracted extensive interest in biosensing and bioimaging. However, the amplification capacity of the existing DNA motor systems is limited since the products from the walking process are unable to feedback into the original DNA motor systems. As a result, the sensitivities of such systems are limited in the contexts of biosensing and bioimaging. In this study, we report a novel self-feedback DNAzyme motor for the sensitive imaging of tumor-related mRNA in live cells and in vivo with cascade signal amplification capacity. Gold nanoparticles (AuNPs) are modified with hairpin-locked DNAzyme walker and track strands formed by hybridizing Cy5-labeled DNA trigger-incorporated substrate strands with assistant strands. Hybridization of the target mRNA with the hairpin strands activates DNAzyme and promotes the autonomous walking of DNAzyme on AuNPs through DNAzyme-catalyzed substrate cleavage, resulting in the release of many Cy5-labeled substrate segments containing DNA triggers and the generation of an amplified fluorescence signal. Moreover, each released DNA trigger can also bind with the hairpin strand to activate and operate the original motor system, which induces further signal amplification via a feedback mechanism. This motor exhibits a 102-fold improvement in detection sensitivity over conventional DNAzyme motors and high selectivity for target mRNA. It has been successfully applied to distinguish cancer cells from normal cells and diagnose tumors in vivo based on mRNA imaging. The proposed DNAzyme motor provides a promising paradigm for the amplified detection and sensitive imaging of low-abundance biomolecules in vivo.


Carbocyanines , DNA, Catalytic , Metal Nanoparticles , DNA, Catalytic/chemistry , Gold/chemistry , Feedback , Metal Nanoparticles/chemistry , DNA/chemistry
16.
J Agric Food Chem ; 72(12): 6754-6761, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38470333

Inappropriate use of veterinary drugs can result in the presence of antibiotic residues in animal-derived foods, which is a threat to human health. A simple yet efficient antibiotic-sensing method is highly desirable. Programmable DNA amplification circuits have supplemented robust toolkits for food contaminants monitoring. However, they currently face limitations in terms of their intricate design and low signal gain. Herein, we have engineered a robust reciprocal catalytic DNA (RCD) circuit for highly efficient bioanalysis. The trigger initiates the cascade hybridization reaction (CHR) to yield plenty of repeated initiators for activating the rolling circle amplification (RCA) circuit. Then the RCA-generated numerous reconstituted triggers can reversely stimulate the CHR circuit. This results in a self-sufficient supply of numerous initiators and triggers for the successive cross-invasion of CHR and RCA amplifiers, thus leading to exponential signal amplification for the highly efficient detection of analytes. With its flexible programmability and modular features, the RCD amplifier can serve as a universal toolbox for the high-performance and accurate sensing of kanamycin in buffer and food samples including milk, honey, and fish, highlighting its enormous promise for low-abundance contaminant analysis in foodstuffs.


Biosensing Techniques , DNA, Catalytic , Animals , Humans , Kanamycin/analysis , Anti-Bacterial Agents/analysis , Nucleic Acid Hybridization/methods , Fishes/metabolism , Biosensing Techniques/methods , Nucleic Acid Amplification Techniques/methods , Limit of Detection
17.
Anal Chim Acta ; 1299: 342420, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38499416

BACKGROUND: Telomerase is considered a biomarker for the early diagnosis and clinical treatment of cancer. The rapid and sensitive detection of telomerase activity is crucial to biological research, clinical diagnosis, and drug development. However, the main obstacles facing the current telomerase activity assay are the cumbersome and time-consuming procedure, the easy degradation of the telomerase RNA template and the need for additional proteases. Therefore, it is necessary to construct a new method for the detection of telomerase activity with easy steps, efficient reaction and strong anti-interference ability. RESULTS: Herein, an efficient, enzyme-free, economical, sensitive, fluorometric detection method for telomerase activity in one-step, named triggered-DNA (T-DNA) nanomachine, was created based on target-triggered DNAzyme-cleavage activity and catalytic molecular beacon (CMB). Telomerase served as a switch and extended few numbers of (TTAGGG)n repeat sequences to initiate the signal amplification in the T-DNA nanomachine, resulting in a strong fluorescent signal. The reaction was a one-step method with a shortened time of 1 h and a constant temperature of 37 °C, without the addition of any protease. It also sensitively distinguished telomerase activity in various cell lines. The T-DNA nanomachine offered a detection limit of 12 HeLa cells µL-1, 9 SK-Hep-1 cells µL-1 and 3 HuH-7 cells µL-1 with a linear correlation detection range of 0.39 × 102-6.25 × 102 HeLa cells µL-1 for telomerase activity. SIGNIFICANCE: In conclusion, our study demonstrated that the triggered-DNA nanomachine fulfills the requirements for rapid detection of telomerase activity in one-step under isothermal and enzyme-free conditions with excellent specificity, and its simple and stable structure makes it ideal for complex systems. These findings indicated the application prospect of DNA nanomachines in clinical diagnostics and provided new insights into the field of DNA nanomachine-based bioanalysis.


Biosensing Techniques , DNA, Catalytic , Telomerase , Humans , HeLa Cells , Telomerase/analysis , DNA/chemistry , DNA, Catalytic/chemistry , Biosensing Techniques/methods , Limit of Detection
18.
Anal Chem ; 96(11): 4589-4596, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38442212

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Biosensing Techniques , DNA, Catalytic , MicroRNAs , Humans , Europium , Ligands , DNA/chemistry , Luminescent Measurements/methods , MicroRNAs/analysis , Biosensing Techniques/methods , Gels , Electrochemical Techniques/methods , Limit of Detection
19.
Anal Chem ; 96(11): 4487-4494, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38451469

O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/µL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.


Carbocyanines , DNA, Catalytic , Guanine/analogs & derivatives , Quantum Dots , Humans , DNA, Catalytic/metabolism , O(6)-Methylguanine-DNA Methyltransferase/metabolism , DNA/chemistry , Demethylation
20.
Anal Chem ; 96(11): 4597-4604, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38456210

DNA assemblies are commonly used in biosensing, particularly for the detection and imaging of microRNAs (miRNAs), which are biomarkers associated with tumor progression. However, the difficulty lies in the exploration of high-sensitivity analytical techniques for miRNA due to its limited presence in living cells. In this study, we introduced a DNA nanosphere (DS) enhanced catalytic hairpin assembly (CHA) system for the detection and imaging of intracellular miR-21. The single-stranded DNA with four palindromic portions and extending sequences at the terminal was annealed for assembling DS, which avoided the complex sequence design and high cost of long DNA strands. Benefiting from the multiple modification sites of DS, functional hairpins H1 (modified with Cy3 and BHQ2) and H2 were grafted onto the surface of DS for assembling DS-H1-H2 using a hybridization reaction. The DS-H1-H2 system utilized spatial confinement and the CHA reaction to amplify fluorescence signals of Cy3. This enabled highly sensitive and rapid detection of miR-21 in the range from 0.05 to 3.5 nM. The system achieved a limit of determination (LOD) of 2.0 pM, which was 56 times lower than that of the control CHA circuit with freedom hairpins. Additionally, the sensitivity was improved by 8 times. Moreover, DS-H1-H2 also showed an excellent imaging capability for endogenous miR-21 in tumor cells. This was due to enhanced cell internalization efficiency, accelerated reaction kinetics, and improved biostability. The imaging strategy was shown to effectively monitor the dynamic content of miR-21 in live cancer cells and differentiate various cells. In general, the simple nanostructure DS not only enhanced the detection and imaging capability of the conventional probe but also could be easily integrated with the reported DNA-free probe, indicating a wide range of potential applications.


Biosensing Techniques , DNA, Catalytic , MicroRNAs , Nanospheres , Neoplasms , MicroRNAs/genetics , MicroRNAs/chemistry , DNA/genetics , DNA/chemistry , Nucleic Acid Hybridization , DNA Probes/chemistry , Biosensing Techniques/methods , Limit of Detection
...