Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26.382
1.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849736

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Biodiversity , Endophytes , Fungi , Plant Roots , Rhizosphere , Soil Microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Plant Roots/microbiology , DNA, Fungal/genetics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/growth & development , Ascomycota/isolation & purification , Phylogeny , Mycobiome
2.
Curr Microbiol ; 81(7): 201, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822823

Mucor representatives are mostly rapidly growing cosmopolitan soil saprotrophs of early diverged Mucoromycotina subphylum. Although this is the most speciose genus within the group, some lineages are still understudied. In this study, new species of Mucor was isolated from the post-mining area in southwestern Poland, where soil chemical composition analysis revealed high concentration of hydrocarbons and heavy metals. Phylogenetic analysis based on multigene phylogeny showed that the new isolate clusters distinctly from other Mucor species as a sister group to Mucor microsporus. New species Mucor thermorhizoides Abramczyk (Mucorales, Mucoromycota) is characterized by the extensive rhizoid production in elevated temperatures and formation of two layers of sporangiophores. It also significantly differs from M. microsporus in the shape of spores and the size of sporangia. M. thermorhizoides was shown to be able to grow in oligotrophic conditions at low temperatures. Together with M. microsporus they represent understudied and highly variable lineage of the Mucor genus.


Mucor , Phylogeny , Soil Microbiology , Mucor/genetics , Mucor/classification , Mucor/isolation & purification , Poland , Mining , DNA, Fungal/genetics , Metals, Heavy
3.
Parasitol Res ; 123(6): 233, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38850488

Enterocytozoon bieneusi is a common cause of human microsporidiosis and can infect a variety of animal hosts worldwide. In Thailand, previous studies have shown that this parasite is common in domestic animals. However, information on the prevalence and genotypes of this parasite in other synanthropic wildlife, including bats, remains limited. Several pathogens have been previously detected in bats, suggesting that bats may serve as a reservoir for this parasite. In this study, a total of 105 bat guano samples were collected from six different sites throughout Thailand. Of these, 16 from Chonburi (eastern), Ratchaburi (western), and Chiang Rai (northern) provinces tested positive for E. bieneusi, representing an overall prevalence of 15.2%. Based on ITS1 sequence analysis, 12 genotypes were identified, including two known genotypes (D and type IV) frequently detected in humans and ten novel potentially zoonotic genotypes (TBAT01-TBAT10), all belonging to zoonotic group 1. Lyle's flying fox (Pteropus lylei), commonly found in Southeast Asia, was identified as the host in one sample that was also positive for E. bieneusi. Network analysis of E. bieneusi sequences detected in this study and those previously reported in Thailand also revealed intraspecific divergence and recent population expansion, possibly due to adaptive evolution associated with host range expansion. Our data revealed, for the first time, multiple E. bieneusi genotypes of zoonotic significance circulating in Thai bats and demonstrated that bat guano fertilizer may be a vehicle for disease transmission.


Chiroptera , Enterocytozoon , Genotype , Microsporidiosis , Phylogeny , Chiroptera/parasitology , Chiroptera/microbiology , Animals , Thailand/epidemiology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Prevalence , Humans , Sequence Analysis, DNA , Zoonoses/parasitology , DNA, Ribosomal Spacer/genetics , DNA, Fungal/genetics
4.
Antonie Van Leeuwenhoek ; 117(1): 77, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717550

The "Shadegan International Wetland" (SIW) is one of the wetlands internationally recognized in the Ramsar convention. The vegetation of this wetland ecosystem consists of mostly grasses and shrubs that host a large number of fungi including endophytes. In this study, Nigrospora isolates were obtained from healthy plants of this wetland and its surrounding salt marshes and identified based on morphological features and multilocus phylogenetic analyses based on three DNA loci, namely the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), ß-tubulin (tub2), and elongation factor 1-α (tef1-α). Accordingly, the following Nigrospora species were identified: N. lacticolonia, N. oryzae, N. osmanthi, N. pernambucoensis and a novel taxon N. shadeganensis sp. nov., which is described and illustrated. To the best of our knowledge, 10 new hosts for Nigrospora species are here reported, namely Aeluropus lagopoides, Allenrolfea occidentalis, Anthoxanthum monticola, Arthrocnemum macrostachyum, Cressa cretica, Halocnemum strobilaceum, Seidlitzia rosmarinus, Suaeda vermiculata, Tamarix passerinoides, and Typha latifolia. Moreover, the species N. lacticolonia and N. pernambucoensis are new records for the mycobiota of Iran.


Ascomycota , Endophytes , Phylogeny , Poaceae , Wetlands , Iran , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Poaceae/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Tubulin/genetics
5.
Curr Protoc ; 4(5): e1035, 2024 May.
Article En | MEDLINE | ID: mdl-38727641

Nematodes are naturally infected by the fungal-related pathogen microsporidia. These ubiquitous eukaryotic parasites are poorly understood, despite infecting most types of animals. Identifying novel species of microsporidia and studying them in an animal model can expedite our understanding of their infection biology and evolution. Nematodes present an excellent avenue for pursuing such work, as they are abundant in the environment and many species are easily culturable in the laboratory. The protocols presented here describe how to isolate bacterivorous nematodes from rotting substrates, screen them for microsporidia infection, and molecularly identify the nematode and microsporidia species. Additionally, we detail how to remove environmental contaminants and generate a spore preparation of microsporidia from infected samples. We also discuss potential pitfalls and provide suggestions on how to mitigate them. These protocols allow for the identification of novel microsporidia species, which can serve as an excellent starting point for genomic analysis, determination of host specificity, and infection characterization. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Gathering samples Support Protocol 1: Generating 10× and 40× Escherichia coli OP50 and seeding NGM plates Basic Protocol 2: Microsporidia screening, testing for Caenorhabditis elegans susceptibility, and sample freezing Basic Protocol 3: DNA extraction, PCR amplification, and sequencing to identify nematode and microsporidia species Basic Protocol 4: Removal of contaminating microbes and preparation of microsporidia spores Support Protocol 2: Bleach-synchronizing nematodes.


Microsporidia , Nematoda , Animals , Microsporidia/isolation & purification , Microsporidia/genetics , Microsporidia/classification , Microsporidia/pathogenicity , Nematoda/microbiology , Nematoda/genetics , Caenorhabditis elegans/microbiology , DNA, Fungal/genetics , Polymerase Chain Reaction , Microsporidiosis/microbiology , Spores, Fungal/isolation & purification
6.
Mycopathologia ; 189(3): 43, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709328

During an epidemiological survey, a potential novel species within the basidiomycetous yeast genus Trichosporon was observed. The clinical strain was obtained from a urine sample taken from a Brazilian kidney transplant recipient. The strain was molecularly identified using the intergenic spacer (IGS1) ribosomal DNA locus and a subsequent phylogenetic analysis showed that multiple strains that were previously reported by other studies shared an identical IGS1-genotype most closely related to that of Trichosporon inkin. However, none of these studies provided an in-depth characterization of the involved strains to describe it as a new taxon. Here, we present the novel clinically relevant yeast for which we propose the name Trichosporon austroamericanum sp. nov. (holotype CBS H-24937). T. austroamericanum can be distinguished from other siblings in the genus Trichosporon using morphological, physiological, and phylogenetic characters.


DNA, Fungal , DNA, Ribosomal Spacer , Phylogeny , Sequence Analysis, DNA , Transplant Recipients , Trichosporon , Trichosporonosis , Trichosporon/classification , Trichosporon/genetics , Trichosporon/isolation & purification , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Fungal/genetics , Humans , Brazil , Trichosporonosis/microbiology , Cluster Analysis , Mycological Typing Techniques , Kidney Transplantation , Microscopy , Genotype
7.
Front Cell Infect Microbiol ; 14: 1367673, 2024.
Article En | MEDLINE | ID: mdl-38707512

Most species of Dothiora are known from the dead parts of various host plants as saprobic fungi in terrestrial habitats occurring in tropical and temperate regions. In the present study, samples of Dothiora were collected from dead twigs and branches of Capparis spinosa, Rhaponticum repens, and an unknown angiosperm plant from the Tashkent and Jizzakh regions of Uzbekistan. Multi-gene phylogenetic analyses based on a combined ITS, LSU, SSU, TEF1, and TUB2 sequence data revealed their taxonomic positions within the Dothideaceae. Three new species of Dothiora, namely, Dothiora capparis, Dothiora rhapontici, and Dothiora uzbekistanica were proposed by molecular and morphological data. Likewise, the phylogenetic relationship and morphology of Dothiora are discussed. In addition, we provide a list of accepted Dothiora species, including host information, distribution, morphology descriptions, and availability of sequence data, to enhance the current knowledge of the diversity within Dothiora.


Ascomycota , DNA, Fungal , Phylogeny , Sequence Analysis, DNA , DNA, Fungal/genetics , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Uzbekistan , DNA, Ribosomal/genetics , Plant Diseases/microbiology
8.
Article En | MEDLINE | ID: mdl-38713196

The genus Exophiala is polymorphic, able to transition between yeast, hyphal and pseudohyphal forms. Species of the genus Exophiala are ubiquitous fungi that are distributed in various environments around the world. During a survey of fungal diversity in the gut of amphipods (Floresorchestia amphawaensis and undescribed Dogielinotid amphipods) from the Amphawa estuary, Samut Songkhram province, Thailand, five black yeast strains (DMKU-MG01, DMKU-MG07, DMKU-MG08, DMKU-HG10 and DMKU-FG04) were identified as representing a novel taxon on the basis of a combination of morphological and molecular phylogenetic features. The five strains did not produce filamentous hyphae or pseudohyphae. Only budding yeast cells were observed. On the basis of the phenotypic characteristics and the results of molecular analyses of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, the five strains were identified as representing a novel species via applied nucleotide pairwise analysis. They differed from the most closely related species Exophiala alcalophiala by 3.54 % nucleotide substitutions (20 nucleotide substitutions in 572 bp) in the D1/D2 domains of the LSU rRNA gene. Moreover, the sequences of the ITS region of the five strains differed from those of the most closely related species E. alcalophiala, by 7.44-9.62 % nucleotide substitutions, and Exophiala halophiala, by 7.2-7.53 % nucleotide substitutions. The results of phylogenetic analyses based on the concatenated sequences of the ITS regions and the D1/D2 domains of the LSU rRNA gene confirmed that the five black yeast strains represented a single novel species of the genus Exophiala. In this study, Exophiala amphawaensis sp. nov. is proposed to accommodate these strains. The holotype is TBRC 15626T and the isotype is PYCC9020. The MycoBank accession number of the novel species is MB 851477.


Amphipoda , DNA, Fungal , DNA, Ribosomal Spacer , Exophiala , Phylogeny , Sequence Analysis, DNA , Animals , Thailand , Amphipoda/microbiology , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Exophiala/genetics , Exophiala/isolation & purification , Exophiala/classification , Mycological Typing Techniques , Gastrointestinal Tract/microbiology
9.
Article En | MEDLINE | ID: mdl-38713197

Two isolates representing a novel species of the genus Wickerhamiella were obtained in India from nectar of flowers of Lantana camara, an ornamental exotic species native to Central and South America. Phylogenetic analyses of the D1/D2 domain of the 26S large subunit (LSU) rRNA gene, internal transcribed spacer (ITS) region, and physiological characteristics, supported the recognition of the novel species, that we designate Wickerhamiella lachancei sp. nov (MycoBank no. MB851709), with MCC 9929T as the holotype and PYCC 10003T as the isotype. Considering pairwise sequence similarity, the type strain of the novel species differs from the type strain of the most closely related species, Wickerhamiella drosophilae CBS 8459T, by 16 nucleotide substitutions and two gaps (3.9 % sequence variation) in the D1/D2 region (560 bp compared) and 28 nucleotide substitutions and five gaps (7.22 % sequence variation) in the ITS region (444 bp compared).


DNA, Fungal , DNA, Ribosomal Spacer , Flowers , Lantana , Phylogeny , Sequence Analysis, DNA , India , Flowers/microbiology , DNA, Fungal/genetics , Lantana/microbiology , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Mycological Typing Techniques , RNA, Ribosomal/genetics , Saccharomycetales/genetics , Saccharomycetales/isolation & purification , Saccharomycetales/classification
10.
Int J Med Mushrooms ; 26(5): 43-57, 2024.
Article En | MEDLINE | ID: mdl-38780422

Wild resources of Auricularia cornea (A. polytricha) are abundant in China, and genetic diversity and genetic relationships analysis of A. cornea can provide basis for germplasm resource utilization and innovation and molecular marker-assisted breeding. In this study, 22 Auricularia strains collected were identified as A. cornea based on ITS sequence analysis, and its genetic diversity was examined by ISSR and SRAP markers. The results showed that a total of 415 bands were amplified by 11 selected ISSR primers, with an average amplification of 37.73 bands per primer, and the mean values of Ne, I, and H were 1.302, 0.368, and 0.219, respectively. A total of 450 bands were amplified by 10 SRAP primers, with an average of 45 bands per primer, and the average of Ne, I, and H were 1.263, 0.302, and 0.183, respectively. The unweighted pair-group method with arithmetic means analysis based on ISSR-SRAP marker data revealed that the genetic similarity coefficient between the tested strains was 0.73-0.97, and the strains could be divided into five groups at 0.742, which had a certain correlation with regional distribution. The results of PCOA and population structure analysis based on ISSR-SRAP data also produced similar results. These results demonstrate the genetic diversity and distinctness among wild A. cornea and provide a theoretical reference for the classification, breeding, germplasm innovation, utilization, and variety protection of A. cornea resources.


Basidiomycota , Genetic Variation , China , Basidiomycota/genetics , Basidiomycota/classification , Genetic Markers , Phylogeny , DNA, Fungal/genetics , Microsatellite Repeats , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics
11.
Article En | MEDLINE | ID: mdl-38780584

Four yeast strains belonging to the basidiomycetous yeast genus Mrakia were isolated from diverse habitats in the Ny-Ålesund region (Svalbard, High Arctic): two from vascular plants, one from seawater and one from freshwater. Phylogenetic analysis, based on the ITS region and the D1/D2 domain of the 28S rRNA gene, identified these four strains as representing two novel species within the genus Mrakia. The names Mrakia polaris sp. nov. (MycoBank number: MB 852063) and Mrakia amundsenii sp. nov. (MycoBank number: MB 852064) are proposed. These two new species show distinct psychrophilic adaptations, as they exhibit optimal growth at temperatures between 10 and 15°C, while being unable to grow at 25°C. The holotype of M. polaris sp. nov. is CPCC 300345T, and the holotype of M. amundsenii sp. nov. is CPCC 300572T.


DNA, Fungal , Phylogeny , Seawater , Sequence Analysis, DNA , Arctic Regions , DNA, Fungal/genetics , Seawater/microbiology , Mycological Typing Techniques , Svalbard , RNA, Ribosomal, 28S/genetics , Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/isolation & purification , Fresh Water/microbiology , Ecosystem , Cold Temperature , Saccharomycetales/classification , Saccharomycetales/genetics , Saccharomycetales/isolation & purification
12.
Fungal Biol ; 128(3): 1751-1757, 2024 May.
Article En | MEDLINE | ID: mdl-38796259

This study explores the fungal diversity associated with tarballs, weathered crude oil deposits, on Goa's tourist beaches. Despite tarball pollution being a longstanding issue in Goa state in India, comprehensive studies on associated fungi are scarce. Our research based on amplicon sequence analysis of fungal ITS region fills this gap, revealing a dominance of Aspergillus, particularly Aspergillus penicillioides, associated with tarballs from Vagator and Morjim beaches. Other notable species, including Aspergillus sydowii, Aspergillus carbonarius, and Trichoderma species, were identified, all with potential public health and ecosystem implications. A FUNGuild analysis was conducted to investigate the potential ecological roles of these fungi, revealing a diverse range of roles, including nutrient cycling, disease propagation, and symbiotic relationships. The study underscores the need for further research and monitoring, given the potential health risks and contribution of tarball-associated fungi to the bioremediation of crude oil-contaminated beaches.


Biodiversity , DNA, Fungal , Fungi , India , DNA, Fungal/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , Phylogeny , Petroleum/microbiology
13.
Fungal Biol ; 128(3): 1758-1770, 2024 May.
Article En | MEDLINE | ID: mdl-38796260

Starting in the fall of 2019, mortality, blight symptoms, and signs of white fungal mycelia were observed on external host tissues of non-native landscape trees as well as numerous native trees, understory shrubs, and vines throughout northern and central Florida, USA. We determined that the fungus is an undescribed species of Basidiomycota based on morphological characteristics and DNA sequence analysis. Phylogenetic analyses of the internal transcribed spacer (ITS), large subunit (LSU), and translation elongation factor 1-alpha (tef1) regions revealed that this novel plant pathogen is an undescribed taxon of the genus Parvodontia (Cystostereaceae, Agaricales). We propose the name Parvodontia relampaga sp. nov. which describes its unique morphological features and phylogenetic placement. We confirmed the pathogenicity of P. relampaga in greenhouse inoculations on host plants from which strains of this novel pathogen were isolated, including the non-native gymnosperm Afrocarpus falcatus, the non-native and commercially important Ligustrum japonicum, and the native tree Quercus hemisphaerica. P. relampaga was also detected on a total of 27 different species of woody host plants, including such economically and ecologically important hosts as Fraxinus, Ilex, Magnolia, Persea, Prunus, Salix, Vitis, and Vaccinium. For this new plant disease, we propose the name "relampago blight," which refers to the lightning-like rhizomorph growth (relámpago means 'lightning' in Spanish). This study presents a newly discovered fungal taxon with a wide host range on both angiosperms and gymnosperms that may be an emerging pathogen of concern in Florida and the Gulf Coast region.


DNA, Fungal , Phylogeny , Plant Diseases , Plant Diseases/microbiology , Florida , DNA, Fungal/genetics , Agaricales/genetics , Agaricales/classification , Agaricales/isolation & purification , Agaricales/physiology , Agaricales/pathogenicity , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/chemistry
14.
Fungal Biol ; 128(3): 1780-1789, 2024 May.
Article En | MEDLINE | ID: mdl-38796262

Anthracnose caused by Colletotrichum is the most severe and widely occurring cashew disease in Brazil. Colletotrichum species are commonly found as pathogens, endophytes and occasionally as saprophytes in a wide range of hosts. The endophytic species associated with cashew trees are poorly studied. In this study, we report the Colletotrichum endophytic species associated with cashew trees in two locations in the state of Pernambuco, their prevalence in different plant organs (leaves, veins, branches and inflorescences), and compare the species in terms of pathogenicity and aggressiveness using different inoculation methods (wounded × unwounded). Six species of Colletotrichum were identified according to multilocus phylogenetic analyses, including Colletotrichum asianum, Colletotrichum chrysophilum, Colletotrichum karsti, Colletotrichum siamense, Colletotrichum theobromicola, and Colletotrichum tropicale. There were differences in the percentage of isolation in relation to the prevalence of colonized tissues and collection locations. C. tropicale was the prevalent species in both geographic areas and plant tissues collected, with no pattern of distribution of species between areas and plant tissues. All isolates were pathogenic in injured tissues of cashew plants. The best method to test the pathogenicity of Colletotrichum species was utilizing the combination of leaves + presence of wounds + conidial suspension, as it better represents the natural infection process. C. siamense was the most aggressive species.


Anacardium , Colletotrichum , Endophytes , Phylogeny , Plant Diseases , Colletotrichum/genetics , Colletotrichum/classification , Colletotrichum/isolation & purification , Brazil , Anacardium/microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Plant Diseases/microbiology , DNA, Fungal/genetics , Multilocus Sequence Typing
15.
Fungal Biol ; 128(3): 1790-1799, 2024 May.
Article En | MEDLINE | ID: mdl-38796263

Species in the Melastomataceae (Myrtales) include trees and woody shrubs that are amongst the most common hosts of Chrysoporthe and related fungi. These fungi cause stem cankers, branch death and in extreme cases, kill their hosts. Chrysoporthe-like fungi were observed on Miconia spp. and Rhynchanthera grandiflora (Melastomataceae) plants during tree disease surveys in south-eastern Brazil including the states of Minas Gerais and Rio de Janeiro. The aims of this study were to isolate and identify the fungi utilising morphological characteristics and phylogenetic analyses. This led to the identification of a new species of Chrysoporthe described here as Chrysoporthe brasilensis sp.nov. Inoculations were conducted on R. grandiflora and M. theaezans, showing that C. brasiliensis is an aggressive pathogen. This study adds to a growing number of reports of new and pathogenic species of Chrysoporthe that potentially threaten native Myrtales globally, including important trees such as Eucalyptus, both in natural ecosystems and in planted forests.


Melastomataceae , Phylogeny , Plant Diseases , Brazil , Melastomataceae/microbiology , Plant Diseases/microbiology , DNA, Fungal/genetics , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , DNA, Ribosomal/genetics , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/chemistry , Cluster Analysis
16.
Fungal Biol ; 128(3): 1800-1805, 2024 May.
Article En | MEDLINE | ID: mdl-38796264

It has been the aim of this study to molecular-taxonomically identify 15 Beauveria isolates collected from different geographical regions and insect hosts in Argentina and to investigate the levels of inter- and intra-specific diversity across this set of isolates. Based on phylogenetic analyses of EF1A-RPB1-RPB2 concatenated genes and BLOC markers, all Beauveria strains were identify as Beauveria bassiana. Within the B. bassiana clades of both phylogenies, isolates from Argentina were not clustered according to geographic origin or host. The 15 fungal isolates were further analyzed by PCR amplification of the intron insertion hot spot region of the nuclear 28S rRNA encoding sequence. By intron sequence and position, seven different group-I intron combinations termed variants A, B1, B2, C, D, E and F were found in the 15 isolates under study. Variants B1/B2 consisting of a single 28Si2 intron were found in ten isolates, whereas variant A occurred twice and variants C through F were unique across the set of isolates under study. The determination of the different introns and intron combinations in the 28S rRNA gene is a powerful tool for achieving infraspecific differentiation of B. bassiana isolates from Argentina.


Beauveria , Genetic Variation , Phylogeny , RNA, Ribosomal, 28S , Beauveria/genetics , Beauveria/classification , Beauveria/isolation & purification , Argentina , RNA, Ribosomal, 28S/genetics , Animals , DNA, Fungal/genetics , Insecta/microbiology , Sequence Analysis, DNA , Molecular Sequence Data , Introns , DNA, Ribosomal/genetics , Cluster Analysis
17.
Mol Biol Rep ; 51(1): 687, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796652

BACKGROUND: Alternaria blotch disease in Himachal Pradesh, India, caused by Alternaria spp., adversely affects apple cultivars, resulting in reduced fruit size and quality accompanied by premature leaf fall. METHODS AND RESULTS: Sixteen Alternaria isolates from apple growing regions underwent comprehensive analysis including morphology, pathogenicity, and molecular characterization. Variations in conidiophore and conidia dimensions, shapes, and divisions were observed among isolates. Pathogenicity assays revealed differences in incubation periods, latent phases, and disease responses. Molecular characterization via nuclear ITS rDNA and RAPD analysis indicated 99-100% homology with Alternaria alternata, Alternaria mali, and other Alternaria spp., with a close phylogenetic relationship to Chinese isolates. Differentiation of isolates based on origin, cultural characteristics, and morphology was achieved using RAPD markers. CONCLUSIONS: The study identifies diverse genotypes and morphotypes of Alternaria contributing to apple blotch disease in Himachal Pradesh. These findings highlight the complexity of the pathogenic environment and hold significant implications for disease management in apple orchards.


Alternaria , Malus , Phylogeny , Plant Diseases , Alternaria/pathogenicity , Alternaria/genetics , Malus/microbiology , India , Plant Diseases/microbiology , Random Amplified Polymorphic DNA Technique , DNA, Fungal/genetics , Spores, Fungal/genetics
18.
Dis Aquat Organ ; 158: 173-178, 2024 May 30.
Article En | MEDLINE | ID: mdl-38813857

Working with aquatic organisms often requires handling multiple individuals in a single session, potentially resulting in cross-contamination by live pathogens or DNA. Most researchers address this problem by disposing of gloves between animals. However, this generates excessive waste and may be impractical for processing very slippery animals that might be easier to handle with cotton gloves. We tested methods to decontaminate cotton or nitrile gloves after contamination with cultured Batrachochytrium dendrobatidis (Bd) or after handling heavily Bd-infected Xenopus laevis with layered cotton and nitrile gloves. Bleach eliminated detectable Bd DNA from culture-contaminated nitrile gloves, but gloves retained detectable Bd DNA following ethanol disinfection. After handling a Bd-infected frog, Bd DNA contamination was greatly reduced by removal of the outer cotton glove, after which either bleach decontamination or ethanol decontamination followed by drying hands with a paper towel lowered Bd DNA below the detection threshold of our assay. These results provide new options to prevent pathogen or DNA cross-contamination, especially when handling slippery aquatic organisms. However, tradeoffs should be considered when selecting an animal handling procedure, such as the potential for cotton gloves to abrade amphibian skin or disrupt skin mucus. Disposing of gloves between animals should remain the gold standard for maintaining biosecurity in sensitive situations.


Decontamination , Gloves, Protective , Animals , Decontamination/methods , Gloves, Protective/microbiology , Batrachochytrium , DNA, Fungal , Mycoses/veterinary , Mycoses/prevention & control , Mycoses/microbiology
19.
Curr Microbiol ; 81(7): 200, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822158

Grapevine production is economically indispensable for the global wine industry. Currently, Mexico cultivates grapevines across approximately 28 500 hectares, ranking as the 26th largest producer worldwide. Given its significance, early detection of plant diseases' causal agents is crucial for preventing outbreaks. Consequently, our study aimed to identify fungal strains in grapevines exhibiting trunk disease symptoms and assess their enzymatic capabilities as indicators of their phytopathogenic potential. We collected plant cultivars, including Malbec, Shiraz, and Tempranillo, from Querétaro, Mexico. In the laboratory, we superficially removed the plant bark to prevent external contamination. Subsequently, the sample was superficially disinfected, and sawdust was generated from the symptomatic tissue. Cultivable fungal strains were isolated using aseptic techniques from the recovered sawdust. Colonies were grown on PDA and identified through a combination of microscopy and DNA-sequencing of the ITS and LSU nrDNA regions, coupled with a BLASTn search in the GenBank database. We evaluated the strains' qualitative ability to degrade cellulose, starch, and lignin using specific media and stains. Using culture morphology and DNA-sequencing, 13 species in seven genera were determined: Acremonium, Aspergillus, Cladosporium, Dydimella, Fusarium, Sarocladium, and Quambalaria. Some isolated strains were able to degrade cellulose or lignin, or starch. These results constitute the first report of these species community in the Americas. Using culture-dependent and DNA-sequencing tools allows the detection of fungal strains to continue monitoring for early prevention of the GTD.


DNA, Fungal , Fungi , Plant Diseases , Vitis , Vitis/microbiology , Mexico , Plant Diseases/microbiology , DNA, Fungal/genetics , Fungi/genetics , Fungi/isolation & purification , Fungi/classification , Fungi/enzymology , Phylogeny , Sequence Analysis, DNA , Cellulose/metabolism , Lignin/metabolism
20.
Parasite ; 31: 27, 2024.
Article En | MEDLINE | ID: mdl-38787023

Enterocytozoon bieneusi is the most common microsporidian species in humans and can affect over 200 animal species. Considering possible increasing risk of human E. bieneusi infection due to close contact with pet dogs and identification of zoonotic E. bieneusi genotypes, 589 fresh fecal specimens of pet dogs were collected from Yunnan Province, China to determine the occurrence of E. bieneusi, characterize dog-derived E. bieneusi isolates, and assess their zoonotic potential at the genotype level. Enterocytozoon bieneusi was identified and genotyped by PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene. Twenty-nine specimens (4.9%) were positive. A statistical difference was observed in occurrence rates of E. bieneusi in pet dogs among 11 sampling sites by Fisher's exact test. Fifteen genotypes were identified and all of them phylogenetically belonged to zoonotic group 1, including four known genotypes (EbpC, D, Peru 8, and Henan-III) and 11 novel genotypes. Genotype Henan-III was reported in dogs for the first time. The finding of known genotypes found previously in humans and novel genotypes falling into zoonotic group 1 indicates that dogs may play a role in the transmission of E. bieneusi to humans in the investigated areas.


Title: Occurrence et caractérisation génétique d'Enterocytozoon bieneusi chez les chiens de compagnie dans la province du Yunnan, Chine. Abstract: Enterocytozoon bieneusi est l'espèce de microsporidies la plus répandue chez l'homme et peut affecter plus de 200 espèces animales. Compte tenu du risque accru possible d'infection humaine à E. bieneusi en raison d'un contact étroit avec des chiens de compagnie et de l'identification de génotypes zoonotiques d'E. bieneusi, 589 échantillons fécaux frais de chiens de compagnie ont été collectés dans la province du Yunnan, en Chine, pour déterminer la présence d'E. bieneusi, caractériser les isolats obtenus de chiens, et évaluer leur potentiel zoonotique au niveau du génotype. Enterocytozoon bieneusi a été identifié et génotypé par PCR et séquençage de la région d'espacement transcrit interne (ITS) du gène de l'ARN ribosomal (ARNr). Vingt-neuf échantillons (4,9%) étaient positifs. Une différence statistique a été observée dans les taux de présence d'E. bieneusi chez les chiens de compagnie parmi 11 sites d'échantillonnage par le test exact de Fisher. Quinze génotypes ont été identifiés et tous appartenaient phylogénétiquement au groupe zoonotique 1, dont quatre génotypes connus (EbpC, D, Peru 8 et Henan-III) et 11 nouveaux génotypes. Le génotype Henan-III est signalé pour la première fois chez le chien. La découverte de génotypes connus précédemment trouvés chez l'homme et de nouveaux génotypes appartenant au groupe zoonotique 1 indique que les chiens peuvent jouer un rôle dans la transmission d'E. bieneusi aux humains dans les zones étudiées.


Dog Diseases , Enterocytozoon , Feces , Genotype , Microsporidiosis , Phylogeny , Zoonoses , Dogs , Animals , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Dog Diseases/parasitology , Feces/microbiology , Feces/parasitology , Pets/microbiology , DNA, Ribosomal Spacer/genetics , DNA, Fungal/genetics , Humans , Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA
...