Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.966
1.
Cell Res ; 34(5): 370-385, 2024 May.
Article En | MEDLINE | ID: mdl-38575718

CRISPR-Cas systems and IS200/IS605 transposon-associated TnpBs have been utilized for the development of genome editing technologies. Using bioinformatics analysis and biochemical experiments, here we present a new family of RNA-guided DNA endonucleases. Our bioinformatics analysis initially identifies the stable co-occurrence of conserved RAGATH-18-derived RNAs (reRNAs) and their upstream IS607 TnpBs with an average length of 390 amino acids. IS607 TnpBs form programmable DNases through interaction with reRNAs. We discover the robust dsDNA interference activity of IS607 TnpB systems in bacteria and human cells. Further characterization of the Firmicutes bacteria IS607 TnpB system (ISFba1 TnpB) reveals that its dsDNA cleavage activity is remarkably sensitive to single mismatches between the guide and target sequences in human cells. Our findings demonstrate that a length of 20 nt in the guide sequence of reRNA achieves the highest DNA cleavage activity for ISFba1 TnpB. A cryo-EM structure of the ISFba1 TnpB effector protein bound by its cognate RAGATH-18 motif-containing reRNA and a dsDNA target reveals the mechanisms underlying reRNA recognition by ISFba1 TnpB, reRNA-guided dsDNA targeting, and the sensitivity of the ISFba1 TnpB system to base mismatches between the guide and target DNA. Collectively, this study identifies the IS607 TnpB family of compact and specific RNA-guided DNases with great potential for application in gene editing.


CRISPR-Cas Systems , Humans , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , DNA/metabolism , Gene Editing , Endonucleases/metabolism , HEK293 Cells , DNA Cleavage
2.
Cell Rep ; 43(4): 114001, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38547127

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.


DNA Cleavage , Paramecium , Paramecium/genetics , Paramecium/metabolism , DNA Breaks, Double-Stranded , Genome, Protozoan , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , DNA Repair , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , DNA End-Joining Repair
3.
Dalton Trans ; 53(17): 7282-7291, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38466178

Transition metal complexes containing the qtpy ligand (2':4,4'':4',4'''-quaterpyridyl) are known to be DNA intercalators or minor groove binders. In this study, new tricationic iridium(III) complexes of qtpy are reported. Both [Ir(bpy)2(qtpy)]3+1 and [Ir(phen)2(qtpy)]3+2 display good water solubility as chloride salts. The complexes possess high-energy excited states, which are quenched in the presence of duplex DNA and even by the mononucleotides guanosine monophosphate and adenosine monophosphate. Further studies reveal that although the complexes bind to quadruplex DNA, they display a preference for duplex structures, which are bound with an order of magnitude higher affinities than their isostructural dicationic RuII-analogues. Detailed molecular dynamics simulations confirm that the complexes are groove binders through the insertion of, predominantly, the qtpy ligand into the minor groove. Photoirradiation of 1 in the presence of plasmid DNA confirms that this class of complexes can function as synthetic photonucleases by cleaving DNA.


Coordination Complexes , DNA , Iridium , Iridium/chemistry , DNA/chemistry , DNA/metabolism , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , DNA Cleavage , Molecular Dynamics Simulation , Ligands , Molecular Structure
4.
Nature ; 629(8011): 467-473, 2024 May.
Article En | MEDLINE | ID: mdl-38471529

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Bacillus cereus , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Immunity, Innate , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Apoproteins/chemistry , Apoproteins/immunology , Apoproteins/metabolism , Apoproteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/immunology , DNA/metabolism , DNA/chemistry , DNA Cleavage , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Domains , Microbial Viability , Bacillus cereus/chemistry , Bacillus cereus/immunology , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Protein Structure, Quaternary , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/ultrastructure , DNA Topoisomerases/chemistry , DNA Topoisomerases/metabolism , DNA Topoisomerases/ultrastructure
5.
Adv Sci (Weinh) ; 11(16): e2306710, 2024 Apr.
Article En | MEDLINE | ID: mdl-38419268

A copper-dependent self-cleaving DNA (DNAzyme or deoyxyribozyme) previously isolated by in vitro selection has been analyzed by a combination of Molecular Dynamics (MD) simulations and advanced Electron Paramagnetic Resonance (Electron Spin Resonance) EPR/ESR spectroscopy, providing insights on the structural and mechanistic features of the cleavage reaction. The modeled 46-nucleotide deoxyribozyme in MD simulations forms duplex and triplex sub-structures that flank a highly conserved catalytic core. The DNA self-cleaving construct can also form a bimolecular complex that has a distinct substrate and enzyme domains. The highly dynamic structure combined with an oxidative site-specific cleavage of the substrate are two key-aspects to elucidate. By combining EPR/ESR spectroscopy with selectively isotopically labeled nucleotides it has been possible to overcome the major drawback related to the "metal-soup" scenario, also known as "super-stoichiometric" ratios of cofactors versus substrate, conventionally required for the DNA cleavage reaction within those nucleic acids-based enzymes. The focus on the endogenous paramagnetic center (Cu2+) here described paves the way for analysis on mixtures where several different cofactors are involved. Furthermore, the insertion of cleavage reaction within more complex architectures is now a realistic perspective towards the applicability of EPR/ESR spectroscopic studies.


Copper , DNA , Molecular Dynamics Simulation , Copper/chemistry , Electron Spin Resonance Spectroscopy/methods , DNA/chemistry , Nucleic Acid Conformation , DNA Cleavage , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Ions/chemistry
6.
Biosensors (Basel) ; 14(2)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38391992

An electrochemically reduced graphene oxide (ERGO) electrode-based electrochemical assay was developed for rapid, sensitive, and straightforward analysis of both activity and inhibition of the endonuclease EcoRV. The procedure uses a DNA substrate designed for EcoRV, featuring a double-stranded DNA (dsDNA) region labeled with methylene blue (MB) and a single-stranded DNA (ssDNA) region immobilized on the ERGO surface. The ERGO electrode, immobilized with the DNA substrate, was subsequently exposed to a sample containing EcoRV. Upon enzymatic hydrolysis, the cleaved dsDNA fragments were detached from the ERGO surface, leading to a decrease in the MB concentration near the electrode. This diminished the electron transfer efficiency for MB reduction, resulting in a decreased reduction current. This assay demonstrates excellent specificity and high sensitivity, with a limit of detection (LOD) of 9.5 × 10-3 U mL-1. Importantly, it can also measure EcoRV activity in the presence of aurintricarboxylic acid, a known inhibitor, highlighting its potential for drug discovery and clinical diagnostic applications.


DNA Cleavage , Graphite , DNA , DNA, Single-Stranded , Methylene Blue , Electrodes , Electrochemical Techniques
7.
Science ; 383(6682): eadh4859, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38301022

Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.


DNA Cleavage , Endonucleases , RNA, Catalytic , Animals , Cryoelectron Microscopy , Endonucleases/chemistry , Endonucleases/genetics , Hydrolysis , Introns , Nucleic Acid Conformation , RNA Splicing , RNA, Catalytic/chemistry , RNA, Catalytic/genetics
8.
Mikrochim Acta ; 191(3): 148, 2024 02 20.
Article En | MEDLINE | ID: mdl-38374311

A unique combination of a specific nucleic acid restriction endonuclease (REase) and atom transfer radical polymerization (ATRP) signal amplification strategy was employed for the detection of T790M mutations prevalent in the adjuvant diagnosis of lung cancer. REase selectively recognizes and cleaves T790M mutation sites on double-stranded DNA formed by hybridization of a capture sequence and a target sequence. At the same time, the ATRP strategy resulted in the massive aggregation of upconverted nanoparticles (UCNPs), which significantly improved the sensitivity of the biosensor. In addition, the UCNPs have excellent optical properties and can eliminate the interference of autofluorescence in the samples, thus further improving the detection sensitivity. The proposed upconversion fluorescent biosensor is characterized by high specificity, high sensitivity, mild reaction conditions, fast response time, and a detection limit as low as 0.14 fM. The performance of the proposed biosensor is comparable to that of clinical PCR methods when applied to clinical samples. This work presents a new perspective for assisted diagnosis in the pre-intervention stage of tumor diagnostics in the early stage of precision oncology treatments.


Biosensing Techniques , Lung Neoplasms , Humans , Lung Neoplasms/genetics , DNA Restriction Enzymes , ErbB Receptors/genetics , Polymerization , DNA Cleavage , Limit of Detection , Mutation , Precision Medicine , Protein Kinase Inhibitors , Biosensing Techniques/methods
9.
Cell Rep ; 43(2): 113809, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38377005

We trapped catalytically engaged topoisomerase IIß (TOP2B) in covalent DNA cleavage complexes (TOP2Bccs) and mapped their positions genome-wide in cultured mouse cortical neurons. We report that TOP2Bcc distribution varies with both nucleosome and compartmental chromosome organization. While TOP2Bccs in gene bodies correlate with their level of transcription, highly expressed genes that lack the usually associated chromatin marks, such as H3K36me3, show reduced TOP2Bccs, suggesting that histone posttranslational modifications regulate TOP2B activity. Promoters with high RNA polymerase II occupancy show elevated TOP2B chromatin immunoprecipitation sequencing signals but low TOP2Bccs, indicating that TOP2B catalytic engagement is curtailed at active promoters. Surprisingly, either poisoning or inhibiting TOP2B increases nascent transcription at most genes and enhancers but reduces transcription within long genes. These effects are independent of transcript length and instead correlate with the presence of intragenic enhancers. Together, these results clarify how cells modulate the catalytic engagement of topoisomerases to affect transcription.


Chromatin , Neurons , Animals , Mice , Catalysis , Chromatin Immunoprecipitation Sequencing , DNA Cleavage
10.
Dalton Trans ; 53(7): 3316-3329, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38260975

Flavonoids, naturally derived polyphenolic compounds, have received significant attention due to their remarkable biochemical properties that offer substantial health benefits to humans. In this work, a series of six Cu(II) flavonoid complexes of the formulation [Cu(L1)(L2)](ClO4) where L1 is 3-hydroxy flavone (HF1, 1 and 4), 4-fluoro-3-hydroxy flavone (HF2, 2 and 5), and 2,6-difluoro-3-hydroxy flavone (HF3, 3 and 6); L2 is 1,10-phenanthroline (phen, 1-3) and 2-(anthracen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (aip, 4-6) were successfully synthesized, fully characterized and also evaluated for their in vitro photo-triggered cytotoxicity in cancer cells. The single-crystal X-ray diffraction structure of complex 2 shows square pyramidal geometry around the Cu(II) center. The complexes 1-6 showed quasi-reversible cyclic voltammetric responses for the Cu(II)/Cu(I) couple at ∼-0.230 V with a very large ΔEp value of ∼350-480 mV against the Ag/AgCl reference electrode in DMF-0.1 M tetrabutylammonium perchlorate (TBAP) at a scan rate of 50 mV s-1. The complexes were found to have considerable binding propensity for human serum albumin (HSA) and calf thymus DNA (ct-DNA). The complexes displayed remarkable dose-dependent photocytotoxicity in visible light (400-700 nm) in both A549 (human lung cancer) and MCF-7 (human breast cancer) cell lines while remaining significantly less toxic in darkness. They were found to be much less toxic to HPL1D (immortalized human peripheral lung epithelial) normal cells compared to A549 and MCF-7 cancer cells. Upon exposure to visible light, they generate reactive oxygen species, which are thought to be the main contributors to the death of cancer cells. In the presence of visible light, the complexes predominantly elicit an apoptotic mode of cell death. Complex 6 preferentially localizes in the mitochondria of A549 cells.


Antineoplastic Agents , Coordination Complexes , Flavones , Humans , Light , MCF-7 Cells , Cell Death , Copper/pharmacology , Copper/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Crystallography, X-Ray , DNA Cleavage , Coordination Complexes/chemistry
11.
J Toxicol Environ Health A ; 87(5): 199-214, 2024 Mar 03.
Article En | MEDLINE | ID: mdl-38073506

Several medicinal plants have been administered to cancer patients attributed to their anticarcinogenic and chemoprotective properties, in addition to lower toxicity compared to traditional therapies. The aim was to investigate the antioxidant properties and carotenoid composition of aqueous extracts of Mentha piperita or Artemisia vulgaris which were previously found to exert beneficial effects on human health through diet. aqueous extracts exhibited potent antioxidant activity. A diversity of carotenoids was identified in these extracts using HPLC-PDA-MS/MS. Both extracts contained predominantly all-trans-lutein as the main component within this class. In order to investigate antioxidant properties, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) techniques were used. The (3-4,5 dimethylthiazol-2, 5 diphenyl tetrazolium bromide) (MTT) and Crystal Violet assays assessed cellular cytotoxicity. Assessments of presence of reactive species were carried out following exposure of oral squamous cell carcinoma cell line (SCC-4) to various aqueous extracts of M piperita or A vulgaris utilizing dichlorofluorescein diacetate (DCFH-DA) and nitric oxide (NO) assays. Exposure to these extracts induced severe cytotoxic effects, which led to investigation of the biochemical and molecular mechanisms underlying this observed effect. Data demonstrated that both solutions induced oxidative stress and DNA damage, especially at higher concentrations using agarose gel subjected to electrophoresis. It is known that exposure to excess amounts of antioxidants results in a prooxidant effect which is beneficial in cancer therapy. Further, the extracts were found to reduce viability of SCC-4 in culture, indicating that this antitumoral activity may be of therapeutic importance and requires further study.


Artemisia , Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Mentha piperita/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , DNA Cleavage , Phytochemicals , Carotenoids/pharmacology
12.
Dalton Trans ; 53(3): 986-995, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38088032

Copper complexes [Cu(L1H)ClO4] (1) and [Cu(L2)NO3] (2), which are relevant to the metal site of the galactose oxidase enzyme, were synthesized and characterized by different spectroscopic methods. L1H2 and L2H2 [where L1H2 stands for 2,2'-((1E,1'E)(2,2'-(pyridine-2,6-diyl)bis(2-phenylhydrazin-2-yl-1-ylidene))bis(methanylylidene))diphenol and L2H2 stands for 6,6'-((1E,1'E)-(2,2'-(pyridine-2,6-diyl)bis(2-phenylhydrazin-2-yl-1-ylidene))bis(methanylylidene))bis(2,4-di-tert-butylphenol), H stands for dissociable proton] are pentadentate ligands. These ligands provide pyridyl N, two imine N, and two non-innocent phenoxyl and phenolato O donors, forming complex 1 as a non-radical complex, while complex 2 is a phenoxyl radical complex. The molecular structures of complexes 1 and 2 were authenticated by X-ray crystallography. Benzyl alcohol oxidation was investigated, and the conversion of 9,10-dihydroanthracene to anthracene was examined to scrutinize the H-atom abstraction reaction. Nuclease activity with complexes 1 and 2 was investigated by self-activated plasmid DNA (pBR322) cleavage. Non-innocent properties of the ligand-containing phenolato function were investigated by DFT calculations.


Copper , Hydrogen , Phenols , Copper/chemistry , Galactose Oxidase/chemistry , DNA Cleavage , Metals , Pyridines , Ligands , Crystallography, X-Ray
13.
ACS Synth Biol ; 13(1): 195-205, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38061193

Homing endonucleases are used in a wide range of biotechnological applications including gene editing, in gene drive systems, and for the modification of DNA structures, arrays, and prodrugs. However, controlling nuclease activity and sequence specificity remain key challenges when developing new tools. Here a photoresponsive homing endonuclease was engineered for optical control of DNA cleavage by partitioning DNA binding and nuclease domains of the monomeric homing endonuclease I-TevI into independent polypeptide chains. Use of the Aureochrome1a light-oxygen-voltage domain delivered control of dimerization with light. Illumination reduced the concentration needed to achieve 50% cleavage of the homing target site by 6-fold when compared to the dark state, resulting in an up to 9-fold difference in final yields between cleavage products. I-TevI nucleases with and without a native I-TevI zinc finger motif displayed different nuclease activity and sequence preference impacting the promiscuity of the nuclease domain. By harnessing an alternative DNA binding domain, target preference was reprogrammed only when the nuclease lacked the I-TevI zinc finger motif. This work establishes a first-generation photoresponsive platform for spatiotemporal activation of DNA cleavage.


Endodeoxyribonucleases , Endonucleases , Endonucleases/genetics , Endonucleases/metabolism , Base Sequence , Endodeoxyribonucleases/genetics , DNA Cleavage , DNA/metabolism
14.
Int J Biol Macromol ; 254(Pt 1): 127521, 2024 Jan.
Article En | MEDLINE | ID: mdl-37898256

New Quercetin-phenylalanine metal-based therapeutic agents of the formulation [Qu(Phe)M(II).(H2O)2].NO3 where M(II) = Co(II) and Ni(II) and [Qu(Phe)Cu(II).(H2O)2] were synthesized and their structure was predicted by IR, UV-vis, EPR and ESI-MS spectroscopic techniques. The bio-molecular interaction studies of the Quercetin-phenylalanine complexes, 1-3 with ct-DNA and BSA were performed using a battery of complimentary biophysical techniques. The corroborative results of these experiments revealed strong binding propensity via electrostatic interactions probably through minor grove binding towards ct-DNA, therapeutic target. The binding affinity of Quercetin-phenylalanine complexes 1-3 was quantified by determining binding constants values, Kb, Ksv, and the magnitude of binding propensity followed the order 3 > 1 > 2, implicating the preferential binding of Cu(II) complex 3 with ct-DNA. The cleavage studies were performed with complexes using gel electrophoretic mobility assay. The complexes 1-3 demonstrated efficient cleaving ability by the hydrolytic cleavage pathway involving hydroxyl (OH) radicals. BSA binding profile of Quercetin-phenylalanine metal therapeutics 1-3 was studied in order to understand the drug carrier potential of these compounds and found that complex 3 was capable of binding preferentially with BSA as compared to other complexes.


Antineoplastic Agents , Coordination Complexes , Quercetin/pharmacology , Quercetin/chemistry , Phenylalanine , DNA/chemistry , Metals , Coordination Complexes/chemistry , DNA Cleavage , Copper/chemistry , Antineoplastic Agents/chemistry , Serum Albumin, Bovine/chemistry
15.
CRISPR J ; 6(6): 527-542, 2023 Dec.
Article En | MEDLINE | ID: mdl-38108519

To protect against mobile genetic elements (MGEs), some bacteria and archaea have clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) adaptive immune systems. CRISPR RNAs (crRNAs) bound to Cas nucleases hybridize to MGEs based on sequence complementarity to guide the nucleases to cleave the MGEs. This programmable DNA cleavage has been harnessed for gene editing. Safety concerns include off-target and guide RNA (gRNA)-free DNA cleavages, both of which are observed in the Cas nuclease commonly used for gene editing, Streptococcus pyogenes Cas9 (SpyCas9). We developed a SpyCas9 variant (SpyCas9H982A) devoid of gRNA-free DNA cleavage activity that is more selective for on-target cleavage. The H982A substitution in the metal-dependent RuvC active site reduces Mn2+-dependent gRNA-free DNA cleavage by ∼167-fold. Mechanistic molecular dynamics analysis shows that Mn2+, but not Mg2+, produces a gRNA-free DNA cleavage competent state that is disrupted by the H982A substitution. Our study demonstrates the feasibility of modulating cation:protein interactions to engineer safer gene editing tools.


DNA Cleavage , Gene Editing , Catalytic Domain , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Endonucleases , Streptococcus pyogenes/genetics
16.
Science ; 382(6673): eadi1910, 2023 11 24.
Article En | MEDLINE | ID: mdl-37995242

Microbial systems underpin many biotechnologies, including CRISPR, but the exponential growth of sequence databases makes it difficult to find previously unidentified systems. In this work, we develop the fast locality-sensitive hashing-based clustering (FLSHclust) algorithm, which performs deep clustering on massive datasets in linearithmic time. We incorporated FLSHclust into a CRISPR discovery pipeline and identified 188 previously unreported CRISPR-linked gene modules, revealing many additional biochemical functions coupled to adaptive immunity. We experimentally characterized three HNH nuclease-containing CRISPR systems, including the first type IV system with a specified interference mechanism, and engineered them for genome editing. We also identified and characterized a candidate type VII system, which we show acts on RNA. This work opens new avenues for harnessing CRISPR and for the broader exploration of the vast functional diversity of microbial proteins.


CRISPR-Associated Proteins , CRISPR-Cas Systems , Data Mining , Gene Editing , CRISPR-Cas Systems/genetics , Humans , HEK293 Cells , Cluster Analysis , Algorithms , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , DNA Cleavage , RNA, Guide, CRISPR-Cas Systems , Datasets as Topic , Data Mining/methods
17.
Nanoscale ; 15(41): 16669-16674, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37801026

Overexpression of telomerase incites the abnormal proliferation of cancer cells. Thus, it has been regarded as a cancer biomarker and a potential therapeutic target. Existing assays suggest a promising sensing scheme to detect telomerase activity. However, they are complicated in terms of assay preparation and implementation. We herein report a Quenching-Exempt invader Signal Amplification Test, termed 'QUEST'. The assay leverages on a high turnover, specific cleaving enzyme, flap endonuclease I (FEN1), and graphene oxide (GO) for background (BG) filtering. In response to the target, FEN1 significantly boosts the signal with invader signal amplification. To distinguish the target signal, GO filters out the BG. It captures residual reporter invader probes (RP) to quench undesired signals. QUEST is straightforward without any pre-preparatory steps and washing/separation. Its probe design is simple and cost-effective. With QUEST, we investigated telomerase activities in various cell lines. Notably, we discriminated cancer cell lines from normal cell lines. In addition, a candidate inhibitor for telomerase was screened, which showed the promising potential of QUEST in real applications.


Telomerase , Telomerase/metabolism , DNA Cleavage , Cell Line
18.
Nature ; 622(7984): 863-871, 2023 Oct.
Article En | MEDLINE | ID: mdl-37758954

Insertion sequences are compact and pervasive transposable elements found in bacteria, which encode only the genes necessary for their mobilization and maintenance1. IS200- and IS605-family transposons undergo 'peel-and-paste' transposition catalysed by a TnpA transposase2, but they also encode diverse, TnpB- and IscB-family proteins that are evolutionarily related to the CRISPR-associated effectors Cas12 and Cas9, respectively3,4. Recent studies have demonstrated that TnpB and IscB function as RNA-guided DNA endonucleases5,6, but the broader biological role of this activity has remained enigmatic. Here we show that TnpB and IscB are essential to prevent permanent transposon loss as a consequence of the TnpA transposition mechanism. We selected a family of related insertion sequences from Geobacillus stearothermophilus that encode several TnpB and IscB orthologues, and showed that a single TnpA transposase was broadly active for transposon mobilization. The donor joints formed upon religation of transposon-flanking sequences were efficiently targeted for cleavage by RNA-guided TnpB and IscB nucleases, and co-expression of TnpB and TnpA led to substantially greater transposon retention relative to conditions in which TnpA was expressed alone. Notably, TnpA and TnpB also stimulated recombination frequencies, surpassing rates observed with TnpB alone. Collectively, this study reveals that RNA-guided DNA cleavage arose as a primal biochemical activity to bias the selfish inheritance and spread of transposable elements, which was later co-opted during the evolution of CRISPR-Cas adaptive immunity for antiviral defence.


DNA Transposable Elements , Endonucleases , Geobacillus stearothermophilus , RNA , Transposases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Cas Systems/genetics , DNA Cleavage , DNA Transposable Elements/genetics , Endonucleases/genetics , Endonucleases/metabolism , Geobacillus stearothermophilus/enzymology , Geobacillus stearothermophilus/genetics , RNA/genetics , RNA/metabolism , Transposases/genetics , Transposases/metabolism , Evolution, Molecular
19.
J Med Virol ; 95(9): e29090, 2023 09.
Article En | MEDLINE | ID: mdl-37695079

The widespread dissemination of coronavirus 2019 imposes a significant burden on society. Therefore, rapid detection facilitates the reduction of transmission risk. In this study, we proposed a multiplex diagnostic platform for the rapid, ultrasensitive, visual, and simultaneous detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) open reading frame 1ab (ORF1ab) and N genes. A visual diagnostic method was developed using a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a/Cas13a dual-enzyme digestion system integrated with multiplex reverse transcriptase-recombinase polymerase amplification (RT-RPA). Two CRISPR-Cas proteins (Cas12a and Cas13a) were introduced into the system to recognize and cleave the N gene and ORF1ab gene, respectively. We used fluorescent or CRISPR double digestion test strips to detect the digested products, with the N gene corresponding to the FAM channel in the PCR instrument or the T1 line on the test strip, and the ORF1ab gene corresponding to the ROX channel in the PCR instrument or the T2 line on the test strip. The analysis can be completed in less than 20 min. Meanwhile, we assessed the application of the platform and determined a sensitivity of up to 200 copies/mL. Additionally, dual gene validation in 105 clinical nasopharyngeal swab samples showed a 100% positive predictive value agreement and a 95.7% negative predictive value agreement between our method and quantitative reverse transcription-polymerase chain reaction. Overall, our method offered a novel insight into the rapid diagnosis of SARS-CoV-2.


Bacterial Proteins , COVID-19 , CRISPR-Associated Proteins , Coronavirus Nucleocapsid Proteins , Endodeoxyribonucleases , Phosphoproteins , Polyproteins , SARS-CoV-2 , Viral Proteins , RNA Cleavage , DNA Cleavage , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Viral Proteins/genetics , Polyproteins/genetics , CRISPR-Associated Proteins/chemistry , Bacterial Proteins/chemistry , Endodeoxyribonucleases/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Phosphoproteins/genetics , Humans
20.
Nat Commun ; 14(1): 5587, 2023 09 11.
Article En | MEDLINE | ID: mdl-37696787

CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14-15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression.


CRISPR-Cas Systems , Drosophila melanogaster , Animals , CRISPR-Cas Systems/genetics , Drosophila melanogaster/genetics , Gene Knockdown Techniques , CRISPR-Associated Protein 9/genetics , DNA Cleavage , Mammals
...