Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.880
1.
Article En | MEDLINE | ID: mdl-38765507

Endometriosis is a complex disease that affects 10-15% of women of reproductive age. Familial studies show that relatives of affected patients have a higher risk of developing the disease, implicating a genetic role for this disorder. Little is known about the impact of germline genomic copy number variant (CNV) polymorphisms on the heredity of the disease. In this study, we describe a rare CNV identified in two sisters with familial endometriosis, which contain genes that may increase the susceptibility and progression of this disease. We investigated the presence of CNVs from the endometrium and blood of the sisters with endometriosis and normal endometrium of five women as controls without the disease using array-CGH through the Agilent 2x400K platform. We excluded common CNVs that were present in the database of genomic variation. We identified, in both sisters, a rare CNV gain affecting 113kb at band 3q12.2 involving two candidate genes: ADGRG7 and TFG. The CNV gain was validated by qPCR. ADGRG7 is located at 3q12.2 and encodes a G protein-coupled receptor influencing the NF-kappaß pathway. TFG participates in chromosomal translocations associated with hematologic tumor and soft tissue sarcomas, and is also involved in the NF-kappa B pathway. The CNV gain in this family provides a new candidate genetic marker for future familial endometriosis studies. Additional longitudinal studies of affected families must confirm any associations between this rare CNV gain and genes involved in the NF-kappaß pathway in predisposition to endometriosis.


DNA Copy Number Variations , Endometriosis , Humans , Endometriosis/genetics , Female , Adult , Chromosomes, Human, Pair 3/genetics , Genetic Predisposition to Disease , Polymorphism, Genetic
2.
Genome Biol ; 25(1): 130, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773520

Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.


Algorithms , DNA Copy Number Variations , Haplotypes , Prostatic Neoplasms , Humans , Prostatic Neoplasms/genetics , Male , Sequence Analysis, DNA/methods , Neoplasms/genetics , Gene Frequency , Single-Cell Analysis
3.
FASEB J ; 38(10): e23672, 2024 May 31.
Article En | MEDLINE | ID: mdl-38775929

Cardiovascular disease (CVD) is a leading global cause of mortality, difficult to predict in advance. Evidence indicates that the copy number of mitochondrial DNA (mtDNAcn) in blood is altered in individuals with CVD. MtDNA released into circulation may act as a mediator of inflammation, a recognized factor in the development of CVD, in the long distance. This pilot study aims to test if levels of mtDNAcn in buffy coat DNA (BC-mtDNA), in circulating cellfree DNA (cf-mtDNA), or in DNA extracted from plasma extracellular vesicles (EV-mtDNA) are altered in CVD patients and if they can predict heart attack in advance. A group of 144 people with different CVD statuses (50 that had CVD, 94 healthy) was selected from the LifeLines Biobank according to the incidence of new cardiovascular event monitored in 6 years (50 among controls had heart attack after the basal assessment). MtDNAcn was quantified in total cf-DNA and EV-DNA from plasma as well as in buffy coat. EVs have been characterized by their size, polydispersity index, count rate, and zeta potential, by Dynamic Light Scattering. BC-mtDNAcn and cf-mtDNAcn were not different between CVD patients and healthy subjects. EVs carried higher mtDNAcn in subject with a previous history of CVD than controls, also adjusting the analysis for the EVs derived count rate. Despite mtDNAcn was not able to predict CVD in advance, the detection of increased EV-mtDNAcn in CVD patients in this pilot study suggests the need for further investigations to determine its pathophysiological role in inflammation.


Cardiovascular Diseases , Cell-Free Nucleic Acids , DNA Copy Number Variations , DNA, Mitochondrial , Extracellular Vesicles , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Male , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Female , Pilot Projects , Cardiovascular Diseases/genetics , Cardiovascular Diseases/blood , Middle Aged , Case-Control Studies , Aged , Prospective Studies
4.
Nat Med ; 30(5): 1395-1405, 2024 May.
Article En | MEDLINE | ID: mdl-38693247

Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of these 1,578 children (24.5%) received genetic diagnoses. We identified 412 pathogenic and likely pathogenic (P/LP) variants across 219 genes associated with neurodevelopmental disorders, and 59 P/LP copy number variants. The genetic diagnostic rate of children with CP labeled at birth with perinatal asphyxia was higher than the rate in children without asphyxia (P = 0.0033). Also, 33 children with CP manifestations (8.5%, 33 of 387) had findings that were clinically actionable. These results highlight the need for early genetic testing in children with CP, especially those with risk factors like perinatal asphyxia, to enable evidence-based medical decision-making.


Cerebral Palsy , DNA Copy Number Variations , Exome Sequencing , Genetic Heterogeneity , Humans , Cerebral Palsy/genetics , Female , Male , Child , Child, Preschool , DNA Copy Number Variations/genetics , Exome/genetics , Infant , Genetic Testing , Cohort Studies , Genetic Predisposition to Disease , Infant, Newborn
5.
Yi Chuan ; 46(5): 373-386, 2024 May 20.
Article En | MEDLINE | ID: mdl-38763772

Cardioembolic stroke, characterized by severe illness, poor prognosis, and high recurrence rate, is one of the important causes of ischemic stroke. In the field of genetic research, numerous genes associated with cardioembolic stroke have been identified, and their potential in predicting disease risk and evaluating risk factors has been progressively explored. Here, we provide an overview of the latest advancements in genetics for cardioembolic stroke, including genome-wide association studies, copy number variation studies, whole-genome sequencing studies. Furthermore, we also summarize the application of genetic datasets in polygenic risk score and Mendelian randomization. The aim of this overview is to provide insights and references from multiple perspectives for future investigations on the genetic information for cardioembolic stroke.


DNA Copy Number Variations , Embolic Stroke , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Embolic Stroke/genetics , Embolic Stroke/etiology , Risk Factors
6.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732227

The most common form of hereditary spastic paraplegia (HSP), SPG4 is caused by single nucleotide variants and microrearrangements in the SPAST gene. The high percentage of multi-exonic deletions or duplications observed in SPG4 patients is predisposed by the presence of a high frequency of Alu sequences in the gene sequence. In the present study, we analyzed DNA and RNA samples collected from patients with different microrearrangements in SPAST to map gene breakpoints and evaluate the mutation mechanism. The study group consisted of 69 individuals, including 50 SPG4 patients and 19 healthy relatives from 18 families. Affected family members from 17 families carried varying ranges of microrearrangements in the SPAST gene, while one individual had a single nucleotide variant in the 5'UTR of SPAST. To detect the breakpoints of the SPAST gene, long-range PCR followed by sequencing was performed. The breakpoint sequence was detected for five different intragenic SPAST deletions and one duplication, revealing Alu-mediated microhomology at breakpoint junctions resulting from non-allelic homologous recombination in these patients. Furthermore, SPAST gene expression analysis was performed using patient RNA samples extracted from whole blood. Quantitative real-time PCR tests performed in 14 patients suggest no expression of transcripts with microrearrangements in 5 of them. The obtained data indicate that nonsense-mediated decay degradation is not the only mechanism of hereditary spastic paraplegia in patients with SPAST microrearrangements.


Haploinsufficiency , Spastic Paraplegia, Hereditary , Spastin , Humans , Spastin/genetics , Spastic Paraplegia, Hereditary/genetics , Male , Female , Haploinsufficiency/genetics , Pedigree , DNA Copy Number Variations , Adult , Alu Elements/genetics , Middle Aged , Adolescent , Young Adult , Nonsense Mediated mRNA Decay
7.
Nat Commun ; 15(1): 3981, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730266

Heteroresistance is a medically relevant phenotype where small antibiotic-resistant subpopulations coexist within predominantly susceptible bacterial populations. Heteroresistance reduces treatment efficacy across diverse bacterial species and antibiotic classes, yet its genetic and physiological mechanisms remain poorly understood. Here, we investigated a multi-resistant Klebsiella pneumoniae isolate and identified three primary drivers of gene dosage-dependent heteroresistance for several antibiotic classes: tandem amplification, increased plasmid copy number, and transposition of resistance genes onto cryptic plasmids. All three mechanisms imposed fitness costs and were genetically unstable, leading to fast reversion to susceptibility in the absence of antibiotics. We used a mouse gut colonization model to show that heteroresistance due to elevated resistance-gene dosage can result in antibiotic treatment failures. Importantly, we observed that the three mechanisms are prevalent among Escherichia coli bloodstream isolates. Our findings underscore the necessity for treatment strategies that address the complex interplay between plasmids, resistance cassettes, and transposons in bacterial populations.


Anti-Bacterial Agents , DNA Copy Number Variations , Escherichia coli , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Mice , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Gene Dosage , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , DNA Transposable Elements/genetics , Female
8.
BMC Genomics ; 25(1): 459, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730342

BACKGROUND: Genome-wide comparisons of populations are widely used to explore the patterns of nucleotide diversity and sequence divergence to provide knowledge on how natural selection and genetic drift affect the genome. In this study we have compared whole-genome sequencing data from Atlantic and Pacific herring, two sister species that diverged about 2 million years ago, to explore the pattern of genetic differentiation between the two species. RESULTS: The genome comparison of the two species revealed high genome-wide differentiation but with islands of remarkably low genetic differentiation, as measured by an FST analysis. However, the low FST observed in these islands is not caused by low interspecies sequence divergence (dxy) but rather by exceptionally high estimated intraspecies nucleotide diversity (π). These regions of low differentiation and elevated nucleotide diversity, termed high-diversity regions in this study, are not enriched for repeats but are highly enriched for immune-related genes. This enrichment includes genes from both the adaptive immune system, such as immunoglobulin, T-cell receptor and major histocompatibility complex genes, as well as a substantial number of genes with a role in the innate immune system, e.g. novel immune-type receptor, tripartite motif and tumor necrosis factor receptor genes. Analysis of long-read based assemblies from two Atlantic herring individuals revealed extensive copy number variation in these genomic regions, indicating that the elevated intraspecies nucleotide diversities were partially due to the cross-mapping of short reads. CONCLUSIONS: This study demonstrates that copy number variation is a characteristic feature of immune trait loci in herring. Another important implication is that these loci are blind spots in classical genome-wide screens for genetic differentiation using short-read data, not only in herring, likely also in other species harboring qualitatively similar variation at immune trait loci. These loci stood out in this study because of the relatively high genome-wide baseline for FST values between Atlantic and Pacific herring.


DNA Copy Number Variations , Fishes , Animals , Fishes/genetics , Fishes/immunology , Genetic Variation , Atlantic Ocean , Quantitative Trait Loci , Whole Genome Sequencing
9.
Hum Genomics ; 18(1): 46, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730490

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


DNA Copy Number Variations , Genetic Testing , High-Throughput Nucleotide Sequencing , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , India , DNA Copy Number Variations/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Female , Male , Molecular Probes/genetics
10.
Nat Commun ; 15(1): 3745, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702304

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Cell Differentiation , DNA Copy Number Variations , N-Myc Proto-Oncogene Protein , Neural Crest , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neural Crest/metabolism , Neural Crest/pathology , Female , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Chromosome Aberrations , Human Embryonic Stem Cells/metabolism , Transcriptome , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
11.
BMC Pregnancy Childbirth ; 24(1): 338, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702634

OBJECTIVE: This study aims to perform a prenatal genetic diagnosis of a high-risk fetus with trisomy 7 identified by noninvasive prenatal testing (NIPT) and to evaluate the efficacy of different genetic testing techniques for prenatal diagnosis of trisomy mosaicism. METHODS: For prenatal diagnosis of a pregnant woman with a high risk of trisomy 7 suggested by NIPT, karyotyping and chromosomal microarray analysis (CMA) were performed on an amniotic fluid sample. Low-depth whole-genome copy number variation sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were used to clarify the results further. In addition, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was performed to analyze the possibility of uniparental disomy(UPD). RESULTS: Amniotic fluid karyotype analysis revealed a 46, XX result. Approximately 20% mosaic trisomy 7 was detected according to the CMA result. About 16% and 4% of mosaicism was detected by CNV-seq and FISH, respectively. MS-MLPA showed no methylation abnormalities. The fetal ultrasound did not show any detectable abnormalities except for mild intrauterine growth retardation seen at 39 weeks of gestation. After receiving genetic counseling, the expectant mother decided to continue the pregnancy, and follow-up within three months of delivery was normal. CONCLUSION: In high-risk NIPT diagnosis, a combination of cytogenetic and molecular genetic techniques proves fruitful in detecting low-level mosaicism. Furthermore, the exclusion of UPD on chromosome 7 remains crucial when NIPT indicates a positive prenatal diagnosis of trisomy 7.


Chromosomes, Human, Pair 7 , DNA Copy Number Variations , In Situ Hybridization, Fluorescence , Karyotyping , Mosaicism , Trisomy , Uniparental Disomy , Humans , Female , Mosaicism/embryology , Pregnancy , In Situ Hybridization, Fluorescence/methods , Chromosomes, Human, Pair 7/genetics , Trisomy/diagnosis , Trisomy/genetics , Karyotyping/methods , Adult , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Prenatal Diagnosis/methods , Microarray Analysis/methods , Noninvasive Prenatal Testing/methods , Multiplex Polymerase Chain Reaction/methods , Amniotic Fluid
12.
Environ Geochem Health ; 46(6): 184, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695941

Excessive fluoride can adversely affect bone mineral density (BMD). Oxidative stress and mitochondrial dysfunction are crucial mechanisms of health damage induced by fluoride. Here, a cross-sectional survey involving 907 Chinese farmers (aged 18-60) was carried out in Tongxu County in 2017, aiming to investigate the significance of mitochondrial DNA copy number (mtDNAcn) and oxidative stress in fluoride-related BMD change. Concentrations of urinary fluoride (UF), serum oxidative stress biomarkers, including total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), as well as relative mtDNAcn in peripheral blood were determined. The multivariable linear model and mediation analysis were performed to assess associations between UF, oxidative stress, and relative mtDNAcn with BMD. Results showed that GSH-Px levels increased by 6.98 U/mL [95% confidence interval (CI) 3.41-10.56)] with each 1.0 mg/L increment of UF. After stratification, the T-AOC, relative mtDNAcn, and BMD decreased by 0.04 mmol/L (-0.08 ~ -0.01), 0.29-unit (-0.55 ~ -0.04), and 0.18-unit (-0.33 ~ -0.03) with every 1.0 mg/L elevation of UF in the excessive fluoride group (EFG, adults with UF > 1.6 mg/L), respectively. Furthermore, T-AOC and relative mtDNAcn were favorably related to the BMD in the EFG (ß = 0.82, 95%CI 0.16-1.48 for T-AOC; ß = 0.11, 95%CI 0.02-0.19 for relative mtDNAcn). Mediation analysis showed that relative mtDNAcn and T-AOC mediated 15.4% and 17.1% of the connection between excessive fluoride and reduced BMD, respectively. Findings suggested that excessive fluoride was related to lower BMD in adults, and the decrement of T-AOC and relative mtDNAcn partially mediate this relationship.


Bone Density , DNA, Mitochondrial , Farmers , Fluorides , Oxidative Stress , Fluorides/toxicity , Humans , Bone Density/drug effects , Adult , Middle Aged , Male , Cross-Sectional Studies , Adolescent , China , Young Adult , Female , DNA Copy Number Variations , Occupational Exposure/adverse effects , Biomarkers/blood
13.
Psychiatr Genet ; 34(3): 74-80, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690959

BACKGROUND: Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder. These variants have been identified in a group of children with neurodevelopmental disorders with microcephaly, arthrogryposis, and structural brain anomalies. SMPD4 encodes a sphingomyelinase that hydrolyzes sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes. MATERIALS AND METHODS: For the efficient prenatal diagnosis of rare and undiagnosed diseases, the parallel detection of copy number variants (CNVs) and single nucleotide variants using whole-exome analysis is required. A physical examination of the parents was performed. Karyotype and whole-exome analysis were performed for the fetus and the parents. RESULTS: A fetus with microcephaly and arthrogryposis; biallelic null variants (c.387-1G>A; Chr2[GRCh38]: g.130142742_130202459del) were detected by whole-exome sequencing (WES). We have reported for the first time the biallelic loss-of-function mutations in SMPD4 in patients born to unrelated parents in China. CONCLUSION: WES could replace chromosomal microarray analysis and copy number variation sequencing as a more cost-effective genetic test for detecting CNVs and diagnosing highly heterogeneous conditions.


DNA Copy Number Variations , Exome Sequencing , Microcephaly , Polymorphism, Single Nucleotide , Prenatal Diagnosis , Sphingomyelin Phosphodiesterase , Humans , DNA Copy Number Variations/genetics , Exome Sequencing/methods , Female , Prenatal Diagnosis/methods , Sphingomyelin Phosphodiesterase/genetics , Polymorphism, Single Nucleotide/genetics , Pregnancy , Microcephaly/genetics , Heterozygote , Arthrogryposis/genetics , Arthrogryposis/diagnosis , Male , Exome/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis
14.
J Transl Med ; 22(1): 414, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693538

Primary testicular lymphoma (PTL) is a rare lymphoma predominantly occurring in the elderly male population. It is characterized by a limited response to treatment and a heightened tendency towards relapse. Histologically, approximately 90% of PTL cases are classified as diffuse large B-cell lymphomas (DLBCL). Genetic features of PTL were delineated in a limited scope within several independent studies. Some of the articles which analyzed the genetic characterization of DLBCL have incorporated PTL samples, but these have been constrained by small sample sizes. In addition, there have been an absence of independent molecular typing studies of PTL. This report summarizes the common mutational features, copy number variations (CNVs) and molecular typing of PTL patients, based on whole-exome sequencing (WES) conducted on a cohort of 25 PTL patients. Among them, HLA, CDKN2A and MYD88 had a high mutation frequency. In addition, we found two core mutational characteristics in PTL including mutation in genes linked to genomic instability (TP53 and CDKN2A) and mutation in immune-related genes (HLA, MYD88, CD79B). We performed molecular typing of 25 PTL patients into C1 subtype with predominantly TP53 mutations and C2 subtype with predominantly HLA mutations. Notably, mutations in the TP53 gene predicted a poor outcome in most types of lymphomas. However, the C1 subtype, dominated by TP53 mutations, had a better prognosis compared to the C2 subtype in PTL. C2 subtype exhibited a worse prognosis, aligning with our finding that the mechanism of immune escape in PTL was primarily the deletions of HLA rather than PD-L1/PD-L2 alterations, a contrast to other DLBCLs. Moreover, we calculated the tumor mutation burden (TMB) and identified that TMB can predict prognosis and recurrence rate in PTL. Our study underscores the significance of molecular typing in PTL based on mutational characteristics, which plays a crucial role in prognostication and guiding therapeutic strategies for patients.


DNA Copy Number Variations , Genomics , Mutation , Testicular Neoplasms , Humans , Male , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Testicular Neoplasms/classification , Mutation/genetics , DNA Copy Number Variations/genetics , Aged , Middle Aged , Lymphoma/genetics , Lymphoma/pathology , Lymphoma/classification , Exome Sequencing , Aged, 80 and over , Adult , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/classification
15.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38701418

Coverage quantification is required in many sequencing datasets within the field of genomics research. However, most existing tools fail to provide comprehensive statistical results and exhibit limited performance gains from multithreading. Here, we present PanDepth, an ultra-fast and efficient tool for calculating coverage and depth from sequencing alignments. PanDepth outperforms other tools in computation time and memory efficiency for both BAM and CRAM-format alignment files from sequencing data, regardless of read length. It employs chromosome parallel computation and optimized data structures, resulting in ultrafast computation speeds and memory efficiency. It accepts sorted or unsorted BAM and CRAM-format alignment files as well as GTF, GFF and BED-formatted interval files or a specific window size. When provided with a reference genome sequence and the option to enable GC content calculation, PanDepth includes GC content statistics, enhancing the accuracy and reliability of copy number variation analysis. Overall, PanDepth is a powerful tool that accelerates scientific discovery in genomics research.


Genomics , Software , Genomics/methods , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Base Composition , DNA Copy Number Variations , Computational Biology/methods , Algorithms , Sequence Alignment/methods
16.
PLoS One ; 19(5): e0301131, 2024.
Article En | MEDLINE | ID: mdl-38739669

Lung cancer is the second most diagnosed cancer and the first cause of cancer related death for men and women in the United States. Early detection is essential as patient survival is not optimal and recurrence rate is high. Copy number (CN) changes in cancer populations have been broadly investigated to identify CN gains and deletions associated with the cancer. In this research, the similarities between cancer and paired peripheral blood samples are identified using maximal information coefficient (MIC) and the spatial locations with substantially high MIC scores in each chromosome are used for clustering analysis. The results showed that a sizable reduction of feature set can be obtained using only a subset of locations with high MIC values. The clustering performance was evaluated using both true rate and normalized mutual information (NMI). Clustering results using the reduced feature set outperformed the performance of clustering using entire feature set in several chromosomes that are highly associated with lung cancer with several identified oncogenes.


DNA Copy Number Variations , Lung Neoplasms , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Humans , Cluster Analysis , Female , Male
17.
PLoS One ; 19(5): e0302856, 2024.
Article En | MEDLINE | ID: mdl-38722955

Metastasis is the most dreaded outcome after a breast cancer diagnosis, and little is known regarding what triggers or promotes breast cancer to spread distally, or how to prevent or eradicate metastasis effectively. Bilateral breast cancers are an uncommon form of breast cancers. In our study, a percentage of bilateral breast cancers were clonally related based on copy number variation profiling. Whole exome sequencing and comparative sequence analysis revealed that a limited number of somatic mutations were acquired in this "breast-to-breast" metastasis that might promote breast cancer distant spread. One somatic mutation acquired was SIVA-D160N that displayed pro-metastatic phenotypes in vivo and in vitro. Over-expression of SIVA-D160N promoted migration and invasion of human MB-MDA-231 breast cancer cells in vitro, consistent with a dominant negative interfering function. When introduced via tail vein injection, 231 cells over-expressing SIVA-D160N displayed enhanced distant spread on IVIS imaging. Over-expression of SIVA-D160N promoted invasion and anchorage independent growth of mouse 4T1 breast cancer cells in vitro. When introduced orthotopically via mammary fat pad injection in syngeneic Balb/c mice, over-expression of SIVA-D160N in 4T1 cells increased orthotopically implanted mammary gland tumor growth as well as liver metastasis. Clonally related bilateral breast cancers represented a novel system to investigate metastasis and revealed a role of SIVA-D160N in breast cancer metastasis. Further characterization and understanding of SIVA function, and that of its interacting proteins, may elucidate mechanisms of breast cancer metastasis, providing clinically useful biomarkers and therapeutic targets.


Breast Neoplasms , Neoplasm Metastasis , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Animals , Mice , Cell Line, Tumor , Neoplasm Invasiveness , Mutation , Cell Movement/genetics , Mice, Inbred BALB C , DNA Copy Number Variations
18.
BMC Bioinformatics ; 25(1): 182, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724920

BACKGROUND: The prediction of drug sensitivity plays a crucial role in improving the therapeutic effect of drugs. However, testing the effectiveness of drugs is challenging due to the complex mechanism of drug reactions and the lack of interpretability in most machine learning and deep learning methods. Therefore, it is imperative to establish an interpretable model that receives various cell line and drug feature data to learn drug response mechanisms and achieve stable predictions between available datasets. RESULTS: This study proposes a new and interpretable deep learning model, DrugGene, which integrates gene expression, gene mutation, gene copy number variation of cancer cells, and chemical characteristics of anticancer drugs to predict their sensitivity. This model comprises two different branches of neural networks, where the first involves a hierarchical structure of biological subsystems that uses the biological processes of human cells to form a visual neural network (VNN) and an interpretable deep neural network for human cancer cells. DrugGene receives genotype input from the cell line and detects changes in the subsystem states. We also employ a traditional artificial neural network (ANN) to capture the chemical structural features of drugs. DrugGene generates final drug response predictions by combining VNN and ANN and integrating their outputs into a fully connected layer. The experimental results using drug sensitivity data extracted from the Cancer Drug Sensitivity Genome Database and the Cancer Treatment Response Portal v2 reveal that the proposed model is better than existing prediction methods. Therefore, our model achieves higher accuracy, learns the reaction mechanisms between anticancer drugs and cell lines from various features, and interprets the model's predicted results. CONCLUSIONS: Our method utilizes biological pathways to construct neural networks, which can use genotypes to monitor changes in the state of network subsystems, thereby interpreting the prediction results in the model and achieving satisfactory prediction accuracy. This will help explore new directions in cancer treatment. More available code resources can be downloaded for free from GitHub ( https://github.com/pangweixiong/DrugGene ).


Antineoplastic Agents , Deep Learning , Neural Networks, Computer , Humans , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Cell Line, Tumor , DNA Copy Number Variations , Computational Biology/methods
19.
BMC Cancer ; 24(1): 573, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724951

BACKGROUND: Microsatellite instability-high (MSI-H) has emerged as a significant biological characteristic of colorectal cancer (CRC). Studies reported that MSI-H CRC generally had a better prognosis than microsatellite stable (MSS)/microsatellite instability-low (MSI-L) CRC, but some MSI-H CRC patients exhibited distinctive molecular characteristics and experienced a less favorable prognosis. In this study, our objective was to explore the metabolic transcript-related subtypes of MSI-H CRC and identify a biomarker for predicting survival outcomes. METHODS: Single-cell RNA sequencing (scRNA-seq) data of MSI-H CRC patients were obtained from the Gene Expression Omnibus (GEO) database. By utilizing the copy number variation (CNV) score, a malignant cell subpopulation was identified at the single-cell level. The metabolic landscape of various cell types was examined using metabolic pathway gene sets. Subsequently, functional experiments were conducted to investigate the biological significance of the hub gene in MSI-H CRC. Finally, the predictive potential of the hub gene was assessed using a nomogram. RESULTS: This study revealed a malignant tumor cell subpopulation from the single-cell RNA sequencing (scRNA-seq) data. MSI-H CRC was clustered into two subtypes based on the expression profiles of metabolism-related genes, and ENO2 was identified as a hub gene. Functional experiments with ENO2 knockdown and overexpression demonstrated its role in promoting CRC cell migration, invasion, glycolysis, and epithelial-mesenchymal transition (EMT) in vitro. High expression of ENO2 in MSI-H CRC patients was associated with worse clinical outcomes, including increased tumor invasion depth (p = 0.007) and greater likelihood of perineural invasion (p = 0.015). Furthermore, the nomogram and calibration curves based on ENO2 showed potential prognosis predictive performance. CONCLUSION: Our findings suggest that ENO2 serves as a novel prognostic biomarker and is associated with the progression of MSI-H CRC.


Biomarkers, Tumor , Colorectal Neoplasms , Disease Progression , Microsatellite Instability , Phosphopyruvate Hydratase , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Prognosis , Female , Male , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Middle Aged , Nomograms , Single-Cell Analysis , DNA Copy Number Variations
20.
PLoS One ; 19(5): e0303044, 2024.
Article En | MEDLINE | ID: mdl-38771855

Copy Number Variants (CNV) are modifications affecting the genome sequence of DNA, for instance, they can be duplications or deletions of a considerable number of base pairs (i.e., greater than 1000 bp and up to millions of bp). Their impact on the variation of the phenotypic traits has been widely demonstrated. In addition, CNVs are a class of markers useful to identify the genetic biodiversity among populations related to adaptation to the environment. The aim of this study was to detect CNVs in more than four thousand Holstein cows, using information derived by a genotyping done with the GGP (GeneSeek Genomic Profiler) bovine 100K SNP chip. To detect CNV the SVS 8.9 software was used, then CNV regions (CNVRs) were detected. A total of 123,814 CNVs (4,150 non redundant) were called and aggregated into 1,397 CNVRs. The PCA results obtained using the CNVs information, showed that there is some variability among animals. For many genes annotated within the CNVRs, the role in immune response is well known, as well as their association with important and economic traits object of selection in Holstein, such as milk production and quality, udder conformation and body morphology. Comparison with reference revealed unique CNVRs of the Holstein breed, and others in common with Jersey and Brown. The information regarding CNVs represents a valuable resource to understand how this class of markers may improve the accuracy in prediction of genomic value, nowadays solely based on SNPs markers.


DNA Copy Number Variations , Polymorphism, Single Nucleotide , Cattle/genetics , Animals , Italy , Female , Breeding , Genotype , Phenotype
...