Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.339
1.
J Oleo Sci ; 73(5): 787-799, 2024.
Article En | MEDLINE | ID: mdl-38692900

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Anti-Bacterial Agents , Bacillus subtilis , Hemiterpenes , Molecular Docking Simulation , Oils, Volatile , Pentanoic Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Bacillus subtilis/drug effects , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Tetrahydrofolate Dehydrogenase/metabolism , DNA Gyrase/metabolism , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry
2.
Science ; 384(6692): 227-232, 2024 04 12.
Article En | MEDLINE | ID: mdl-38603484

DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.


DNA Gyrase , DNA, Superhelical , DNA , Escherichia coli Proteins , Escherichia coli , Cryoelectron Microscopy , DNA/chemistry , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Protein Domains
3.
ACS Infect Dis ; 10(4): 1351-1360, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38606464

Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.


Ciprofloxacin , Gonorrhea , Humans , Ciprofloxacin/pharmacology , Fluoroquinolones/pharmacology , DNA Topoisomerase IV/genetics , DNA Topoisomerase IV/metabolism , Neisseria gonorrhoeae , Gonorrhea/drug therapy , Gonorrhea/microbiology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Microbial Sensitivity Tests
4.
ACS Infect Dis ; 10(4): 1137-1151, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38606465

Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.


Acenaphthenes , DNA Topoisomerase IV , Escherichia coli , Heterocyclic Compounds, 3-Ring , Humans , DNA Topoisomerase IV/genetics , DNA Gyrase/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amino Acids/pharmacology
5.
Molecules ; 29(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38611769

Carbothioamides 3a,b were generated in high yield by reacting furan imidazolyl ketone 1 with N-arylthiosemicarbazide in EtOH with a catalytic amount of conc. HCl. The reaction of carbothioamides 3a,b with hydrazonyl chlorides 4a-c in EtOH with triethylamine at reflux produced 1,3-thiazole derivatives 6a-f. In a different approach, the 1,3-thiazole derivatives 6b and 6e were produced by reacting 3a and 3b with chloroacetone to afford 8a and 8b, respectively, followed by diazotization with 4-methylbenzenediazonium chloride. The thiourea derivatives 3a and 3b then reacted with ethyl chloroacetate in ethanol with AcONa at reflux to give the thiazolidinone derivatives 10a and 10b. The produced compounds were tested for antioxidant and antibacterial properties. Using phosphomolybdate, promising thiazoles 3a and 6a showed the best antioxidant activities at 1962.48 and 2007.67 µgAAE/g dry samples, respectively. Thiazoles 3a and 8a had the highest antibacterial activity against S. aureus and E. coli with 28, 25 and 27, 28 mm, respectively. Thiazoles 3a and 6d had the best activity against C. albicans with 26 mm and 37 mm, respectively. Thiazole 6c had the highest activity against A. niger, surpassing cyclohexamide. Most compounds demonstrated lower MIC values than neomycin against E. coli, S. aureus and C. albicans. A molecular docking study examined how antimicrobial compounds interact with DNA gyrase B crystal structures. The study found that all of the compounds had good binding energy to the enzymes and reacted similarly to the native inhibitor with the target DNA gyrase B enzymes' key amino acids.


Antioxidants , DNA Gyrase , Antioxidants/pharmacology , Molecular Docking Simulation , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Imidazoles , Candida albicans , Thiazoles/pharmacology
6.
Helicobacter ; 29(2): e13075, 2024.
Article En | MEDLINE | ID: mdl-38627919

BACKGROUND: The current standard treatment for Helicobacter pylori infection, which involves a combination of two broad-spectrum antibiotics, faces significant challenges due to its detrimental impact on the gut microbiota and the emergence of drug-resistant strains. This underscores the urgent requirement for the development of novel anti-H. pylori drugs. Zoliflodacin, a novel bacterial gyrase inhibitor, is currently undergoing global phase III clinical trials for treating uncomplicated Neisseria gonorrhoeae. However, there is no available data regarding its activity against H. pylori. MATERIALS AND METHODS: We evaluated the in vitro activity of zoliflodacin against H. pylori clinical isolates (n = 123) with diverse multidrug resistance. We performed DNA gyrase supercoiling and microscale thermophoresis assays to identify the target of zoliflodacin in H. pylori. We analyzed 2262 H. pylori whole genome sequences to identify Asp424Asn and Lys445Asn mutations in DNA gyrase subunit B (GyrB) that are associated with zoliflodacin resistance. RESULTS: Zoliflodacin exhibits potent activity against all tested isolates, with minimal inhibitory concentration (MIC) values ranging from 0.008 to 1 µg/mL (MIC50: 0.125 µg/mL; MIC90: 0.25 µg/mL). Importantly, there was no evidence of cross-resistance to any of the four first-line antibiotics commonly used against H. pylori. We identified GyrB as the primary target of zoliflodacin, with Asp424Asn or Lys445Asn substitutions conferring resistance. Screening of 2262 available H. pylori genomes for the two mutations revealed only one clinical isolate carrying Asp424Asn substitution. CONCLUSION: These findings support the potential of zoliflodacin as a promising candidate for H. pylori treatment, warranting further development and evaluation.


Barbiturates , Helicobacter Infections , Helicobacter pylori , Isoxazoles , Morpholines , Oxazolidinones , Spiro Compounds , Humans , Anti-Bacterial Agents/pharmacology , DNA Gyrase/genetics , Drug Resistance, Bacterial , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Microbial Sensitivity Tests , Clinical Trials, Phase III as Topic
7.
ACS Infect Dis ; 10(4): 1097-1115, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38564341

Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.


DNA Topoisomerase IV , Mycobacterium tuberculosis , DNA Topoisomerase IV/genetics , Fluoroquinolones/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , DNA/metabolism , Mycobacterium tuberculosis/genetics
8.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578824

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Anti-Bacterial Agents , DNA Gyrase , Escherichia coli , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription, Genetic/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
9.
Antimicrob Agents Chemother ; 68(5): e0134823, 2024 May 02.
Article En | MEDLINE | ID: mdl-38572960

Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.


Anti-Bacterial Agents , Levofloxacin , Microbial Sensitivity Tests , Mycobacterium abscessus , Reserpine , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Reserpine/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Verapamil/pharmacology
10.
BMC Microbiol ; 24(1): 95, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519885

BACKGROUND: The emergence of antimicrobial resistance in bacterial pathogens is a growing concern worldwide due to its impact on the treatment of bacterial infections. The "Trojan Horse" strategy has been proposed as a potential solution to overcome drug resistance caused by permeability issues. OBJECTIVE: The objective of our research was to investigate the bactericidal activity and mechanism of action of the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin against the antibiotic-resistant Escherichia coli strain OQ866153. METHODOLOGY: Enterobactin, a mixed ligand of E. coli OQ866153, was conjugated with Ciprofloxacin and Fosfomycin individually to aid active absorption via specific enterobactin binding proteins (FepABCDG). The effectiveness of the conjugates was assessed by measuring their bactericidal activity against E. coli OQ866153, as well as their ability to inhibit DNA gyrase enzyme and biofilm formation. RESULTS: The Fe+3-enterobactin-Ciprofloxacin conjugate effectively inhibited the DNA gyrase enzyme (Docking score = -8.597 kcal/mol) and resulted in a lower concentration (25 µg/ml) required to eliminate supercoiled DNA plasmids compared to the parent drug (35 µg/ml; Docking score = -6.264 kcal/mol). The Fe+3-Enterobactin-Fosfomycin conjugate showed a higher inhibition percentage (100%) of biofilm formation compared to Fosfomycin (21.58%) at a concentration of 2 mg/ml, with docking scores of -5.481 and -3.756 kcal/mol against UDP-N acetylglucosamine 1-carboxyvinyltransferase MurA. CONCLUSION: The findings of this study suggest that the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin can effectively overcome permeability issues caused by efflux proteins and enhance the bactericidal activity of these drugs against antibiotic-resistant strains of E. coli.


Anti-Bacterial Agents , Fosfomycin , Anti-Bacterial Agents/chemistry , Fosfomycin/pharmacology , Ciprofloxacin/pharmacology , Escherichia coli , Enterobactin/chemistry , Enterobactin/metabolism , Enterobactin/pharmacology , DNA Gyrase , Microbial Sensitivity Tests
11.
Sci Adv ; 10(13): eadk1577, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38536908

Bactericidal antibiotics can cause metabolic perturbations that contribute to antibiotic-induced lethality. The molecular mechanism underlying these downstream effects remains unknown. Here, we show that ofloxacin, a fluoroquinolone that poisons DNA gyrase, induces a cascade of metabolic changes that are dependent on an active SOS response. We identified the SOS-regulated TisB protein as the unique molecular determinant responsible for cytoplasmic condensation, proton motive force dissipation, loss of pH homeostasis, and H2O2 accumulation in Escherichia coli cells treated with high doses of ofloxacin. However, TisB is not required for high doses of ofloxacin to interfere with the function of DNA gyrase or the resulting rapid inhibition of DNA replication and lethal DNA damage. Overall, the study sheds light on the molecular mechanisms by which ofloxacin affects bacterial cells and highlights the role of the TisB protein in mediating these effects.


Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Ofloxacin/pharmacology , Escherichia coli Proteins/chemistry , DNA Gyrase/metabolism , DNA Gyrase/pharmacology , Hydrogen Peroxide/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
12.
Molecules ; 29(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38542913

There is an urgent need to discover and develop novel antibacterial agents. Accordingly, we synthesised 2-(piperazin-1-yl)naphtho[2,3-d]thiazole-4,9-dione (PNT), which exhibits antimicrobial activity. The aim of this study was to characterise PNT as an effective antimicrobial agent. Fluorescence microscopy was used to measure PNT's uptake into microbial cells (strains of Staphylococcus epidermidis, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA)), transmission electron microscopy (TEM) was used to investigate the influence of PNT on the configuration of microbial cells, and a DNA gyrase supercoiling assay was used to investigate whether PNT inhibits DNA gyrase. PNT was taken up by more than 50% of microbial cells within 30 min. Using TEM, hollowed-out bacterial cytoplasms were observed in the specimen treated with PNT, although there was no disintegration of the bacterial membrane. In the DNA gyrase supercoiling assay, a dose-dependent reduction in fluorescence intensity was observed as the concentration of PNT increased. This suggests that PNT is taken up by microbial cells, resulting in cell disruption, and it reveals that one of the mechanisms underlying the antimicrobial activity of PNT is the inhibition of DNA gyrase.


Methicillin-Resistant Staphylococcus aureus , Staphylococcus , Thiazoles/pharmacology , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
13.
Bioorg Med Chem Lett ; 103: 129709, 2024 May 01.
Article En | MEDLINE | ID: mdl-38494040

A class of unique hydrazyl hydroxycoumarins (HHs) as novel structural scaffold was developed to combat dreadful bacterial infections. Some HHs could effectively suppress bacterial growth at low concentrations, especially, pyridyl HH 7 exhibited a good inhibition against Pseudomonas aeruginosa 27853 with a low MIC value of 0.5 µg/mL, which was 8-fold more active than norfloxacin. Furthermore, pyridyl HH 7 with low hemolytic activity and low cytotoxicity towards NCM460 cells showed much lower trend to induce the drug-resistant development than norfloxacin. Preliminarily mechanism exploration indicated that pyridyl HH 7 could eradicate the integrity of bacterial membrane, result in the leakage of intracellular proteins, and interact with bacterial DNA gyrase via non-covalent binding, and ADME analysis manifested that compound 7 gave good pharmacokinetic properties. These results suggested that the newly developed hydrazyl hydroxycoumarins as potential multitargeting antibacterial agents should be worthy of further investigation for combating bacterial infection.


Norfloxacin , Pseudomonas aeruginosa , Norfloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , DNA Gyrase , Microbial Sensitivity Tests
14.
Sci Rep ; 14(1): 3125, 2024 02 07.
Article En | MEDLINE | ID: mdl-38326515

The spread of fluoroquinolone (FQ) resistance in Acinetobacter baumannii represents a critical health threat. This study aims to overcome FQ resistance in A. baumannii via the formulation of polymeric nanoFQs. Herein, 80 A. baumannii isolates were obtained from diverse clinical sources. All A. baumannii isolates showed high resistance to most of the investigated antimicrobials, including ciprofloxacin (CIP) and levofloxacin (LEV) (97.5%). FQ resistance-determining regions of the gyrA and parC genes were the most predominant resistant mechanism, harbored by 69 (86.3%) and 75 (93.8%) of the isolates, respectively. Additionally, plasmid-mediated quinolone resistance genes aac(6')-Ib and qnrS were detected in 61 (76.3%) and 2 (2.5%) of the 80 isolates, respectively. The CIP- and LEV-loaded poly ε-caprolactone (PCL) nanoparticles, FCIP and FLEV, respectively, showed a 1.5-6- and 6-12-fold decrease in the MIC, respectively, against the tested isolates. Interestingly, the time kill assay demonstrated that MICs of FCIP and FLEV completely killed A. baumannii isolates after 5-6 h of treatment. Furthermore, FCIP and FLEV were found to be efficient in overcoming the FQ resistance mediated by the efflux pumps in A. baumannii isolates as revealed by decreasing the MIC four-fold lower than that of free CIP and LEV, respectively. Moreover, FCIP and FLEV at 1/2 and 1/4 MIC significantly decreased biofilm formation by 47-93% and 69-91%, respectively. These findings suggest that polymeric nanoparticles can restore the effectiveness of FQs and represent a paradigm shift in the fight against A. baumannii isolates.


Acinetobacter baumannii , Ciprofloxacin , Ciprofloxacin/pharmacology , Fluoroquinolones , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Biofilms , Drug Resistance, Bacterial/genetics , DNA Gyrase/genetics
15.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article En | MEDLINE | ID: mdl-38396892

Fluoroquinolones are potentially active against Elizabethkingia anophelis. Rapidly increased minimum inhibitory concentrations (MICs) and emerging point mutations in the quinolone resistance-determining regions (QRDRs) following exposure to fluoroquinolones have been reported in E. anophelis. We aimed to investigate point mutations in QRDRs through exposure to levofloxacin (1 × MIC) combinations with different concentrations (0.5× and 1 × MIC) of minocycline, rifampin, cefoperazone/sulbactam, or sulfamethoxazole/trimethoprim in comparison with exposure to levofloxacin alone. Of the four E. anophelis isolates that were clinically collected, lower MICs of levofloxacin were disclosed in cycle 2 and 3 of induction and selection in all levofloxacin combination groups other than levofloxacin alone (all p = 0.04). Overall, no mutations were discovered in parC and parE throughout the multicycles inducted by levofloxacin and all its combinations. Regarding the vastly increased MICs, the second point mutations in gyrA and/or gyrB in one isolate (strain no. 1) occurred in cycle 2 following exposure to levofloxacin plus 0.5 × MIC minocycline, but they were delayed appearing in cycle 5 following exposure to levofloxacin plus 1 × MIC minocycline. Similarly, the second point mutation in gyrA and/or gyrB occurred in another isolate (strain no. 3) in cycle 4 following exposure to levofloxacin plus 0.5 × MIC sulfamethoxazole/trimethoprim, but no mutation following exposure to levofloxacin plus 1 × MIC sulfamethoxazole/trimethoprim was disclosed. In conclusion, the rapid selection of E. anophelis mutants with high MICs after levofloxacin exposure could be effectively delayed or postponed by antimicrobial combination with other in vitro active antibiotics.


Flavobacteriaceae , Levofloxacin , Minocycline , Levofloxacin/pharmacology , Minocycline/pharmacology , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Microbial Sensitivity Tests , Mutation , Sulfamethoxazole , Trimethoprim , Drug Resistance, Bacterial/genetics
16.
Drug Dev Res ; 85(2): e22156, 2024 Apr.
Article En | MEDLINE | ID: mdl-38355931

Four piroxicam metal complexes; NiL2 , PtL2 , PdL2 , and AgL were synthesized and characterized by different techniques with enhanced antibacterial and anticancer activity. Regarding in vitro antimicrobial activity, complex NiL2 displayed potent antibacterial effect against Escherichia coli and Pseudomonas aeruginosa that was 1.9-folds higher than piroxicam (minimum inhibitory concentration [MIC] = 31.85, 65.32 µM), respectively. In case of G+ve bacteria, complex PtL2 had potent activity on Staphylococcus aureus which was 2.1-folds higher than piroxicam (MIC = 43.12 µM), while activity of complex AgL against Enterococcus faecalis was threefolds higher than piroxicam (MIC = 74.57 µM. Complexes PtL2 and PdL2 exhibited higher inhibition of DNA gyrase than piroxicam (IC50 = 6.21 µM) in the range of 1.9-1.7-folds. The in vitro antiproliferative activity depicted that all investigated complexes showed better cytotoxic effect than piroxicam, specifically Pt and Pd complexes which had lower IC50 values than piroxicam on human liver cancer cell line HepG2 by 1.8 and 1.7-folds, respectively. While Pd and Ag complexes showed 2 and 1.6-folds better effect on human colon cancer cell line HT-29 compared with piroxicam. Molecular modeling studies including docking on Stranded DNA Duplex (1juu) and DNA gyrase enzyme (1kzn) that gave good insight about interaction of complexes with target molecules, calculation of electrostatic potential map and global reactivity descriptors were performed.


Antineoplastic Agents , Coordination Complexes , Humans , Piroxicam/pharmacology , Coordination Complexes/pharmacology , DNA Gyrase , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation
17.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(2): 248-253, 2024 Feb 06.
Article Zh | MEDLINE | ID: mdl-38387958

By conducting retrospective analysis, this study aim to investigate the resistance mechanism of quinolones in non-typhoidal Salmonella (NTS). A total of 105 strains of NTS isolated from clinical specimens from the Fifth Affiliated Hospital of Southern Medical University from May 2020 to February 2021 were used as research objects. VITEK2 Compact automatic identification drug sensitivity analysis system and serological test were used to identify the strains. The sensitivity of the strains to ciprofloxacin, levofloxacin and nalidixic acid was detected by AGAR dilution method. The whole genome of 105 strains of NTS was sequenced. Abricate and other softwares were used to analyze drug-resistant genes, including plasmid-mediated quinolone resistance gene (PMQR) and Quinolone resistance determination region (QRDR). Serotypes and ST types were analyzed using SISTR and MLST, and phylogenetic trees were constructed. The results showed that the NTS isolated in this region were mainly ST34 Salmonella typhimurium (53.3%). The drug sensitivity results showed that the drug resistance rates of NTS to ciprofloxacin, levofloxacin and nalidixic acid were 30.4%, 1.9% and 22.0%, respectively, and the intermediate rates of ciprofloxacin and levofloxacin were 27.6% and 54.2%.A total of 46 (74.2%) of the 62 quinolone non-susceptible strains carried the PMQR gene, mainly qnrS1 (80.4%), followed by aac(6')-Ib-cr(15.2%); there were 14 NTS and 8 NTS had gyrA and parC gene mutations, respectively. The gyrA was mutations at the amino acid position 87, Asp87Tyr, Asp87Asn, Asp87Gly, and Thr57Ser mutations were detected in parC. In conclusion, this study found that NTS had relatively high resistance to quinolones, carrying qnrS1 gene mainly resulted in decreased sensitivity of NTS to ciprofloxacin and levofloxacin, and gyrA:87 mutation mainly resulted in NTS resistance to Nalidixic acid; Salmonella typhimurium in clinical isolates showed clonal transmission and required further epidemiological surveillance.


Quinolones , Humans , Quinolones/pharmacology , Nalidixic Acid/pharmacology , Levofloxacin/pharmacology , Phylogeny , Multilocus Sequence Typing , Retrospective Studies , DNA Gyrase/genetics , Salmonella , Ciprofloxacin , Plasmids , Mutation , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics
18.
Int J Biol Macromol ; 261(Pt 1): 129728, 2024 Mar.
Article En | MEDLINE | ID: mdl-38272423

The intracellular bacteria, Salmonella Typhi adapts to acidic conditions in the host cell by resetting the chromosomal DNA topology majorly controlled by DNA Gyrase, a Type II topoisomerase. DNA Gyrase forms a heterodimer A2B2 complex, which manages the DNA supercoiling and relaxation in the cell. DNA relaxation forms a part of the regulatory mechanism to activate the transcription of genes required to survive under hostile conditions. Acid-induced stress attenuates the supercoiling activity of the DNA Gyrase, resulting in DNA relaxation. Salmonella DNA becomes relaxed as the bacteria adapt to the acidified intracellular environment. Despite comprehensive studies on DNA Gyrase, the mechanism to control supercoiling activity needs to be better understood. A loss in supercoiling activity in E. coli was observed upon deletion of the non-conserved acidic C-tail of Gyrase A subunit. Salmonella Gyrase also contains an acidic tail at the C-terminus of Gyrase A, where its deletion resulted in reduced supercoiling activity compared to wild-type Gyrase. Interestingly, we also found that wild-type Gyrase compromises supercoiling activity at acidic pH 2-3, thereby causing DNA relaxation. The absence of a C-tail displayed DNA supercoiling to some extent between pH 2-9. Hence, the C-tail of Gyrase A might be one of the controlling factors that cause DNA relaxation in Salmonella at acidic pH conditions. We propose that the presence of the C-tail of GyraseA causes acid-mediated inhibition of the negative supercoiling activity of Gyrase, resulting in relaxed DNA that attracts DNA-binding proteins for controlling the transcriptional response.


DNA Gyrase , Salmonella typhi , DNA Gyrase/genetics , Salmonella typhi/genetics , Escherichia coli/genetics , DNA , DNA, Superhelical/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/metabolism
19.
mBio ; 15(2): e0258423, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38265209

Chlamydia trachomatis is an obligate intracellular bacterium that is responsible for the most prevalent bacterial sexually transmitted infection. Changes in DNA topology in this pathogen have been linked to its pathogenicity-associated developmental cycle. Here, evidence is provided that the balanced activity of DNA topoisomerases contributes to controlling Chlamydia developmental processes. Utilizing catalytically inactivated Cas12 (dCas12)-based clustered regularly interspaced short palindromic repeats interference (CRISPRi) technology, we demonstrate targeted knockdown of chromosomal topA transcription in C. trachomatis without detected toxicity of dCas12. Repression of topA impaired the developmental cycle of C. trachomatis mostly through disruption of its differentiation from a replicative form to an infectious form. Consistent with this, expression of late developmental genes of C. trachomatis was downregulated, while early genes maintained their expression. Importantly, the developmental defect associated with topA knockdown was rescued by overexpressing topA at an appropriate degree and time, directly linking the growth patterns to the levels of topA expression. Interestingly, topA knockdown had effects on DNA gyrase expression, indicating a potential compensatory mechanism for survival to offset TopA deficiency. C. trachomatis with topA knocked down displayed hypersensitivity to moxifloxacin that targets DNA gyrase in comparison with the wild type. These data underscore the requirement of integrated topoisomerase actions to support the essential developmental and transcriptional processes of C. trachomatis.IMPORTANCEWe used genetic and chemical tools to demonstrate the relationship of topoisomerase activities and their obligatory role for the chlamydial developmental cycle. Successfully targeting the essential gene topA with a CRISPRi approach, using dCas12, in C. trachomatis indicates that this method will facilitate the characterization of the essential genome. These findings have an important impact on our understanding of the mechanisms by which well-balanced topoisomerase functions in adaptation of C. trachomatis to unfavorable growth conditions imposed by antibiotics.


Chlamydia trachomatis , DNA Gyrase , Chlamydia trachomatis/metabolism , DNA Gyrase/genetics , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Bacterial Proteins/metabolism
20.
Eur J Med Chem ; 265: 116107, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38171147

Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.


Anti-Bacterial Agents , Topoisomerase II Inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , DNA Gyrase/metabolism , DNA Topoisomerase IV , Microbial Sensitivity Tests , Topoisomerase II Inhibitors/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Nitriles/chemistry , Nitriles/pharmacology
...