Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51.796
1.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719812

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Acetylglucosamine , DNA-Binding Proteins , Proliferating Cell Nuclear Antigen , Rad51 Recombinase , Recombinational DNA Repair , Ubiquitin-Protein Ligases , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Acetylglucosamine/metabolism , Rad51 Recombinase/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Phosphorylation , DNA Replication , Ubiquitination , DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Damage , DNA/metabolism , HEK293 Cells , Ultraviolet Rays , Protein Binding , Glycosylation , Translesion DNA Synthesis
2.
Mol Cancer ; 23(1): 101, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745269

BACKGROUND: Long noncoding RNAs (lncRNAs) have surpassed the number of protein-coding genes, yet the majority have no known function. We previously discovered 844 lncRNAs that were genetically linked to breast cancer through genome-wide association studies (GWAS). Here, we show that a subset of these lncRNAs alter breast cancer risk by modulating cell proliferation, and provide evidence that a reduced expression on one lncRNA increases breast cancer risk through aberrant DNA replication and repair. METHODS: We performed pooled CRISPR-Cas13d-based knockdown screens in breast cells to identify which of the 844 breast cancer-associated lncRNAs alter cell proliferation. We selected one of the lncRNAs that increased cell proliferation, KILR, for follow-up functional studies. KILR pull-down followed by mass spectrometry was used to identify binding proteins. Knockdown and overexpression studies were performed to assess the mechanism by which KILR regulates proliferation. RESULTS: We show that KILR functions as a tumor suppressor, safeguarding breast cells against uncontrolled proliferation. The half-life of KILR is significantly reduced by the risk haplotype, revealing an alternative mechanism by which variants alter cancer risk. Mechanistically, KILR sequesters RPA1, a subunit of the RPA complex required for DNA replication and repair. Reduced KILR expression promotes breast cancer cell proliferation by increasing the available pool of RPA1 and speed of DNA replication. Conversely, KILR overexpression promotes apoptosis in breast cancer cells, but not normal breast cells. CONCLUSIONS: Our results confirm lncRNAs as mediators of breast cancer risk, emphasize the need to annotate noncoding transcripts in relevant cell types when investigating GWAS variants and provide a scalable platform for mapping phenotypes associated with lncRNAs.


Breast Neoplasms , CRISPR-Cas Systems , Cell Proliferation , DNA Repair , DNA Replication , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genome-Wide Association Study
3.
Proc Natl Acad Sci U S A ; 121(20): e2400610121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38713623

Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.


DNA Polymerase III , DNA Replication , Histones , Histones/metabolism , DNA Polymerase III/metabolism , DNA Polymerase III/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Protein Binding
4.
Arch Virol ; 169(5): 116, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722402

In this study, we investigated the role of serum/glucocorticoid-regulated kinase 1 (SGK1) in varicella-zoster virus (VZV) replication. VZV DNA replication and plaque formation were inhibited by SGK1 knockout and treatment with an SGK1 inhibitor. Furthermore, SGK1 inhibition suppressed the increase in cyclin B1 expression induced by VZV infection. These results suggest that VZV infection induces SGK1 activation, which is required for efficient viral proliferation through the expression of cyclin B1. This is the first study to report that SGK1 is involved in the VZV life cycle.


Cyclin B1 , Herpesvirus 3, Human , Immediate-Early Proteins , Protein Serine-Threonine Kinases , Virus Replication , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Humans , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cyclin B1/metabolism , Cyclin B1/genetics , Cell Line , DNA Replication
5.
Commun Biol ; 7(1): 519, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698198

DNA replication is essential for the proliferation of all cells. Bacterial chromosomes are replicated bidirectionally from a single origin of replication, with replication proceeding at about 1000 bp per second. For the model organism, Escherichia coli, this translates into a replication time of about 40 min for its 4.6 Mb chromosome. Nevertheless, E. coli can propagate by overlapping replication cycles with a maximum short doubling time of 20 min. The fastest growing bacterium known, Vibrio natriegens, is able to replicate with a generation time of less than 10 min. It has a bipartite genome with chromosome sizes of 3.2 and 1.9 Mb. Is simultaneous replication from two origins a prerequisite for its rapid growth? We fused the two chromosomes of V. natriegens to create a strain carrying one chromosome with a single origin of replication. Compared to the parental, this strain showed no significant deviation in growth rate. This suggests that the split genome is not a prerequisite for rapid growth.


Chromosomes, Bacterial , DNA Replication , Vibrio , Vibrio/genetics , Chromosomes, Bacterial/genetics , Genome, Bacterial , Replication Origin , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
6.
Nat Commun ; 15(1): 3734, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702312

Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.


DNA Demethylation , DNA Repair , DNA-Directed DNA Polymerase , Germ Cells , Animals , Humans , Mice , Germ Cells/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Male , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Female , DNA Damage , Mice, Knockout , Meiosis/genetics , DNA Replication , Proliferating Cell Nuclear Antigen/metabolism , Epigenesis, Genetic , Translesion DNA Synthesis
7.
Science ; 384(6695): eadi2421, 2024 May 03.
Article En | MEDLINE | ID: mdl-38696576

Cell cycle events are coordinated by cyclin-dependent kinases (CDKs) to ensure robust cell division. CDK4/6 and CDK2 regulate the growth 1 (G1) to synthesis (S) phase transition of the cell cycle by responding to mitogen signaling, promoting E2F transcription and inhibition of the anaphase-promoting complex. We found that this mechanism was still required in G2-arrested cells to prevent cell cycle exit after the S phase. This mechanism revealed a role for CDK4/6 in maintaining the G2 state, challenging the notion that the cell cycle is irreversible and that cells do not require mitogens after passing the restriction point. Exit from G2 occurred during ribotoxic stress and was actively mediated by stress-activated protein kinases. Upon relief of stress, a significant fraction of cells underwent a second round of DNA replication that led to whole-genome doubling.


Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , DNA Replication , G2 Phase Cell Cycle Checkpoints , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Humans , Stress, Physiological , S Phase , E2F Transcription Factors/metabolism , E2F Transcription Factors/genetics
8.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38696464

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


DNA, Single-Stranded , Telomere Homeostasis , Telomere , Telomere/genetics , Telomere/metabolism , Humans , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA Replication , DNA/genetics , DNA/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Blotting, Southern , DNA Polymerase III/metabolism , DNA Polymerase III/genetics
9.
Viruses ; 16(4)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38675950

Hepatitis B virus (HBV) is the etiologic agent of chronic hepatitis B, which puts at least 300 million patients at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. HBV is a partially double-stranded DNA virus of the Hepadnaviridae family. While HBV was discovered more than 50 years ago, many aspects of its replicative cycle remain incompletely understood. Central to HBV persistence is the formation of covalently closed circular DNA (cccDNA) from the incoming relaxed circular DNA (rcDNA) genome. cccDNA persists as a chromatinized minichromosome and is the major template for HBV gene transcription. Here, we review how cccDNA and the viral minichromosome are formed and how viral gene transcription is regulated and highlight open questions in this area of research.


DNA, Circular , DNA, Viral , Hepatitis B virus , Virus Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , DNA, Circular/genetics , Humans , DNA, Viral/genetics , Viral Transcription/genetics , Gene Expression Regulation, Viral , Transcription, Genetic , Genome, Viral , Hepatitis B, Chronic/virology , Hepatitis B/virology , DNA Replication
10.
Proc Natl Acad Sci U S A ; 121(19): e2317954121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38683976

Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.


DNA Helicases , DNA Replication , Phylogeny , Vibrionaceae , Vibrionaceae/genetics , Vibrionaceae/enzymology , DNA Helicases/metabolism , DNA Helicases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/enzymology , Evolution, Molecular , Genome, Bacterial , DnaB Helicases/metabolism , DnaB Helicases/genetics , Vibrio/genetics , Vibrio/enzymology
11.
Proc Natl Acad Sci U S A ; 121(19): e2321216121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687796

Cells must replicate their genome quickly and accurately, and they require metabolites and cofactors to do so. Ionic zinc (Zn2+) is an essential micronutrient that is required for hundreds of cellular processes, including DNA synthesis and adequate proliferation. Deficiency in this micronutrient impairs DNA synthesis and inhibits proliferation, but the mechanism is unknown. Using fluorescent reporters to track single cells via long-term live-cell imaging, we find that Zn2+ is required at the G1/S transition and during S phase for timely completion of S phase. A short pulse of Zn2+ deficiency impairs DNA synthesis and increases markers of replication stress. These markers of replication stress are reversed upon resupply of Zn2+. Finally, we find that if Zn2+ is chelated during the mother cell's S phase, daughter cells enter a transient quiescent state, maintained by sustained expression of p21, which disappears upon reentry into the cell cycle. In summary, short pulses of mild Zn2+ deficiency in S phase specifically induce replication stress, which causes downstream proliferation impairments in daughter cells.


Cell Proliferation , DNA Replication , S Phase , Zinc , Zinc/metabolism , Zinc/deficiency , Humans
12.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Article En | MEDLINE | ID: mdl-38593805

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


DNA Damage , DNA Replication , RecQ Helicases , Telomere Homeostasis , Telomere , RecQ Helicases/metabolism , RecQ Helicases/genetics , Humans , Telomere/metabolism , Telomere/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , Bloom Syndrome/enzymology , Bloom Syndrome/pathology , Cell Line, Tumor
13.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38612916

Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G.


Adenine , Saccharomyces cerevisiae Proteins , Humans , Cisplatin , DNA Damage , DNA Replication , Nucleotidyltransferases/genetics , Saccharomyces cerevisiae/genetics , DNA-Directed DNA Polymerase , Saccharomyces cerevisiae Proteins/genetics
14.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38640894

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase , DNA-Directed DNA Polymerase/metabolism , DNA Replication , DNA, Single-Stranded/genetics , DNA Helicases/genetics , DNA End-Joining Repair
15.
mSphere ; 9(4): e0014024, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38564734

Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.


DNA Repair , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , DNA Replication , Histones/genetics , Histones/metabolism , Gene Expression Regulation
16.
Biochemistry ; 63(8): 969-983, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38623046

Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.


DNA Polymerase III , DNA Replication , Humans , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA, Single-Stranded/genetics , Holoenzymes/genetics , Microsatellite Repeats , Nucleotides
17.
J Chem Phys ; 160(15)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38619457

In our recent publication, we have proposed a revised base excision repair pathway in which DNA polymerase ß (Polß) catalyzes Schiff base formation prior to the gap-filling DNA synthesis followed by ß-elimination. In addition, the polymerase activity of Polß employs the "three-metal ion mechanism" instead of the long-standing "two-metal ion mechanism" to catalyze phosphodiester bond formation based on the fact derived from time-resolved x-ray crystallography that a third Mg2+ was captured in the polymerase active site after the chemical reaction was initiated. In this study, we develop the models of the uncross-linked and cross-linked Polß complexes and investigate the "three-metal ion mechanism" vs the "two-metal ion mechanism" by using the quantum mechanics/molecular mechanics molecular dynamics simulations. Our results suggest that the presence of the third Mg2+ ion stabilizes the reaction-state structures, strengthens correct nucleotide binding, and accelerates phosphodiester bond formation. The improved understanding of Polß's catalytic mechanism provides valuable insights into DNA replication and damage repair.


DNA Polymerase beta , Catalysis , DNA Replication , Magnesium , Molecular Dynamics Simulation , Biocatalysis
18.
Mol Biol Cell ; 35(5): ar68, 2024 May 01.
Article En | MEDLINE | ID: mdl-38568781

The ability of bacteria to maintain chromosomal integrity throughout their life cycle is crucial for survival. In Caulobacter crescentus, the polar factor TipN has been proposed to be involved with the partitioning system ParABS. Cells with tipN knocked out display subtle segregation defects of the centromere-like region parS. We hypothesized that TipN's role with parS segregation is obscured by other forces that are ParABS-independent. To test our hypothesis, we removed one of those forces - chromosome replication - and analyzed the role of TipN with ParA. We first confirm that ParA retains its ability to transport the centromeric region parS from the stalked pole to the opposite pole in the absence of chromosome replication. Our data revealed that in the absence of chromosome replication, TipN becomes essential for ParA's ability to transport parS. Furthermore, we identify a potential connection between the replication initiator DnaA and TipN. Although TipN is not essential for viability, tipN knockout cells lose viability when the regulation of DnaA levels is altered. Our data suggest that the DnaA-dependent susceptibility of tipN knockout cells is connected to parS segregation. Collectively, this work provides insights into the complex regulation involved in the coordination of chromosome replication and segregation in bacteria.


Caulobacter crescentus , Caulobacter crescentus/genetics , Chromosome Segregation , Chromosomes, Bacterial/genetics , DNA Replication , Centromere , Bacterial Proteins
19.
J Chem Phys ; 160(15)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38624117

Bio-templated luminescent noble metal nanoclusters (NCs) have attracted great attention for their intriguing physicochemical properties. Continuous efforts are being made to prepare NCs with high fluorescence quantum yield (QY), good biocompatibility, and tunable emission properties for their widespread practical applications as new-generation environment-friendly photoluminescent materials in materials chemistry and biological systems. Herein, we explored the unique photophysical properties of silver nanoclusters (AgNCs) templated by cytosine-rich customized hairpin DNA. Our results indicate that a 36-nucleotide containing hairpin DNA with 20 cytosine (C20) in the loop can encapsulate photostable red-emitting AgNCs with an absolute QY of ∼24%. The luminescent properties in these DNA-templated AgNCs were found to be linked to the coupling between the surface plasmon and the emitter. These AgNCs exhibited excellent thermal sensitivity and were employed to produce high-quality white light emission with an impressive color rendering index of 90 in the presence of dansyl chloride. In addition, the as-prepared luminescent AgNCs possessing excellent biocompatibility can effectively mark the nuclear region of HeLa cells and can be employed as a luminescent probe to monitor the cellular dynamics at a single molecular resolution.


Biosensing Techniques , Metal Nanoparticles , Humans , Silver/chemistry , Cytosine/chemistry , HeLa Cells , DNA/chemistry , DNA Replication , Metal Nanoparticles/chemistry , Spectrometry, Fluorescence/methods , Biosensing Techniques/methods
20.
Sci Rep ; 14(1): 7708, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565932

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


RecQ Helicases , Replication Origin , Animals , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , DNA Replication , Xenopus laevis/metabolism , DNA/metabolism
...