Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Biochem Soc Trans ; 49(6): 2483-2493, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34747992

RESUMEN

Transcription is regulated and mediated by multiprotein complexes in a chromatin context. Transcription causes changes in DNA topology which is modulated by DNA topoisomerases, enzymes that catalyse changes in DNA topology via transient breaking and re-joining of one or both strands of the phosphodiester backbone. Mammals have six DNA topoisomerases, this review focuses on one, DNA topoisomerase II beta (TOP2B). In the absence of TOP2B transcription of many developmentally regulated genes is altered. Long genes seem particularly susceptible to the lack of TOP2B. Biochemical studies of the role of TOP2B in transcription regulated by ligands such as nuclear hormones, growth factors and insulin has revealed PARP1 associated with TOP2B and also PRKDC, XRCC5 and XRCC6. Analysis of publicly available databases of protein interactions confirms these interactions and illustrates interactions with other key transcriptional regulators including TRIM28. TOP2B has been shown to interact with proteins involved in chromosome organisation including CTCF and RAD21. Comparison of publicly available Chip-seq datasets reveals the location at which these proteins interact with genes. The availability of resources such as large datasets of protein-protein interactions, e.g. BioGrid and IntAct and protein-DNA interactions such as Chip-seq in GEO enables scientists to extend models and propose new hypotheses.


Asunto(s)
ADN-Topoisomerasas de Tipo II/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , Transcripción Genética/fisiología , Animales , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica
2.
Clin Cancer Res ; 27(20): 5669-5680, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34433651

RESUMEN

PURPOSE: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN: To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS: We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS: Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.


Asunto(s)
Neoplasias Encefálicas/genética , ADN-Topoisomerasas de Tipo II/fisiología , Epigénesis Genética/fisiología , Glioma/genética , Intrones/fisiología , Oncogenes/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , Regiones Promotoras Genéticas/fisiología , Animales , Neoplasias Encefálicas/enzimología , Regulación Neoplásica de la Expresión Génica , Glioma/enzimología , Humanos , Ratones
3.
Biochemistry ; 60(21): 1630-1641, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34008964

RESUMEN

The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , ADN-Topoisomerasas de Tipo II/ultraestructura , Antineoplásicos/química , ADN/química , Daño del ADN/genética , Daño del ADN/fisiología , Eucariontes/genética , Eucariontes/metabolismo , Genoma/genética , Humanos , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Translocación Genética/genética
4.
Cell Cycle ; 20(4): 345-352, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33459116

RESUMEN

DNA Topoisomerase II (TopoII) uses ATP hydrolysis to decatenate chromosomes so that sister chromatids can faithfully segregate in mitosis. When the TopoII enzyme cycle stalls due to failed ATP hydrolysis, the onset of anaphase is delayed, presumably to allow extra time for decatenation to be completed. Recent evidence revealed that, unlike the spindle assembly checkpoint, this TopoII checkpoint response requires Aurora B and Haspin kinases and is triggered by SUMOylation of the C-terminal domain of TopoII.


Asunto(s)
Aurora Quinasa B/fisiología , ADN-Topoisomerasas de Tipo II/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Metafase/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Proteínas de Ciclo Celular/fisiología , Genes cdc/fisiología , Humanos , Mitosis/fisiología
5.
Genes (Basel) ; 10(11)2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671531

RESUMEN

Type II topoisomerases are ubiquitous enzymes in all branches of life that can alter DNA superhelicity and unlink double-stranded DNA segments during processes such as replication and transcription. In cells, type II topoisomerases are particularly useful for their ability to disentangle newly-replicated sister chromosomes. Growing lines of evidence indicate that eukaryotic topoisomerase II (topo II) activity is monitored and regulated throughout the cell cycle. Here, we discuss the various roles of topo II throughout the cell cycle, as well as mechanisms that have been found to govern and/or respond to topo II function and dysfunction. Knowledge of how topo II activity is controlled during cell cycle progression is important for understanding how its misregulation can contribute to genetic instability and how modulatory pathways may be exploited to advance chemotherapeutic development.


Asunto(s)
Ciclo Celular/fisiología , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , Animales , Ciclo Celular/genética , Puntos de Control del Ciclo Celular , División Celular , Cromosomas/metabolismo , ADN/metabolismo , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo II/genética , Células Eucariotas/metabolismo , Humanos , Mitosis/fisiología , Inhibidores de Topoisomerasa II
6.
Nucleic Acids Res ; 47(13): 6946-6955, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31165864

RESUMEN

Recent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (-) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold. The increase of topo II-mediated DNA knotting occurs both upon accumulation of (+) supercoiling in topoisomerase-deficient cells and during normal transcriptional supercoiling of DNA in TOP1 TOP2 cells. We also show that the high knotting probability (Pkn ≥ 0.5) of (+) supercoiled DNA reflects a 5-fold volume compaction of the nucleosomal fibers in vivo. Our findings indicate that topo II-mediated DNA knotting could be inherent to transcriptional supercoiling of DNA and other chromatin condensation processes and establish, therefore, a new crucial role of topoisomerase II in resetting the knotting-unknotting homeostasis of DNA during chromatin dynamics.


Asunto(s)
ADN-Topoisomerasas de Tipo II/fisiología , ADN Superhelicoidal/metabolismo , Conformación de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética/genética , Cromatina/ultraestructura , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/metabolismo , Humanos , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Planta ; 249(4): 1119-1132, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30552583

RESUMEN

MAIN CONCLUSION: Cotton GaTOP6B is involved in cellular endoreduplication and a positive response to drought stress via promoting plant leaf and root growth. Drought is deemed as one of adverse conditions that could cause substantial reductions in crop yields worldwide. Since cotton exhibits a moderate-tolerant phenotype under water-deficit conditions, the plant could therefore be used to characterize potential new genes regulating drought tolerance in crop plants. In this work, GaTOP6B, encoding DNA topoisomerase VI subunit B, was identified in Asian cotton (Gossypium arboreum). Virus-induced gene silencing (VIGS) and overexpression (OE) were used to investigate the biological function of GaTOP6B in G. arboreum and Arabidopsis thaliana under drought stress. The GaTOP6B-silencing plants showed a reduced ploidy level, and displayed a compromised tolerance phenotype including lowered relative water content (RWC), decreased proline content and antioxidative enzyme activity, and an increased malondialdehyde (MDA) content under drought stress. GaTOP6B-overexpressing Arabidopsis lines, however, had increased ploidy levels, and were more tolerant to drought treatment, associated with improved RWC maintenance, higher proline accumulation, and reduced stomatal aperture under drought stress. Transcriptome analysis showed that genes involved in the processes like cell cycle, transcription and signal transduction, were substantially up-regulated in GaTOP6B-overexpressing Arabidopsis, promoting plant growth and development. More specifically, under drought stress, the genes involved in the biosynthesis of secondary metabolites such as phenylpropanoid, starch and sucrose were selectively enhanced to improve tolerance in plants. Taken together, the results demonstrated that GaTOP6B could coordinately regulate plant leaf and root growth via cellular endoreduplication, and positively respond to drought stress. Thus, GaTOP6B could be a competent candidate gene for improvement of drought tolerance in crop species.


Asunto(s)
Endorreduplicación/genética , Genes de Plantas/fisiología , Gossypium/genética , Arabidopsis , Proteínas Arqueales/genética , Proteínas Arqueales/fisiología , Clorofila/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/fisiología , Deshidratación , Citometría de Flujo , Genes de Plantas/genética , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Gossypium/fisiología , Malondialdehído/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Transpiración de Plantas , Plantas Modificadas Genéticamente , Prolina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Cell ; 175(2): 583-597.e23, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220456

RESUMEN

When DNA is unwound during replication, it becomes overtwisted and forms positive supercoils in front of the translocating DNA polymerase. Unless removed or dissipated, this superhelical tension can impede replication elongation. Topoisomerases, including gyrase and topoisomerase IV in bacteria, are required to relax positive supercoils ahead of DNA polymerase but may not be sufficient for replication. Here, we find that GapR, a chromosome structuring protein in Caulobacter crescentus, is required to complete DNA replication. GapR associates in vivo with positively supercoiled chromosomal DNA, and our biochemical and structural studies demonstrate that GapR forms a dimer-of-dimers that fully encircles overtwisted DNA. Further, we show that GapR stimulates gyrase and topo IV to relax positive supercoils, thereby enabling DNA replication. Analogous chromosome structuring proteins that locate to the overtwisted DNA in front of replication forks may be present in other organisms, similarly helping to recruit and stimulate topoisomerases during DNA replication.


Asunto(s)
Cromosomas Bacterianos/fisiología , ADN Bacteriano/química , ADN Superhelicoidal/metabolismo , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Estructuras Cromosómicas/fisiología , Cromosomas Bacterianos/metabolismo , ADN/fisiología , Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , ADN Bacteriano/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Cinética
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 197-207, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29045811

RESUMEN

It has been reported that Topoisomerase II alpha (TOP2A) could induce tumor development and progression in many cancer types. Herein, through analysis of different independent cohorts, we found TOP2A was up-regulated in pancreatic cancer as compared with non-tumor tissues. Moreover, the up-regulation of TOP2A was significantly correlated with tumor metastasis and shorter survival in patients with pancreatic cancer. Knockdown of TOP2A in pancreatic cancer cell lines inhibited cell proliferation and migration. Furthermore, bioinformatics analysis revealed TOP2A activatesß-catenin pathway in pancreatic cancer. Mechanistically, we demonstrated TOP2A acts as a co-activator ofß-catenin and activates EMT process. Further investigation showed TOP2A was a direct target of mir-139, which was validated by dual-luciferase reporter gene assay. The effects of mir-139 on pancreatic cancer were also mechanistically, functionally and clinically investigated. Taken together, our research identified a novel miR-139\TOP2A\ß-catenin axis driving the malignant progression of pancreatic cancer.


Asunto(s)
ADN-Topoisomerasas de Tipo II/fisiología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Vía de Señalización Wnt , beta Catenina/metabolismo
10.
J Environ Pathol Toxicol Oncol ; 36(3): 207-216, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29283334

RESUMEN

The aim of this study was to investigate topoisomerase II alpha (TOP2α) overexpression and its association with clinicopathological features and prognosis in gastric cancer (GC) patients. All selected GC patients at Affiliated Hospital of Qinghai University and Cancer Hospital, Chinese Academy of Medical Sciences, between December 2009 and December 2011, had formalin-fixed and paraffin-embedded tumor tissues. The patients received a telephone follow-up or in-/outpatient review, and their clinicopathological features and prognoses were analyzed. Also, the relationship between TOP2α expression and postoperative chemotherapy in GC patients was estimated. The results of the study showed that TOP2α overexpression correlated with location of tumor, depth of invasion, and pTNM stage. Moreover, it was associated with lower 5-year overall survival (OS) in noncardia GC patients younger than 60 years, with multivariate analysis demonstrating that it was an independent prognostic factor for these patients. Univariate analysis and multivariate analysis showed that TOP2α overexpression was associated with worse 5-year OS in noncardia GC patients ≤ 60 years receiving postoperative chemotherapy. TOP2α overexpression exhibited associations with location of tumor, depth of invasion, pTNM stage, and postoperative chemotherapy, making it a potential target for early diagnosis of GC patients. In addition, TOP2α overexpression was shown to be a predictor of 5-year OS in both noncardia GC patients ≤ 60 years and noncardia GC patients ≤ 60 years and receiving postoperative chemotherapy.


Asunto(s)
ADN-Topoisomerasas de Tipo II/fisiología , Neoplasias Gástricas/mortalidad , Adulto , Anciano , Terapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia
11.
Med Sci (Paris) ; 33(5): 512-518, 2017 May.
Artículo en Francés | MEDLINE | ID: mdl-28612727

RESUMEN

During sexual reproduction haploid gametes are generated out of diploid mother cells. This ploidy reduction is accomplished during meiosis and, in most species, relies on the occurrence of homologous recombination that is triggered by the induction of a large number of DNA double strand breaks (DSBs). The mechanism by which such DSBs are generated without provoking massive DNA breakdown in gamete mother cells is still poorly understood. However, the recent characterisation, in plants and in mammals, of a new component of the meiotic DSB forming machinery, defining a meiotic-specific TOPOVIB-Like protein family, has established a clear connection between the meiotic DSB activity and topoisomerases, enzymes that modify the DNA topology by introducing transient DSBs.


Asunto(s)
Proteínas Arqueales/fisiología , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo II/fisiología , Endodesoxirribonucleasas/fisiología , Recombinación Genética/genética , Animales , Proteínas Arqueales/genética , ADN-Topoisomerasas de Tipo II/genética , Endodesoxirribonucleasas/genética , Humanos , Mamíferos , Plantas , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 45(10): 5995-6010, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28472494

RESUMEN

Topoisomerase (topo) IIα and IIß maintain genome stability and are targets for anti-tumor drugs. In this study, we demonstrate that the decatenation checkpoint is regulated, not only by topo IIα, as previously reported, but also by topo IIß. The decatenation checkpoint is most efficient when both isoforms are present. Regulation of this checkpoint and sensitivity to topo II-targeted drugs is influenced by the C-terminal domain (CTD) of the topo II isoforms and by a conserved non-catalytic tyrosine, Y640 in topo IIα and Y656 in topo IIß. Deletion of most of the CTD of topo IIα, while preserving the nuclear localization signal (NLS), enhances the decatenation checkpoint and sensitivity to topo II-targeted drugs. In contrast, deletion of most of the CTD of topo IIß, while preserving the NLS, and mutation of Y640 in topo IIα and Y656 in topo IIß inhibits these activities. Structural studies suggest that the differential impact of the CTD on topo IIα and topo IIß function may be due to differences in CTD charge distribution and differential alignment of the CTD with reference to transport DNA. Together these results suggest that topo IIα and topo IIß cooperate to maintain genome stability, which may be distinctly modulated by their CTDs.


Asunto(s)
Antígenos de Neoplasias/química , Puntos de Control del Ciclo Celular/fisiología , Inestabilidad Cromosómica/fisiología , ADN-Topoisomerasas de Tipo II/química , Proteínas de Unión al ADN/química , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias/efectos de los fármacos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/fisiología , Línea Celular , Daño del ADN , ADN-Topoisomerasas de Tipo II/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/fisiología , ADN Complementario/genética , Proteínas de Unión al ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Resistencia a Antineoplásicos , Fibroblastos , Células HL-60 , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/farmacología
13.
Int J Cancer ; 140(4): 864-876, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27813122

RESUMEN

Quercetin (Que) is an abundant flavonoid in the human diet and high-concentration food supplement with reported pro- and anti-carcinogenic activities. Topoisomerase II (TopoII) inhibition and subsequent DNA damage induction by Que was implicated in the mixed lineage leukemia gene (MLL) rearrangements that can induce infant and adult leukemias. This notion raised concerns regarding possible genotoxicities of Que in hematopoietic stem and progenitor cells (HSPCs). However, molecular targets mediating Que effects on DNA repair relevant to MLL translocations have not been defined. In this study we describe novel and potentially genotoxic Que activities in suppressing non-homologous end joining and homologous recombination pathways downstream of MLL cleavage. Using pharmacological dissection of DNA-PK, ATM and PI3K signalling we defined PI3K inhibition by Que with a concomitant decrease in the abundance of key DNA repair genes to be responsible for DNA repair inhibition. Evidence for the downstream TopoII-independent mutagenic potential of Que was obtained by documenting further increased frequencies of MLL rearrangements in human HSPCs concomitantly treated with Etoposide and Que versus single treatments. Importantly, by engaging a tissue engineered placental barrier, we have established the extent of Que transplacental transfer and hence provided the evidence for Que reaching fetal HSPCs. Thus, Que exhibits genotoxic effects in human HSPCs via different mechanisms when applied continuously and at high concentrations. In light of the demonstrated Que transfer to the fetal compartment our findings are key to understanding the mechanisms underlying infant leukemia and provide molecular markers for the development of safety values.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Daño del ADN , Reparación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/fisiología , Células Madre Hematopoyéticas/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , Leucemia/inducido químicamente , Proteína de la Leucemia Mieloide-Linfoide/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quercetina/toxicidad , Transducción de Señal/efectos de los fármacos , Inhibidores de Topoisomerasa II/toxicidad , Adulto , Ácido Ascórbico/farmacología , Técnicas de Cultivo de Célula , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Relación Dosis-Respuesta a Droga , Etopósido/farmacología , Femenino , Genisteína/farmacología , Histonas/análisis , Humanos , Lactante , Leucemia/genética , Intercambio Materno-Fetal , Fosfatidilinositol 3-Quinasas/fisiología , Embarazo
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(11): 1143-1147, 2016 Nov 28.
Artículo en Chino | MEDLINE | ID: mdl-27932758

RESUMEN

OBJECTIVE: To detect the expressions of human epidermal growth factor receptor 2 (HER2) and Topo IIα in breast cancer, and to analyze the clinical significance of neoadjuvant chemotherapy for the anthracycline-based drugs.
 Methods: The HER2 and Topo IIα gene and protein expressions in cancer tissues from 189 patients with breast cancer were detected by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). And the objective response rate (ORR) and pathological complete rate (pCR) were analyzed.
 Results: The HER2 protein expression in 46 patients (24.3%) and Topo IIα protein expression in 55 patients (29.1%) was 3+ by IHC or they were 49 (25.9%) and 94 (49.0%) by FISH, respectively. The ORR and pCR in HER2 negative or positive patients were 47.4% and 20.3% or 32.7% and 16.3%, respectively, with significant differences (All P<0.05). The ORR and pCR in Topo IIα positive or negative patients were 69.1% and 36.0% or 28.4% and 2.2%, respectively, with significant differences (All P<0.05).
 Conclusion: FISH and IHC were consistent in the determination of HER2 expression whereas they were inconsistent in the determination of Topo IIα expression. The amplification of Topo IIα can effectively improve the effect of the adjuvant treatment effect of the anthracyclines.


Asunto(s)
Antraciclinas/farmacología , Neoplasias de la Mama/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , ADN-Topoisomerasas de Tipo II/fisiología , Receptor ErbB-2/fisiología , Antraciclinas/uso terapéutico , Antibióticos Antineoplásicos , Femenino , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Terapia Neoadyuvante , Resultado del Tratamiento
15.
Genes Cells ; 21(10): 1113-1124, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27610954

RESUMEN

Although the condensin complexes and topoisomerase IIα (TopoIIα) are the central players in mitotic chromosome formation, they are insufficient for its completion, and additional factors involved in the process have been extensively sought. In this study, we examined the possibility that Ki67, a perichromosomal protein widely used as a cell proliferation marker, is one such factor. Using a combination of auxin-inducible degron and CRISPR-Cas9-based gene editing technologies, we generated a human HCT116 cell line in which Ki67 is rapidly depleted in a few hours. The removal of Ki67 before mitotic entry did not impact the early mitotic chromosome assembly observed in prophase but subsequently resulted in the formation of misshapen mitotic chromosomes. When Ki67 was removed after mitotic entry, preassembled rod-shaped mitotic chromosomes became disorganized. In addition, we show that Ki67 and TopoIIα are reciprocally coimmunoprecipitated from mitotic cell extracts. These observations indicate that Ki67 aids the finalization of mitotic chromosome formation and helps maintain rod-shaped chromosome architecture, likely in collaboration with TopoIIα. Together, these findings represent a new model in which mitotic chromosome architecture is supported both internally and externally.


Asunto(s)
Cromosomas Humanos/fisiología , Antígeno Ki-67/fisiología , Mitosis/fisiología , Antígenos de Neoplasias/fisiología , ADN-Topoisomerasas de Tipo II/fisiología , Proteínas de Unión al ADN/fisiología , Células HCT116 , Células HeLa , Humanos , Antígeno Ki-67/genética , Modelos Biológicos
16.
Plant Cell Rep ; 35(6): 1297-307, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26956135

RESUMEN

KEY MESSAGE: PAT1H1, one of the homologues of Topoisomerase II-associated protein, is involved in the maintenance of root stem cell niche through the interaction with NINJA. The root stem cell niche, which possesses four mitotically inactive quiescent cells (QC) and the surrounding mitotically active stem cells, is critical for root development in Arabidopsis thaliana. However, the molecular regulation of the maintenance of root stem cell niche identity is still not fully understood. Here we show that one of the homologues of Topoisomerase II-associated protein, here named as PAT1H1, could regulate root stem cell niche identity. The pat1h1 mutant showed higher frequency of QC cell division and root distal stem cell (DSC) differentiation. With a high expression in roots, PAT1H1 was found to interact with the jasmonic acid (JA) signalling negative regulator Novel Interactor of JAZ (NINJA) and thus regulate root DSC niche identity. Consistent with the active QC cell division, which rarely occurs in wild-type controls, the pat1h1 mutant displayed higher expression of CYCB1 in the root stem cell niche. Together our data reveals that PAT1H1 maintains root stem cell niche stability through the interaction with NINJA and the regulation of cell division.


Asunto(s)
Proteínas de Arabidopsis/fisiología , ADN-Topoisomerasas de Tipo II/fisiología , Raíces de Plantas/fisiología , Nicho de Células Madre/fisiología , División Celular/fisiología , Raíces de Plantas/citología , Reacción en Cadena de la Polimerasa , Proteínas Represoras/fisiología , Técnicas del Sistema de Dos Híbridos
18.
Sci Rep ; 5: 11916, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26132639

RESUMEN

Chromosome higher order structure has been an enigma for over a century. The most important structural finding has been the presence of a chromosome scaffold composed of non-histone proteins; so-called scaffold proteins. However, the organization and function of the scaffold are still controversial. Here, we use three dimensional-structured illumination microscopy (3D-SIM) and focused ion beam/scanning electron microscopy (FIB/SEM) to reveal the axial distributions of scaffold proteins in metaphase chromosomes comprising two strands. We also find that scaffold protein can adaptably recover its original localization after chromosome reversion in the presence of cations. This reversion to the original morphology underscores the role of the scaffold for intrinsic structural integrity of chromosomes. We therefore propose a new structural model of the chromosome scaffold that includes twisted double strands, consistent with the physical properties of chromosomal bending flexibility and rigidity. Our model provides new insights into chromosome higher order structure.


Asunto(s)
Proteínas Cromosómicas no Histona/ultraestructura , Cromosomas Humanos/ultraestructura , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfatasas/ultraestructura , Antígenos de Neoplasias/fisiología , Antígenos de Neoplasias/ultraestructura , Proteínas Cromosómicas no Histona/fisiología , Cromosomas Humanos/fisiología , ADN-Topoisomerasas de Tipo II/fisiología , ADN-Topoisomerasas de Tipo II/ultraestructura , Proteínas de Unión al ADN/fisiología , Proteínas de Unión al ADN/ultraestructura , Células HeLa , Humanos , Imagenología Tridimensional , Cinesinas/fisiología , Cinesinas/ultraestructura , Metafase , Complejos Multiproteicos/fisiología , Complejos Multiproteicos/ultraestructura
19.
Oncotarget ; 6(11): 8960-73, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25840421

RESUMEN

Both microtubule and topoisomerase II (Top2) are important anticancer targets and their respective inhibitors are widely used in combination for cancer therapy. However, some combinations could be mutually antagonistic and drug resistance further limits their therapeutic efficacy. Here we report YCH337, a novel α-carboline derivative that targets both microtubule and Top2, eliciting tumor proliferation and growth inhibition and overcoming drug resistance. YCH337 inhibited microtubule polymerization by binding to the colchicine site and subsequently led to mitotic arrest. It also suppressed Top2 and caused DNA double-strand breaks. It disrupted microtubule more potently than Top2. YCH337 induced reversible mitotic arrest at low concentrations but persistent DNA damage. YCH337 caused intrinsic and extrinsic apoptosis and decreased MCL-1, cIAP1 and XIAP proteins. In this aspect, YCH337 behaved differently from the combination of vincristine and etoposide. YCH337 inhibited proliferation of tumor cells with an averaged IC50 of 0.3 µM. It significantly suppressed the growth of HT-29 xenografts in nude mice too. Importantly, YCH337 nearly equally killed different-mechanism-mediated resistant tumor cells and corresponding parent cells. Together with the novelty of its chemical structure, YCH337 could serve as a promising lead for drug development and a prototype for a dual microtubule/Top2 targeting strategy for cancer therapy.


Asunto(s)
Carbolinas/uso terapéutico , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Topoisomerasa II/uso terapéutico , Moduladores de Tubulina/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Unión Competitiva , Carbolinas/farmacología , Línea Celular Tumoral , Colchicina/metabolismo , Neoplasias del Colon/tratamiento farmacológico , ADN-Topoisomerasas de Tipo II/fisiología , ADN Superhelicoidal/efectos de los fármacos , Interacciones Farmacológicas , Ensayos de Selección de Medicamentos Antitumorales , Etopósido/farmacología , Humanos , Concentración 50 Inhibidora , Metafase/efectos de los fármacos , Ratones , Ratones Desnudos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Estructura Molecular , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/fisiología , Paclitaxel/farmacología , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/farmacología , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/farmacología , Vincristina/farmacología
20.
Oncogene ; 34(31): 4019-31, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25328138

RESUMEN

Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may have a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors has been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.


Asunto(s)
Antígenos de Neoplasias/fisiología , Inestabilidad Cromosómica , ADN-Topoisomerasas de Tipo II/fisiología , Proteínas de Unión al ADN/fisiología , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Animales , Segregación Cromosómica/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Progresión de la Enfermedad , Humanos , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa , Inhibidores de Topoisomerasa II/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA