Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.081
1.
Clin Nutr ESPEN ; 61: 230-236, 2024 Jun.
Article En | MEDLINE | ID: mdl-38777439

BACKGROUND AND AIM: Frequent administration of blood in ß-thalassemia patients can lead to over-loaded iron, a reduction in the levels of antioxidant activities in the body, and oxidative stress. This study was done to evaluate the antioxidant and protective effect of aqueous oak (Quercus brantii) extract supplementation on these patients. METHODS: This clinical trial was performed on 60 major ß thalassemia patients dividing them into intervention and control groups. In addition to taking desferrioxamine (DFO), the control and intervention groups received respectively placebo capsule supplementation and aqueous Quercus extract capsules (300 mg/day) for 3 months. Serum lipid profiles (LDL-c, HDL-c, triglyceride), Total Antioxidant Capacity (TAC), Glucose, Uric acid, urea nitrogen (BUN), Creatinine, LFT (Liver Function Tests) such as SGOT, SGPT, ALP, Total bilirubin, Direct bilirubin, ferritin, MDA and carbonyl protein (CO) levels were measured before and after the period. In addition, the activity of catalase (CAT), and superoxide dismutase (SOD) was measured in the red blood cell. Furthermore, antioxidant activity and total phenolic content of aqueous Quercus were recorded to standardize capsule formulation. RESULTS: Mean serum MDA, and protein CO, significantly decreased in the intervention group with ß-TM after 3 months of treatment with Quercus extract. In addition, the superoxide dismutase (SOD) enzyme and Total antioxidant capacity (TAC) significantly increased in comparison with the control group. Changes in serum creatinine, BUN, and alanine transferase were not significant. In the study, Quercus extract capsules contain 48/56 mg gallic acid/g (dry extract) total phenol, 58/6 mg/g (dry extract), and flavonoids of 63/8 µg/ml antioxidant power which by GC/MS analysis has been measured. At the end of the study, serum MDA decreased from 48.65 ± 8.74 to 43.94 ± 10.39 µ mol/l after administration of oak extract and protein CO dropped from 2.44 ± 0.38 to 1.2 ± 0.31 nmol DNPH/mg protein after administration of the oak extract. At the end of the study serum, TAC increased in patients interventional group from 907 ± 319 to 977 ± 327 µmol FeSO4/l compared to the control group 916 ± 275 to 905.233 ± 233 µmol FeSO4/l with placebo, and SOD increased from 1577 ± 325 to 2079 ± 554 U/l (compared to 1687 ± 323 U/l with placebo). The treatment effect of Quercus was measured using a mixed-effects model of variance analysis for changes in MDA, protein CO, TAC, and SOD, with significant effects being demonstrated for each laboratory parameter (P = 0.15, P = 0.001, P = 0.02, and P < 0.003, respectively). CONCLUSIONS: Aqueous Quercus extract, due to its high antioxidant potential, reduced MDA, serum carbonyl protein, and increased superoxide dismutase activity effectively decreased serum OS and enhanced serum antioxidant capacity in patients with ß-thalassemia major. oak given as an adjuvant therapy to standard iron chelators may provide an improvement in the OS measurements obtained in these patients. REGISTRATION INFORMATION: This study was submitted, evaluated, and approved by the Iranian Registry of Clinical Trials (IRCT: http://www.irct.ir; IRCT2015101411819N4), which was established for national medical schools in Iran.


Antioxidants , Oxidative Stress , Plant Extracts , Quercus , beta-Thalassemia , Humans , Quercus/chemistry , Oxidative Stress/drug effects , beta-Thalassemia/blood , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Female , Adult , Superoxide Dismutase/blood , Iran , Young Adult , Dietary Supplements , Catalase/blood , Deferoxamine/therapeutic use , Adolescent , Malondialdehyde/blood , Creatinine/blood
2.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731540

Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.


Deferoxamine , Neovascularization, Physiologic , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Humans , Animals , Neovascularization, Physiologic/drug effects , Regeneration/drug effects , Wound Healing/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Angiogenesis
3.
Georgian Med News ; (348): 99-102, 2024 Mar.
Article En | MEDLINE | ID: mdl-38807401

Accumulation of iron in vital organs is increasingly challenging in clinical settings during the lifespan of thalassemia patients. Iron overload hurdle these organs to redox imbalances. Commonly used iron-chelating agents in (deferasirox and, deferoxamine) could have a positive antioxidant role. Therefore, the aim of this study was designed to compare the effects of deferasirox and, deferoxamine, iron-chelating agents in oxidative stress in patients with ß-thalassemic major. In this case series comparative study, 60 known cases of ß-thalassemic patients receiving chelating agents therapy were divided into two groups of thirty, group one consisted of 30 patients 16 male and14 female, who received oral agent deferasirox tablets at dose 20-40mg/kg. Group two consisted of 30 patients, 16 male and 14 female, on intravenous therapy with Deferoxamine at a dose of 20-50mg/kg, Another thirty healthy individuals matched with age and gender, were kept as a control group. Total antioxidant capacity (TAOC) and Malondialdehyde (MDA) were measured in all studied groups. The three groups were similar in terms of age, and gender, A statistically non-significant difference in age (p>0.05) existed between the control and patient groups (10.9±2.93; 11.2±4.1*;11.6±3.6*) respectively. The number of patients in to control group and male-to-female numbers were matched since the ratios were similar. A statistically non-significant difference in BMI (p>0.05) existed between the control and patient groups (17±2, 17.2±2, 18±2.4*) respectively. TAOC is lower in-patient groups, when compared with the control group (27.8 ± 10.7; 32.5 ± 10.2; and 79.5 ± 7 u/ml) respectively, while the MDA value is higher when compared with the control group (7.2±4.6 and, 6.6±4.42; and 0.57±0.26; nmol/ml) respectively. The TAOC in patients group on Deferoxamine, is higher, while MDA is lower than in patients on Defrasirox. The TAOC in patients was reduced and Oxidative stress was enhanced in patients with thalassemia. Deferoxamine is more effective in modulating redox status.


Benzoates , Deferasirox , Deferoxamine , Iron Chelating Agents , Malondialdehyde , Oxidative Stress , Triazoles , beta-Thalassemia , Humans , Deferasirox/therapeutic use , beta-Thalassemia/drug therapy , beta-Thalassemia/complications , Oxidative Stress/drug effects , Deferoxamine/therapeutic use , Male , Female , Iron Chelating Agents/therapeutic use , Benzoates/therapeutic use , Benzoates/administration & dosage , Triazoles/therapeutic use , Malondialdehyde/blood , Malondialdehyde/metabolism , Adult , Antioxidants/therapeutic use , Adolescent , Young Adult , Iron Overload/drug therapy
4.
J Cell Mol Med ; 28(8): e18306, 2024 Apr.
Article En | MEDLINE | ID: mdl-38613357

Topical patch delivery of deferoxamine (DFO) has been studied as a treatment for this fibrotic transformation in irradiated tissue. Efficacy of a novel cream formulation of DFO was studied as a RIF therapeutic in unwounded and excisionally wounded irradiated skin. C57BL/6J mice underwent 30 Gy of radiation to the dorsum followed by 4 weeks of recovery. In a first experiment, mice were separated into six conditions: DFO 50 mg cream (D50), DFO 100 mg cream (D100), soluble DFO injections (DI), DFO 1 mg patch (DP), control cream (Vehicle), and irradiated untreated skin (IR). In a second experiment, excisional wounds were created on the irradiated dorsum of mice and then divided into four treatment groups: DFO 100 mg Cream (W-D100), DFO 1 mg patch (W-DP), control cream (W-Vehicle), and irradiated untreated wounds (W-IR). Laser Doppler perfusion scans, biomechanical testing, and histological analysis were performed. In irradiated skin, D100 improved perfusion compared to D50 or DP. Both D100 and DP enhanced dermal characteristics, including thickness, collagen density and 8-isoprostane staining compared to untreated irradiated skin. D100 outperformed DP in CD31 staining, indicating higher vascular density. Extracellular matrix features of D100 and DP resembled normal skin more closely than DI or control. In radiated excisional wounds, D100 facilitated faster wound healing and increased perfusion compared to DP. The 100 mg DFO cream formulation rescued RIF of unwounded irradiated skin and improved excisional wound healing in murine skin relative to patch delivery of DFO.


Deferoxamine , Radiation Fibrosis Syndrome , Mice , Animals , Mice, Inbred C57BL , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Skin , Perfusion
5.
Health Qual Life Outcomes ; 22(1): 14, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38302961

Understanding consequences of poor chelation compliance is crucial given the enormous burden of post-transfusional iron overload complications. We systematically reviewed iron-chelation therapy (ICT) compliance, and the relationship between compliance with health outcome and health-related quality of life (HRQoL) in thalassaemia patients. Several reviewers performed systematic search strategy of literature through PubMed, Scopus, and EBSCOhost. The preferred reporting items of systematic reviews and meta-analyses (PRISMA) guidelines were followed. Of 4917 studies, 20 publications were included. The ICT compliance rate ranges from 20.93 to 75.3%. It also varied per agent, ranging from 48.84 to 85.1% for desferioxamine, 87.2-92.2% for deferiprone and 90-100% for deferasirox. Majority of studies (N = 10/11, 90.91%) demonstrated significantly negative correlation between compliance and serum ferritin, while numerous studies revealed poor ICT compliance linked with increased risk of liver disease (N = 4/7, 57.14%) and cardiac disease (N = 6/8, 75%), endocrinologic morbidity (N = 4/5, 90%), and lower HRQoL (N = 4/6, 66.67%). Inadequate compliance to ICT therapy is common. Higher compliance is correlated with lower serum ferritin, lower risk of complications, and higher HRQoL. These findings should be interpreted with caution given the few numbers of evidence.


Iron Chelating Agents , Thalassemia , Humans , Iron Chelating Agents/therapeutic use , Deferasirox , Deferiprone , Deferoxamine/therapeutic use , Quality of Life , Pyridones/adverse effects , Benzoates/adverse effects , Triazoles/adverse effects , Thalassemia/drug therapy , Chelation Therapy , Ferritins , Outcome Assessment, Health Care
6.
Int Immunopharmacol ; 129: 111662, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38340421

This study aimed to examine the effects of the secretome released by human umbilical cord-mesenchymal stem cells (MSC) as a result of preconditioning with deferoxamine (DFX), a hypoxia mimetic agent, on type 1 diabetes (T1D), by comparing it with the secretome produced by untreated MSCs. Initially, the levels of total protein, IL4, IL10, IL17, and IFNγ in the conditioned medium (CM) obtained from MSCs subjected to preconditioning with 150 µM DFX (DFX-CM) were analyzed in comparison to CM derived from untreated MSCs (N-CM). Subsequently, the CMs were administered to rats with T1D within a specific treatment plan. Following the sacrification, immunomodulation was evaluated by measuring serum cytokine levels and assessing the regulatory T cell (Treg) ratio in spleen mononuclear cells. Additionally, ß-cell mass was determined in the islets by immunohistochemical labeling of NK6 Homeobox 1 (Nkx6.1), Pancreatic duodenal homeobox-1 (Pdx1), and insulin antibodies in pancreatic sections. In vitro findings indicated that the secretome levels of MSCs were enhanced by preconditioning with DFX. In vivo, the use of DFX-CM significantly increased the Treg population, and accordingly, the level of inflammatory cytokines decreased. In ß-cell marker labeling, D + DFX-CM showed significantly increased PDX1 and insulin immunoreactivity. In conclusion, while the factors released by MSCs without external stimulation had limited therapeutic effects, substantial improvements in immunomodulation and ß-cell regeneration were seen with DFX-preconditioned cell-derived CM.


Diabetes Mellitus, Type 1 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Rats , Humans , Animals , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Diabetes Mellitus, Type 1/therapy , Secretome , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism , Immunomodulation , Umbilical Cord , Regeneration
7.
BMJ Open ; 14(2): e077342, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38331857

INTRODUCTION: Despite the improvement in medical management, many patients with transfusion-dependent ß-thalassaemia die prematurely due to transfusion-related iron overload. As per the current guidelines, the optimal chelation of iron cannot be achieved in many patients, even with two iron chelators at their maximum therapeutic doses. Here, we evaluate the efficacy and safety of triple combination treatment with deferoxamine, deferasirox and deferiprone over dual combination of deferoxamine and deferasirox on iron chelation in patients with transfusion-dependent ß-thalassaemia with very high iron overload. METHODS AND ANALYSIS: This is a single-centre, open-label, randomised, controlled clinical trial conducted at the Adult and Adolescent Thalassaemia Centre of Colombo North Teaching Hospital, Ragama, Sri Lanka. Patients with haematologically and genetically confirmed transfusion-dependent ß-thalassaemia are enrolled and randomised into intervention or control groups. The intervention arm will receive a combination of oral deferasirox, oral deferiprone and subcutaneous deferoxamine for 6 months. The control arm will receive the combination of oral deferasirox and subcutaneous deferoxamine for 6 months. Reduction in iron overload, as measured by a reduction in the serum ferritin after completion of the treatment, will be the primary outcome measure. Reduction in liver and cardiac iron content as measured by T2* MRI and the side effect profile of trial medications are the secondary outcome measures. ETHICS AND DISSEMINATION: Ethical approval for the study has been obtained from the Ethics Committee of the Faculty of Medicine, University of Kelaniya (Ref. P/06/02/2023). The trial results will be disseminated in scientific publications in reputed journals. TRIAL REGISTRATION NUMBER: The trial is registered in the Sri Lanka Clinical Trials Registry (Ref: SLCTR/2023/010).


Iron Overload , beta-Thalassemia , Adult , Adolescent , Humans , Deferasirox/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , beta-Thalassemia/complications , beta-Thalassemia/drug therapy , Benzoates/therapeutic use , Benzoates/adverse effects , Triazoles/adverse effects , Pyridones , Iron Overload/drug therapy , Iron Overload/etiology , Iron Chelating Agents/adverse effects , Iron/therapeutic use , Randomized Controlled Trials as Topic
8.
Blood Transfus ; 22(1): 75-85, 2024 Jan.
Article En | MEDLINE | ID: mdl-37146300

BACKGROUND: In transfusion-dependent thalassemia patients who started regular transfusions in early childhood, we prospectively and longitudinally evaluated the efficacy on pancreatic iron of a combined deferiprone (DFP) + desferrioxamine (DFO) regimen versus either oral iron chelator as monotherapy over a follow-up of 18 months. MATERIALS AND METHODS: We selected patients consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia network who received a combined regimen of DFO+DFP (No.=28) or DFP (No.=61) or deferasirox (DFX) (No.=159) monotherapy between the two magnetic resonance imaging scans. Pancreatic iron overload was quantified by the T2* technique. RESULTS: At baseline no patient in the combined treatment group had a normal global pancreas T2* (≥26 ms). At follow-up the percentage of patients who maintained a normal pancreas T2* was comparable between the DFP and DFX groups (57.1 vs 70%; p=0.517).Among the patients with pancreatic iron overload at baseline, global pancreatic T2* values were significantly lower in the combined DFO+DFP group than in the DFP or DFX groups. Since changes in global pancreas T2* values were negatively correlated with baseline pancreas T2* values, the percent changes in global pancreas T2* values, normalized for the baseline values, were considered. The percent changes in global pancreas T2* values were significantly higher in the combined DFO+DFP group than in either the DFP (p=0.036) or DFX (p=0.030) groups. DISCUSSION: In transfusion-dependent patients who started regular transfusions in early childhood, combined DFP+DFO was significantly more effective in reducing pancreatic iron than was either DFP or DFX.


Iron Overload , Thalassemia , beta-Thalassemia , Humans , Child, Preschool , Iron/therapeutic use , Deferasirox , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Iron Chelating Agents/therapeutic use , Pyridones/therapeutic use , beta-Thalassemia/diagnostic imaging , beta-Thalassemia/drug therapy , Benzoates/therapeutic use , Triazoles/therapeutic use , Drug Therapy, Combination , Iron Overload/diagnostic imaging , Iron Overload/drug therapy , Iron Overload/etiology , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Pancreas/diagnostic imaging
9.
Adv Healthc Mater ; 13(8): e2303000, 2024 Mar.
Article En | MEDLINE | ID: mdl-38063809

Inducing cell migration from the edges to the center of a wound, promoting angiogenesis, and controlling bacterial infection are very important for diabetic wound healing. Incorporating growth factors and antibiotics into hydrogels for wound dressing is considered a potential strategy to meet these requirements. However, some present drawbacks greatly slow down their development toward application, such as the short half-life and high price of growth factors, low antibiotic efficiency against drug-resistant bacteria, insufficient ability of hydrogels to promote cell migration, etc. Deferoxamine (DFO) can upregulate the expression of HIF-1α, thus stimulating the secretion of angiogenesis-related endogenous growth factors. Copper sulfide (CuS) nanoparticles possess excellent antibacterial performance combined with photothermal therapy (PTT). Herein, DFO and CuS nanoparticles are incorporated into a biomimetic hydrogel, which mimics the structure and function of the extracellular matrix (ECM), abbreviated as DFO/CuS-ECMgel. This biomimetic hydrogel is expected to be able to promote cell adhesion and migration, be degraded by cell-secreted matrix metalloproteinases (MMPs), and then release DFO and CuS nanoparticles at the wound site to exert their therapeutic effects. As a result, the three crucial requirements for diabetic wound healing, "beneficial for cell adhesion and migration, promoting angiogenesis, effectively killing drug-resistant bacteria," can be achieved simultaneously.


Diabetes Mellitus , Nanoparticles , Humans , Hydrogels/chemistry , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Copper/chemistry , Photothermal Therapy , Biomimetics , Nanoparticles/chemistry , Diabetes Mellitus/drug therapy , Anti-Bacterial Agents/chemistry
10.
Auris Nasus Larynx ; 51(2): 271-275, 2024 Apr.
Article En | MEDLINE | ID: mdl-37903661

OBJECTIVE: The role of iron chelation in causing hearing loss (HL) is still unclear. The present study assessed the prevalence of HL among transfusion-dependent thalassemia (TDT) patients who underwent audiological follow-up over a 20-year period. METHODS: We retrospectively analyzed clinical records and audiological tests from January 1990 (T0) to December 2022 (T22) of a group of TDT patients who received iron chelation therapy with deferoxamine (DFO), deferiprone (DFP) or deferasirox (DFX), in monotherapy or as part of combination therapy. RESULTS: A total of 42 adult TDT patients (18 male, 24 female; age range: 41-55 years; mean age: 49.2 ± 3.7 years) were included in the study. At the T22 assessment, the overall prevalence of sensorineural HL was 23.8 % (10/42). When patients were stratified into two groups, with and without ototoxicity, no differences were observed for sex, age, BMI, creatinine level, pre-transfusional hemoglobin, start of transfusions, cardiac or hepatic T2 MRI; only ferritin serum values and duration of chelation were significantly higher (p = 0.02 and p = 0.01, respectively) in patients with hearing impairment in comparison to those with normal hearing. CONCLUSION: This study with long-term follow-up suggests that iron chelation therapy might induce ototoxicity; therefore, a long and accurate audiological follow-up should be performed in TDT patients.


Iron Overload , Ototoxicity , beta-Thalassemia , Adult , Humans , Male , Female , Middle Aged , beta-Thalassemia/complications , beta-Thalassemia/drug therapy , beta-Thalassemia/epidemiology , Deferasirox/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Iron Overload/drug therapy , Iron Overload/epidemiology , Iron Overload/etiology , Follow-Up Studies , Retrospective Studies , Ototoxicity/complications , Ototoxicity/drug therapy , Benzoates/therapeutic use , Triazoles/therapeutic use , Pyridones/therapeutic use , Iron Chelating Agents/therapeutic use , Iron/therapeutic use , Hearing
11.
Int J Mol Sci ; 24(23)2023 Nov 25.
Article En | MEDLINE | ID: mdl-38069073

The design of clinical protocols and the selection of drugs with appropriate posology are critical parameters for therapeutic outcomes. Optimal therapeutic protocols could ideally be designed in all diseases including for millions of patients affected by excess iron deposition (EID) toxicity based on personalised medicine parameters, as well as many variations and limitations. EID is an adverse prognostic factor for all diseases and especially for millions of chronically red-blood-cell-transfused patients. Differences in iron chelation therapy posology cause disappointing results in neurodegenerative diseases at low doses, but lifesaving outcomes in thalassemia major (TM) when using higher doses. In particular, the transformation of TM from a fatal to a chronic disease has been achieved using effective doses of oral deferiprone (L1), which improved compliance and cleared excess toxic iron from the heart associated with increased mortality in TM. Furthermore, effective L1 and L1/deferoxamine combination posology resulted in the complete elimination of EID and the maintenance of normal iron store levels in TM. The selection of effective chelation protocols has been monitored by MRI T2* diagnosis for EID levels in different organs. Millions of other iron-loaded patients with sickle cell anemia, myelodysplasia and haemopoietic stem cell transplantation, or non-iron-loaded categories with EID in different organs could also benefit from such chelation therapy advances. Drawbacks of chelation therapy include drug toxicity in some patients and also the wide use of suboptimal chelation protocols, resulting in ineffective therapies. Drug metabolic effects, and interactions with other metals, drugs and dietary molecules also affected iron chelation therapy. Drug selection and the identification of effective or optimal dose protocols are essential for positive therapeutic outcomes in the use of chelating drugs in TM and other iron-loaded and non-iron-loaded conditions, as well as general iron toxicity.


Iron Overload , beta-Thalassemia , Humans , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Pyridones/adverse effects , Iron Chelating Agents/adverse effects , Iron Overload/etiology , Iron Overload/chemically induced , Chelation Therapy/methods , Iron/metabolism , beta-Thalassemia/drug therapy , beta-Thalassemia/complications , Drug Therapy, Combination
12.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article En | MEDLINE | ID: mdl-38138961

89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 µCi/µg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.


Chelating Agents , Neoplasms , Humans , Mice , Animals , Chelating Agents/therapeutic use , Radioisotopes/therapeutic use , Positron-Emission Tomography/methods , Antibodies, Monoclonal/therapeutic use , Tissue Distribution , B7-H1 Antigen , Deferoxamine/therapeutic use , Neoplasms/drug therapy , Zirconium/pharmacokinetics , Cell Line, Tumor
13.
Sci Rep ; 13(1): 20145, 2023 11 17.
Article En | MEDLINE | ID: mdl-37978208

Retinal ischemia‒reperfusion (I/R) injury can cause significant damage to human retinal neurons, greatly compromising their functions. Existing interventions have been proven to have little effect. Ferroptosis is a newly discovered type of programmed cell death that has been found to be involved in the process of ischemia‒reperfusion in multiple organs throughout the body. Studies have shown that it is also present in retinal ischemia‒reperfusion injury. A rat model of retinal ischemia‒reperfusion injury was constructed and treated with deferoxamine. In this study, we found the accumulation of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), and the consumption of glutathione (GSH) via ELISA testing; increased expression of transferrin; and decreased expression of ferritin, SLC7A11, and GPX4 via Western blotting (WB) and real-time PCR testing. Structural signs of ferroptosis (mitochondrial shrinkage) were observed across multiple cell types, including retinal ganglion cells (RGCs), photoreceptor cells, and pigment epithelial cells. Changes in visual function were detected by F-VEP and ERG. The results showed that iron and oxidative stress were increased in the retinal ischemia‒reperfusion injury model, resulting in ferroptosis and tissue damage. Deferoxamine protects the structural and functional soundness of the retina by inhibiting ferroptosis through the simultaneous inhibition of hemochromatosis, the initiation of transferrin, and the degradation of ferritin and activating the antioxidant capacity of the System Xc-GSH-GPX4 pathway.


Ferroptosis , Reperfusion Injury , Vision, Low , Humans , Animals , Rats , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Reperfusion , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Ferritins , Glutathione , Transferrins , Reactive Oxygen Species
14.
Toxicol Appl Pharmacol ; 479: 116727, 2023 11 15.
Article En | MEDLINE | ID: mdl-37863361

Iron overload cardiomyopathy (IOC) is the leading cause of death in cases of iron overload in patients. Previous studies demonstrated that iron overload led to cardiomyocyte dysfunction and death through multiple pathways including apoptosis, necroptosis and ferroptosis. However, the dominant cell death pathway in the iron-overloaded heart needs clarification. We tested the hypothesis that ferroptosis, an iron-dependent cell death, plays a dominant role in IOC, and ferroptosis inhibitor exerts greater efficacy than inhibitors of apoptosis and necroptosis on improving cardiac function in iron-overloaded rats. Iron dextran was injected intraperitoneally into male Wistar rats for four weeks to induce iron overload. Then, the rats were divided into 5 groups: treated with vehicle, apoptosis inhibitor (z-VAD-FMK), necroptosis inhibitor (Necrostatin-1), ferroptosis inhibitor (Ferrostatin-1) or iron chelator (deferoxamine) for 2 weeks. Cardiac function, mitochondrial function, apoptosis, necroptosis and ferroptosis were determined. The increased expression of apoptosis-, necroptosis- and ferroptosis-related proteins, were associated with impaired cardiac and mitochondrial function in iron-overloaded rats. All cell death inhibitors attenuated cardiac apoptosis, necroptosis and ferroptosis in iron-overloaded rats. Ferrostatin-1 was more effective than the other drugs in diminishing mitochondrial dysfunction and Bax/Bcl-2 ratio. Moreover, both Ferrostatin-1 and deferoxamine reversed iron overload-induced cardiac dysfunction as indicated by restored left ventricular ejection fraction and E/A ratio, whereas z-VAD-FMK and Necrostatin-1 only partially improved this parameter. These results indicated that ferroptosis could be the predominant form of cardiomyocyte death in IOC, and that inhibiting ferroptosis might be a potential novel treatment for IOC.


Cardiomyopathies , Ferroptosis , Iron Overload , Rats , Humans , Male , Animals , Deferoxamine/metabolism , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Necroptosis , Stroke Volume , Rats, Wistar , Ventricular Function, Left , Apoptosis , Iron Overload/drug therapy , Iron Overload/metabolism , Iron/metabolism , Cardiomyopathies/drug therapy , Cardiomyopathies/prevention & control , Cardiomyopathies/chemically induced , Mitochondria , Myocytes, Cardiac/metabolism
15.
Medicine (Baltimore) ; 102(41): e35455, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37832083

This century has seen a revolution the management of beta-thalassemia major. Over a 12-year period to 2016, we aimed to analyze the benefits of such advances. In 209 patients, independent of the chelation regimen, ferritin, cardiac T2* and liver iron concentration changes were evaluated. We defined chelation success (ChS) as no iron load in the heart and acceptable levels in the liver. Over 3 early magnetic resonance imagings, the same parameters were assessed in 2 subgroups, the only 2 that had sufficient patients continuing on 1 regimen and for a significant period of time, 1 on deferrioxamine (low iron load patients n = 41, Group A) and 1 on deferoxamine-deferiprone (iron overloaded n = 60, Group B). Finally, 28 deaths and causes were compared to those of an earlier period. The 209 patients significantly optimized those indices, while the number of patients with chelation success, increased from 6% to 51% (P < .0001). In group A, ChS after about 8 years increased from 21 to 46% (P = .006), while in Group B, from 0% to 60% (P < .001) after about 7 years. Deaths over the 2 periods showed significant reduction. Combined clearance of cardiac and liver iron (ChS) is feasible and should become the new target for all patients. This requires, serial magnetic resonance imagings and often prolonged intensified chelation for patients.


Iron Chelating Agents , beta-Thalassemia , Humans , Iron Chelating Agents/therapeutic use , beta-Thalassemia/drug therapy , Deferoxamine/therapeutic use , Deferiprone/therapeutic use , Chelation Therapy , Pyridones/therapeutic use , Iron/therapeutic use , Liver/diagnostic imaging
16.
Ann N Y Acad Sci ; 1529(1): 33-41, 2023 11.
Article En | MEDLINE | ID: mdl-37594980

Combination chelation therapies are considered in transfusion-dependent thalassemia patients for whom monotherapy regimens have failed to achieve iron balance or intensification of iron chelation therapy is required for the rapid reduction of excess iron to avoid permanent organ damage. Combination chelation may provide a more flexible approach for individualizing chelation therapy, thereby improving tolerability, adherence, and quality of life. In principle, iron chelators can be combined with an infinite number of dosing regimens; these involve simultaneous or sequential exposure to the chelators on the same day or alternating the drugs on different days. Clinical studies have established the safety and efficacy of chelation combinations. However, real-life data with combination therapies indicate the significance of compliance for a meaningful reduction in iron overload compared to monotherapies.


Chelation Therapy , Iron Overload , Humans , Deferasirox/therapeutic use , Deferoxamine/therapeutic use , Deferiprone/therapeutic use , Quality of Life , Benzoates/adverse effects , Triazoles , Pyridones , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/adverse effects , Iron Overload/drug therapy , Iron Overload/chemically induced , Iron , Drug Therapy, Combination
17.
Medicina (Kaunas) ; 59(7)2023 07.
Article En | MEDLINE | ID: mdl-37476546

Colonic inflammatory bowel disease (IBD) encompasses ulcerative colitis (UC) and Crohn's colitis (CC). Patients with IBD are at increased risk for colitis-associated colorectal cancer (CACRC) compared to the general population. CACRC is preceded by IBD, characterized by highly heterogenous, pharmacologically incurable, pertinacious, worsening, and immune-mediated inflammatory pathologies of the colon and rectum. The molecular and immunological basis of CACRC is highly correlated with the duration and severity of inflammation, which is influenced by the exogenous free hemoglobin alpha chain (HbαC), a byproduct of infiltrating immune cells; extravasated erythrocytes; and macrophage erythrophagocytosis. The exogenous free HbαC prompts oxygen free radical-arbitrated DNA damage (DNAD) through increased cellular reactive oxygen species (ROS), which is exacerbated by decreased tissue antioxidant defenses. Mitigation of the Fenton Reaction via pharmaceutical therapy would attenuate ROS, promote apoptosis and DNAD repair, and subsequently prevent the incidence of CACRC. Three pharmaceutical options that attenuate hemoglobin toxicity include haptoglobin, deferoxamine, and flavonoids (vitamins C/E). Haptoglobin's clearance rate from plasma is inversely correlated with its size; the smaller the size, the faster the clearance. Thus, the administration of Hp1-1 may prove to be beneficial. Further, deferoxamine's hydrophilic structure limits its ability to cross cell membranes. Finally, the effectiveness of flavonoids, natural herb antioxidants, is associated with the high reactivity of hydroxyl substituents. Multiple analyses are currently underway to assess the clinical context of CACRC and outline the molecular basis of HbαC-induced ROS pathogenesis by exposing colonocytes and/or colonoids to HbαC. The molecular immunopathogenesis pathways of CACRC herein reviewed are broadly still not well understood. Therefore, this timely review outlines the molecular and immunological basis of disease pathogenesis and pharmaceutical intervention as a protective measure for CACRC.


Colorectal Neoplasms , Inflammatory Bowel Diseases , Lymphohistiocytosis, Hemophagocytic , Humans , Antioxidants , Deferoxamine/therapeutic use , Erythrocytes/metabolism , Erythrocytes/pathology , Haptoglobins/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Macrophages/metabolism , Macrophages/pathology , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/therapeutic use
18.
Curr Drug Targets ; 24(8): 688-696, 2023.
Article En | MEDLINE | ID: mdl-37278033

INTRODUCTION: Several studies demonstrated that deferoxamine, an iron chelator, can improve inflammatory alterations in adipose tissue induced by obesity. Obesity alterations in adipose tissue are also associated with tissue remodeling, and deferoxamine has anti-fibrosis action previously described in sites like the skin and liver. METHODS: In this work, we analyzed deferoxamine effects on adipose tissue fibro-inflammation during obesity induced by diet in mice. in vitro approaches with fibroblasts and macrophages were also carried out to elucidate deferoxamine activity. RESULTS: Our results demonstrated that in addition to exerting anti-inflammatory effects, reducing the cytokine production in adipose tissue of obese mice and by human monocyte differentiated in macrophage in vitro, deferoxamine can alter metalloproteinases expression and extracellular matrix production in vivo and in vitro. CONCLUSION: Deferoxamine could be an alternative to control fibro-inflammation in obese adipose tissue, contributing to the metabolic improvements previously described.


Deferoxamine , Insulin Resistance , Humans , Animals , Mice , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Deferoxamine/metabolism , Adipose Tissue , Obesity/metabolism , Inflammation/metabolism , Liver/metabolism , Mice, Inbred C57BL
20.
Brain Res ; 1812: 148383, 2023 08 01.
Article En | MEDLINE | ID: mdl-37149247

Traumatic brain injury (TBI) is an important reason of neurological damage and has high morbidity and mortality rates. The secondary damage caused by TBI leads to a poor clinical prognosis. According to the literature, TBI leads to ferrous iron aggregation at the site of trauma and may be a key factor in secondary injury. Deferoxamine (DFO), which is an iron chelator, has been shown to inhibit neuron degeneration; however, the role of DFO in TBI is unclear. The purpose of this study was to explore whether DFO can ameliorate TBI by inhibiting ferroptosis and neuroinflammation. Here, our findings suggest that DFO can reduce the accumulation of iron, lipid peroxides, and reactive oxygen species (ROS) and modulate the expression of ferroptosis-related indicators. Moreover, DFO may reduce NLRP3 activation via the ROS/NF-κB pathway, modulate microglial polarization, reduce neutrophil and macrophage infiltration, and inhibit the release of inflammatory factors after TBI. Additionally, DFO may reduce the activation of neurotoxic responsive astrocytes. Finally, we demonstrated that DFO can protect motor memory function, reduce edema and improve peripheral blood perfusion at the site of trauma in mice with TBI, as shown by behavioral experiments such as the Morris water maze test, cortical blood perfusion assessment and animal MRI. In conclusion, DFO ameliorates TBI by reducing iron accumulation to alleviate ferroptosis and neuroinflammation, and these findings provide a new therapeutic perspective for TBI.


Brain Injuries, Traumatic , Ferroptosis , Mice , Animals , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Neuroinflammatory Diseases , Reactive Oxygen Species/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Iron/metabolism
...