Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 99(3): 914-926, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33393091

RESUMEN

Activation of transient receptor potential vanilloid 4 (TRPV4) can increase hippocampal neuronal excitability. TRPV4 has been reported to be involved in the pathogenesis of epilepsy. Voltage-gated potassium channels (VGPCs) play an important role in regulating neuronal excitability and abnormal VGPCs expression or function is related to epilepsy. Here, we examined the effect of TRPV4 activation on the delayed rectifier potassium current (IK ) in hippocampal pyramidal neurons and on the Kv subunits expression in male mice. We also explored the role of TRPV4 in changes in Kv subunits expression in male mice following pilocarpine-induced status epilepticus (PISE). Application of TRPV4 agonists, GSK1016790A and 5,6-EET, markedly reduced IK in hippocampal pyramidal neurons and shifted the voltage-dependent inactivation curve to the hyperpolarizing direction. GSK1016790A- and 5,6-EET-induced inhibition of IK was blocked by TRPV4 specific antagonists, HC-067047 and RN1734. GSK1016790A-induced inhibition of IK was markedly attenuated by calcium/calmodulin-dependent kinase II (CaMKII) antagonist. Application of GSK1016790A for up to 1 hr did not change the hippocampal protein levels of Kv1.1, Kv1.2, or Kv2.1. Intracerebroventricular injection of GSK1016790A for 3 d reduced the hippocampal protein levels of Kv1.2 and Kv2.1, leaving that of Kv1.1 unchanged. Kv1.2 and Kv2.1 protein levels as well as IK reduced markedly in hippocampi on day 3 post PISE, which was significantly reversed by HC-067047. We conclude that activation of TRPV4 inhibits IK in hippocampal pyramidal neurons, possibly by activating CaMKII. TRPV4-induced decrease in Kv1.2 and Kv2.1 expression and IK may be involved in the pathological changes following PISE.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Células Piramidales/fisiología , Estado Epiléptico/fisiopatología , Canales Catiónicos TRPV/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/farmacología , Hipocampo/metabolismo , Hipocampo/fisiología , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Morfolinas/farmacología , Pilocarpina , Células Piramidales/metabolismo , Pirroles/farmacología , Estado Epiléptico/inducido químicamente , Sulfonamidas/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores
2.
Neurochem Res ; 37(10): 2143-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22814879

RESUMEN

In order to observe antinociceptive effect of Oxymatrine (OMT) and its effect on voltage-activated K(+) channel, the acetic acid-induced abdominal contraction model of mouse was used to test the antinociceptive effect in vivo, and in vitro, the delayed rectifier K(+) currents (Ik) in PC12 cells (rat pheochromocytoma cells) was recorded using the automated patch-clamp method. The results indicated that after application of OMT, the number of acetic acid-induced animal abdominal contraction was significantly decreased, Ik in PC12 cells was significantly decreased, and showed a concentration-dependent manner. After application of OMT, both the activation and inactivation curves of Ik of PC12 cells were shifted to negative potentials. This study revealed that OMT showed antinociceptive effect in mice. The inhibition of voltage-activated K(+) channel might be one of mechanisms in which the enhanced both activation and inactivation of K(+) channel were involved and might play important roles.


Asunto(s)
Alcaloides/farmacología , Analgésicos/farmacología , Canales de Potasio de Tipo Rectificador Tardío/farmacología , Quinolizinas/farmacología , Animales , Cinética , Ratones , Células PC12 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA