Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.962
1.
PLoS One ; 19(6): e0302025, 2024.
Article En | MEDLINE | ID: mdl-38843173

In dengue-endemic areas, transmission control is limited by the difficulty of achieving sufficient coverage and sustainability of interventions. To maximize the effectiveness of interventions, areas with higher transmission could be identified and prioritized. The aim was to identify burden clusters of Dengue virus (DENV) infection and evaluate their association with microclimatic factors in two endemic towns from southern Mexico. Information from a prospective population cohort study (2·5 years of follow-up) was used, microclimatic variables were calculated from satellite information, and a cross-sectional design was conducted to evaluate the relationship between the outcome and microclimatic variables in the five surveys. Spatial clustering was observed in specific geographic areas at different periods. Both, land surface temperature (aPR 0·945; IC95% 0·895-0·996) and soil humidity (aPR 3·018; IC95% 1·013-8·994), were independently associated with DENV burden clusters. These findings can help health authorities design focused dengue surveillance and control activities in dengue endemic areas.


Dengue Virus , Dengue , Microclimate , Humans , Dengue/epidemiology , Dengue/transmission , Mexico/epidemiology , Female , Male , Cross-Sectional Studies , Adult , Adolescent , Prospective Studies , Child , Endemic Diseases , Young Adult , Middle Aged , Child, Preschool , Humidity , Cluster Analysis , Temperature
2.
Parasit Vectors ; 17(1): 254, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38863023

BACKGROUND: Aedes aegypti is the primary mosquito vector for several arboviruses, such as dengue, chikungunya and Zika viruses, which cause frequent outbreaks of human disease in tropical and subtropical regions. Control of these outbreaks relies on vector control, commonly in the form of insecticide sprays that target adult female mosquitoes. However, the spatial coverage and frequency of sprays needed to optimize effectiveness are unclear. In this study, we characterize the effect of ultra-low-volume (ULV) indoor spraying of pyrethroid insecticides on Ae. aegypti abundance within households. We also evaluate the effects of spray events during recent time periods or in neighboring households. Improved understanding of the duration and distance of the impact of a spray intervention on Ae. aegypti populations can inform vector control interventions, in addition to modeling efforts that contrast vector control strategies. METHODS: This project analyzes data from two large-scale experiments that involved six cycles of indoor pyrethroid spray applications in 2 years in the Amazonian city of Iquitos, Peru. We developed spatial multi-level models to disentangle the reduction in Ae. aegypti abundance that resulted from (i) recent ULV treatment within households and (ii) ULV treatment of adjacent or nearby households. We compared fits of models across a range of candidate weighting schemes for the spray effect, based on different temporal and spatial decay functions to understand lagged ULV effects. RESULTS: Our results suggested that the reduction of Ae. aegypti in a household was mainly due to spray events occurring within the same household, with no additional effect of sprays that occurred in neighboring households. Effectiveness of a spray intervention should be measured based on time since the most recent spray event, as we found no cumulative effect of sequential sprays. Based on our model, we estimated the spray effect is reduced by 50% approximately 28 days after the spray event. CONCLUSIONS: The reduction of Ae. aegypti in a household was mainly determined by the number of days since the last spray intervention in that same household, highlighting the importance of spray coverage in high-risk areas with a spray frequency determined by local viral transmission dynamics.


Aedes , Family Characteristics , Insecticides , Mosquito Control , Mosquito Vectors , Pyrethrins , Spatio-Temporal Analysis , Animals , Aedes/drug effects , Insecticides/pharmacology , Insecticides/administration & dosage , Mosquito Control/methods , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Female , Peru , Humans , Population Density , Dengue/prevention & control , Dengue/transmission
3.
Infect Dis Poverty ; 13(1): 43, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38863070

BACKGROUND: The strong invasiveness and rapid expansion of dengue virus (DENV) pose a great challenge to global public health. However, dengue epidemic patterns and mechanisms at a genetic scale, particularly in term of cross-border transmissions, remain poorly understood. Importation is considered as the primary driver of dengue outbreaks in China, and since 1990 a frequent occurrence of large outbreaks has been triggered by the imported cases and subsequently spread to the western and northern parts of China. Therefore, this study aims to systematically reveal the invasion and diffusion patterns of DENV-1 in Guangdong, China from 1990 to 2019. METHODS: These analyses were performed on 179 newly assembled genomes from indigenous dengue cases in Guangdong, China and 5152 E gene complete sequences recorded in Chinese mainland. The genetic population structure and epidemic patterns of DENV-1 circulating in Chinese mainland were characterized by phylogenetics, phylogeography, phylodynamics based on DENV-1 E-gene-based globally unified genotyping framework. RESULTS: Multiple serotypes of DENV were co-circulating in Chinese mainland, particularly in Guangdong and Yunnan provinces. A total of 189 transmission clusters in 38 clades belonging to 22 subgenotypes of genotype I, IV and V of DENV-1 were identified, with 7 Clades of Concern (COCs) responsible for the large outbreaks since 1990. The epidemic periodicity was inferred from the data to be approximately 3 years. Dengue transmission events mainly occurred from Great Mekong Subregion-China (GMS-China), Southeast Asia (SEA), South Asia Subcontinent (SASC), and Oceania (OCE) to coastal and land border cities respectively in southeastern and southwestern China. Specially, Guangzhou was found to be the most dominant receipting hub, where DENV-1 diffused to other cities within the province and even other parts of the country. Genome phylogeny combined with epidemiological investigation demonstrated a clear local consecutive transmission process of a 5C1 transmission cluster (5C1-CN4) of DENV-1 in Guangzhou from 2013 to 2015, while the two provinces of Guangdong and Yunnan played key roles in ongoing transition of dengue epidemic patterns. In contextualizing within Invasion Biology theories, we have proposed a derived three-stage model encompassing the stages of invasion, colonization, and dissemination, which is supposed to enhance our understanding of dengue spreading patterns. CONCLUSIONS: This study demonstrates the invasion and diffusion process of DENV-1 in Chinese mainland within a global genotyping framework, characterizing the genetic diversities of viral populations, multiple sources of importation, and periodic dynamics of the epidemic. These findings highlight the potential ongoing transition trends from epidemic to endemic status offering a valuable insight into early warning, prevention and control of rapid spreading of dengue both in China and worldwide.


Dengue Virus , Dengue , Genotype , Phylogeny , Serogroup , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/physiology , China/epidemiology , Dengue/epidemiology , Dengue/virology , Dengue/transmission , Humans , Disease Outbreaks , Phylogeography , Genome, Viral
4.
Front Immunol ; 15: 1260439, 2024.
Article En | MEDLINE | ID: mdl-38863700

Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.


Autophagosomes , Autophagy , Dendritic Cells , Dengue Virus , Dengue , Secretory Pathway , Virus Replication , Humans , Dengue Virus/physiology , Dendritic Cells/immunology , Dendritic Cells/virology , Dendritic Cells/metabolism , Dengue/transmission , Dengue/virology , Dengue/immunology , Autophagosomes/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Cells, Cultured
5.
PLoS One ; 19(5): e0303137, 2024.
Article En | MEDLINE | ID: mdl-38722911

The Asian tiger mosquito, Aedes albopictus, is a significant public health concern owing to its expanding habitat and vector competence. Disease outbreaks attributed to this species have been reported in areas under its invasion, and its northward expansion in Japan has caused concern because of the potential for dengue virus infection in newly populated areas. Accurate prediction of Ae. albopictus distribution is crucial to prevent the spread of the disease. However, limited studies have focused on the prediction of Ae. albopictus distribution in Japan. Herein, we used the random forest model, a machine learning approach, to predict the current and potential future habitat ranges of Ae. albopictus in Japan. The model revealed that these mosquitoes prefer urban areas over forests in Japan on the current map. Under predictions for the future, the species will expand its range to the surrounding areas and eventually reach many areas of northeastern Kanto, Tohoku District, and Hokkaido, with a few variations in different scenarios. However, the affected human population is predicted to decrease owing to the declining birth rate. Anthropogenic and climatic factors contribute to range expansion, and urban size and population have profound impacts. This prediction map can guide responses to the introduction of this species in new areas, advance the spatial knowledge of diseases vectored by it, and mitigate the possible disease burden. To our knowledge, this is the first distribution-modelling prediction for Ae. albopictus with a focus on Japan.


Aedes , Mosquito Vectors , Animals , Aedes/virology , Aedes/physiology , Japan , Mosquito Vectors/virology , Ecosystem , Humans , Animal Distribution , Dengue/transmission , Dengue/epidemiology , Machine Learning , Models, Biological
6.
Sci Rep ; 14(1): 11207, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755197

The intention-to-treat (ITT) analysis of the Applying Wolbachia to Eliminate Dengue (AWED) trial estimated a protective efficacy of 77.1% for participants resident in areas randomised to receive releases of wMel-infected Aedes aegypti mosquitoes, an emerging dengue preventive intervention. The limiting assumptions of ITT analyses in cluster randomised trials and the mobility of mosquitoes and humans across cluster boundaries indicate the primary analysis is likely to underestimate the full public health benefit. Using spatiotemporally-resolved data on the distribution of Wolbachia mosquitoes and on the mobility of AWED participants (n = 6306), we perform complier-restricted and per-protocol re-examinations of the efficacy of the Wolbachia intervention. Increased intervention efficacy was estimated in all analyses by the refined exposure measures. The complier-restricted analysis returned an estimated efficacy of 80.7% (95% CI 65.9, 89.0) and the per-protocol analysis estimated 82.7% (71.7, 88.4) efficacy when comparing participants with an estimated wMel exposure of ≥ 80% compared to those with <20%. These reanalyses demonstrate how human and mosquito movement can lead to underestimation of intervention effects in trials of vector interventions and indicate that the protective efficacy of Wolbachia is even higher than reported in the primary trial results.


Aedes , Dengue , Wolbachia , Humans , Aedes/microbiology , Animals , Dengue/prevention & control , Dengue/transmission , Mosquito Vectors/microbiology , Randomized Controlled Trials as Topic , Cluster Analysis , Mosquito Control/methods , Female
7.
BMC Infect Dis ; 24(1): 463, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698345

BACKGROUND: The use of temephos, the most common intervention for the chemical control of Aedes aegypti over the last half century, has disappointing results in control of the infection. The footprint of Aedes and the diseases it carries have spread relentlessly despite massive volumes of temephos. Recent advances in community participation show this might be more effective and sustainable for the control of the dengue vector. METHODS: Using data from the Camino Verde cluster randomized controlled trial, a compartmental mathematical model examines the dynamics of dengue infection with different levels of community participation, taking account of gender of respondent and exposure to temephos. RESULTS: Simulation of dengue endemicity showed community participation affected the basic reproductive number of infected people. The greatest short-term effect, in terms of people infected with the virus, was the combination of temephos intervention and community participation. There was no evidence of a protective effect of temephos 220 days after the onset of the spread of dengue. CONCLUSIONS: Male responses about community participation did not significantly affect modelled numbers of infected people and infectious mosquitoes. Our model suggests that, in the long term, community participation alone may have the best results. Adding temephos to community participation does not improve the effect of community participation alone.


Aedes , Community Participation , Dengue , Insecticides , Temefos , Dengue/prevention & control , Dengue/transmission , Humans , Male , Female , Animals , Aedes/virology , Adult , Models, Theoretical , Sex Factors , Young Adult , Adolescent , Mosquito Control/methods , Middle Aged
8.
Parasit Vectors ; 17(1): 233, 2024 May 21.
Article En | MEDLINE | ID: mdl-38769579

BACKGROUND: The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines. METHODS: We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays. RESULTS: We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales. CONCLUSIONS: Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.


Aedes , Genetics, Population , Microsatellite Repeats , Mosquito Vectors , Polymorphism, Single Nucleotide , Animals , Aedes/genetics , Aedes/classification , Aedes/physiology , Philippines , Female , Male , Microsatellite Repeats/genetics , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Ecosystem , Genetic Variation , Dengue/transmission , Adaptation, Physiological/genetics
9.
Sci Rep ; 14(1): 11954, 2024 05 25.
Article En | MEDLINE | ID: mdl-38796642

A comprehensive mathematical model is proposed to study two strains of dengue virus with saturated incidence rates and quarantine measures. Imperfect dengue vaccination is also assumed in the model. Existence, uniqueness and stability of the proposed model are proved using the results from fixed point and degree theory. Additionally, well constructed Lyapunov function candidates are also applied to prove the global stability of infection-free equilibria. It is also demonstrated that the model is generalized Ulam-Hyers stable under some appropriate conditions. The model is fitted to the real data of dengue epidemic taken from the city of Espirito Santo in Brazil. For the approximate solution of the model, a non-standard finite difference(NSFD) approach is applied. Sensitivity analysis is also carried out to show the influence of different parameters involved in the model. The behaviour of the NSFD is also assessed under different denominator functions and it is observed that the choice of the denominator function could influence the solution trajectories. Different scenario analysis are also assessed when the reproduction number is below or above one. Furthermore, simulations are also presented to assess the epidemiological impact of dengue vaccination and quarantine measures for infected individuals.


Dengue , Quarantine , Vaccination , Dengue/transmission , Dengue/prevention & control , Dengue/epidemiology , Humans , Brazil/epidemiology , Dengue Virus/immunology , Models, Theoretical , Dengue Vaccines
10.
Bull Math Biol ; 86(7): 81, 2024 May 28.
Article En | MEDLINE | ID: mdl-38805120

The mosquito-borne dengue virus remains a major public health concern in Malaysia. Despite various control efforts and measures introduced by the Malaysian Government to combat dengue, the increasing trend of dengue cases persists and shows no sign of decreasing. Currently, early detection and vector control are the main methods employed to curb dengue outbreaks. In this study, a coupled model consisting of the statistical ARIMAX model and the deterministic SI-SIR model was developed and validated using the weekly reported dengue data from year 2014 to 2019 for Selangor, Malaysia. Previous studies have shown that climate variables, especially temperature, humidity, and precipitation, were able to influence dengue incidence and transmission dynamics through their effect on the vector. In this coupled model, climate is linked to dengue disease through mosquito biting rate, allowing real-time forecast of dengue cases using climate variables, namely temperature, rainfall and humidity. For the period chosen for model validation, the coupled model can forecast 1-2 weeks in advance with an average error of less than 6%, three weeks in advance with an average error of 7.06% and four weeks in advance with an average error of 8.01%. Further model simulation analysis suggests that the coupled model generally provides better forecast than the stand-alone ARIMAX model, especially at the onset of the outbreak. Moreover, the coupled model is more robust in the sense that it can be further adapted for investigating the effectiveness of various dengue mitigation measures subject to the changing climate.


Aedes , Climate , Dengue , Disease Outbreaks , Forecasting , Mathematical Concepts , Models, Statistical , Mosquito Vectors , Dengue/epidemiology , Dengue/transmission , Malaysia/epidemiology , Humans , Incidence , Mosquito Vectors/virology , Forecasting/methods , Animals , Aedes/virology , Disease Outbreaks/statistics & numerical data , Epidemiological Models , Computer Simulation , Temperature , Rain , Humidity , Climate Change/statistics & numerical data , Models, Biological
11.
Euro Surveill ; 29(20)2024 05.
Article En | MEDLINE | ID: mdl-38757289

Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.


Aedes , Chikungunya virus , Dengue Virus , Zika Virus , Animals , Aedes/virology , Humans , Zika Virus/isolation & purification , Dengue Virus/isolation & purification , Chikungunya virus/isolation & purification , Paris , Mosquito Vectors/virology , West Nile virus/isolation & purification , Arboviruses/isolation & purification , Arbovirus Infections/transmission , Flavivirus/isolation & purification , France , Dengue/transmission , Dengue/epidemiology , Zika Virus Infection/transmission
12.
Front Immunol ; 15: 1368066, 2024.
Article En | MEDLINE | ID: mdl-38751433

Introduction: Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of human cohorts for exposure to potentially infectious mosquitoes. Methods: We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naive at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify immunogenic Aedes aegypti salivary proteins and measure total anti-Ae. aegypti IgG. Results: We found a correlation (rs=0.86) between IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic versus symptomatic dengue. Discussion: The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.


Aedes , Dengue , Insect Proteins , Mosquito Vectors , Salivary Proteins and Peptides , Humans , Aedes/immunology , Aedes/virology , Animals , Salivary Proteins and Peptides/immunology , Child , Mosquito Vectors/immunology , Mosquito Vectors/virology , Dengue/immunology , Dengue/transmission , Insect Proteins/immunology , Female , Child, Preschool , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Cambodia , Longitudinal Studies , Dengue Virus/immunology , Adolescent , Insect Bites and Stings/immunology
13.
BMC Infect Dis ; 24(1): 523, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789932

BACKGROUND: In Thailand, the Department of Disease Control (DDC) regularly performs visual larval surveys throughout the country to monitor dengue fever outbreaks. Since 2016, the DDC switched from a paper-based to a digital-based larval survey process. The significant amount of larval survey data collected digitally presents a valuable opportunity to precisely identify the villages and breeding habitats that are vulnerable to dengue transmission. METHODS: The study used digitally collected larval survey data from 2017 to 2019. It employed larval indices to evaluate the risk of dengue transmission in villages based on seasonal, regional, and categorical perspectives. Furthermore, the study comprehensively scrutinized each container category by employing different measures to determine its breeding preference ratio. RESULTS: The result showed that villages with a very high-risk of dengue transmission were present year-round in all regions, with the highest proportion during the rainy season. The Southern region had more high-risk villages during the winter season due to rainfall. Slums and residential communities were more vulnerable to dengue than commercial areas. All container categories could potentially serve as breeding habitats for dengue-carrying mosquitoes, with abandoned containers being the most significant breeding sites. CONCLUSIONS: The risk of dengue transmission was present year-round throughout Thailand. This underscores the importance of community and government initiatives, along with sustained public awareness campaigns and active community engagement, to efficiently and permanently eradicate mosquito breeding habitats. It should be noted that larval indices may not strongly correlate with dengue cases, as indicated by the preliminary analysis. However, they offer valuable insights into potential breeding sites for targeted preventive measures.


Aedes , Dengue , Ecosystem , Larva , Mosquito Vectors , Dengue/transmission , Dengue/epidemiology , Thailand/epidemiology , Animals , Larva/virology , Mosquito Vectors/virology , Mosquito Vectors/physiology , Humans , Aedes/virology , Aedes/physiology , Seasons , Dengue Virus/physiology , Disease Outbreaks
14.
J Med Virol ; 96(6): e29689, 2024 Jun.
Article En | MEDLINE | ID: mdl-38818789

Individuals infected with dengue virus (DENV) often show no symptoms, which raises the risk of DENV transfusion transmission (TT-DENV) in areas where the virus is prevalent. This study aimed to determine the evidence of DENV infection in blood donors from different geographic regions of Thailand. A cross-sectional study was conducted on blood donor samples collected from the Thai Red Cross National Blood Center and four regional blood centers between March and September 2020. Screening for DENV nonstructural protein 1 (NS1), anti-DENV immunoglobulin G (IgG), and IgM antibodies was performed on residual blood from 1053 donors using enzyme-linked immunosorbent assay kits. Positive NS1 and IgM samples indicating acute infection were verified using four different techniques, including quantitative real-time (q) RT-PCR, nested PCR, virus isolation in C6/36 cells, and mosquito amplification. DENV IgG seropositivity was identified in 89% (938/1053) of blood donors. Additionally, 0.4% (4/1053) and 2.1% (22/1053) of Thai blood donors tested positive for NS1 and IgM, respectively. The presence of asymptomatic dengue virus infection in healthy blood donors suggests a potential risk of transmission through blood transfusion, posing a concern for blood safety.


Antibodies, Viral , Blood Donors , Dengue Virus , Dengue , Immunoglobulin G , Immunoglobulin M , Humans , Thailand/epidemiology , Dengue/transmission , Dengue/epidemiology , Blood Donors/statistics & numerical data , Cross-Sectional Studies , Dengue Virus/immunology , Dengue Virus/isolation & purification , Dengue Virus/genetics , Antibodies, Viral/blood , Female , Male , Adult , Immunoglobulin M/blood , Immunoglobulin G/blood , Young Adult , Middle Aged , Adolescent , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Blood Donation
15.
Nat Commun ; 15(1): 4205, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806460

Understanding how emerging infectious diseases spread within and between countries is essential to contain future pandemics. Spread to new areas requires connectivity between one or more sources and a suitable local environment, but how these two factors interact at different stages of disease emergence remains largely unknown. Further, no analytical framework exists to examine their roles. Here we develop a dynamic modelling approach for infectious diseases that explicitly models both connectivity via human movement and environmental suitability interactions. We apply it to better understand recently observed (1995-2019) patterns as well as predict past unobserved (1983-2000) and future (2020-2039) spread of dengue in Mexico and Brazil. We find that these models can accurately reconstruct long-term spread pathways, determine historical origins, and identify specific routes of invasion. We find early dengue invasion is more heavily influenced by environmental factors, resulting in patchy non-contiguous spread, while short and long-distance connectivity becomes more important in later stages. Our results have immediate practical applications for forecasting and containing the spread of dengue and emergence of new serotypes. Given current and future trends in human mobility, climate, and zoonotic spillover, understanding the interplay between connectivity and environmental suitability will be increasingly necessary to contain emerging and re-emerging pathogens.


Dengue , Dengue/epidemiology , Dengue/transmission , Dengue/virology , Humans , Brazil/epidemiology , Mexico/epidemiology , Animals , Dengue Virus/physiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/transmission , Environment , Human Migration , Aedes/virology
16.
Sci Rep ; 14(1): 12216, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806622

The Ae. albopictus mosquito has gained global attention due to its ability to transmit viruses, including the dengue and zika. Mosquito control is the only effective way to manage dengue fever, as no effective treatments or vaccines are available. Insecticides are highly effective in controlling mosquito densities, which reduces the chances of virus transmission. However, Ae. albopictus has developed resistance to pyrethroids in several provinces in China. Pyrethroids target the voltage-gated sodium channel gene (VGSC), and mutations in this gene may result in knockdown resistance (kdr). Correlation studies between resistance and mutations can assist viruses in managing Ae. albopictus, which has not been studied in Guizhou province. Nine field populations of Ae. albopictus at the larval stage were collected from Guizhou Province in 2022 and reared to F1 to F2 generations. Resistance bioassays were conducted against permethrin, beta-cypermethrin, and deltamethrin for both larvae and adults of Ae. albopictus. Kdr mutations were characterized by PCR and sequencing. Additionally, the correlation between the kdr allele and pyrethroid resistance was analyzed. All nine populations of Ae. albopictus larvae and adults were found to be resistant to three pyrethroid insecticides. One kdr mutant allele at codon 1016, one at 1532 and three at 1534 were identified with frequencies of 13.86% (V1016G), 0.53% (I1532T), 58.02% (F1534S), 11.69% (F1534C), 0.06% (F1534L) and 0.99% (F1534P), respectively. Both V1016G and F1534S mutation mosquitoes were found in all populations. The kdr mutation F1534S was positively correlated with three pyrethroid resistance phenotypes (OR > 1, P < 0.05), V1016G with deltamethrin and beta-cypermethrin resistance (OR > 1, P < 0.05) and F1534C only with beta-cypermethrin resistance (OR > 1, P < 0.05). Current susceptibility status of wild populations of Ae. albopictus to insecticides and a higher frequency of kdr mutations from dengue-monitored areas in Guizhou Province are reported in this paper. Outcomes of this study can serve as data support for further research and development of effective insecticidal interventions against Ae. albopictus populations in Guizhou Province.


Aedes , Dengue , Insecticide Resistance , Insecticides , Mutation , Pyrethrins , Animals , Pyrethrins/pharmacology , Aedes/genetics , Aedes/drug effects , Aedes/virology , Insecticide Resistance/genetics , China/epidemiology , Dengue/transmission , Dengue/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/virology , Larva/drug effects , Larva/genetics , Larva/virology , Voltage-Gated Sodium Channels/genetics , Mosquito Control/methods , Nitriles/pharmacology
17.
Rev Peru Med Exp Salud Publica ; 41(1): 46-53, 2024 May 27.
Article Es, En | MEDLINE | ID: mdl-38808844

OBJECTIVE.: Motivation for the study. Dengue prevention and control is based on the control of its vector. This study was conducted because of the need to know the costs associated with Aedes aegypti control in a region that carries out planned vector control activities. Main findings. The costs incurred in dengue vector control in the Loreto region in 2017 and 2018 amounted to PEN 4,066,380.25 and PEN 3,807,858.73, respectively. Implications. Knowing the cost of vector control activities will allow us to better plan these activities and have a basis for cost-effectiveness studies with other methods of prevention and control of dengue. To estimate the costs incurred in the control of Aedes aegypti in the Loreto region, during the years 2017 and 2018. MATERIALS AND METHODS.: We conducted a partial retrospective economic evaluation of the costs of Aedes aegypti control of the Regional Health Directorate Loreto, during the implementation of the Regional Plan for Surveillance and Control of Aedes aegypti. Documentation such as plans, intervention reports and payment slips were reviewed, and interviews were conducted with professional personnel involved in vector control, on the costs of control interventions. RESULTS.: We found that the costs incurred in dengue vector control in the Loreto Region in the two years were: PEN 3,807,858 and PEN 4,066,380 during 2017 and 2018, respectively (USD 1,175,264 and USD 1,1210,232 at the 2017 and 2018 exchange rate). However, the effect of control activities is short-lived. CONCLUSIONS.: The high cost involved in vector control with the methods currently used and the short duration of its effect make it unsustainable. Studies should be conducted in order to find other more efficient methods for dengue control.


OBJETIVO.: Motivación para realizar el estudio. La prevención y control del dengue se basa en el control de su vector. Este estudio se realizó por la necesidad de conocer los costos asociados al control Aedes aegypti en una región que realiza actividades planificadas de control vectorial. Principales hallazgos. Los costos incurridos en el control del vector del dengue en la región Loreto en los años 2017 y 2018, ascienden a 4,066,380.25 y 3,807,858.73 PEN, respectivamente. Implicancias. Conocer el costo de las actividades de control vectorial nos permitirá planificar mejor estas actividades y tener una base para estudios de costo efectividad con otros métodos de prevención y control del dengue. Estimar los costos incurridos en el control del Aedes aegypti en la región Loreto, en los años 2017 y 2018. MATERIALES Y MÉTODOS.: Se realizó una evaluación económica retrospectiva parcial de los costos del control del Aedes aegypti de la Dirección Regional de Salud Loreto, durante la ejecución del Plan Regional de Vigilancia y Control de Aedes aegypti. Se revisó documentación como planes, informes de intervenciones y planillas de pago y se realizaron entrevistas al personal profesional implicado en el control vectorial, sobre los costos de las intervenciones de control. RESULTADOS.: Se halló, que los costos incurridos en el control del vector del dengue en la Región Loreto en los dos años estudiados ascienden a: 3,807,858 PEN y 4,066,380 PEN durante el 2017 y 2018, respectivamente (1´175,264 USD y 1´1210,232 USD al tipo de cambio del 2017 y 2018). Sin embargo, el efecto de las actividades de control es de corta duración. CONCLUSIONES.: El alto costo que implica el control vectorial con los métodos usados actualmente y la corta duración de su efecto lo hace insostenible. Se deben realizar estudios para hallar otros métodos más eficientes para el control del dengue.


Aedes , Dengue , Mosquito Control , Mosquito Vectors , Animals , Dengue/prevention & control , Dengue/economics , Dengue/transmission , Peru , Mosquito Control/economics , Mosquito Control/methods , Retrospective Studies , Humans , Costs and Cost Analysis
19.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38669573

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Aedes , Dengue Virus , Mosquito Vectors , Symbiosis , Zika Virus , Animals , Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Zika Virus/physiology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Gastrointestinal Microbiome , Acetobacteraceae/physiology , Female , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Flavivirus/physiology , Flavivirus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
20.
J Math Biol ; 88(6): 74, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684552

In this paper, we propose a reaction-advection-diffusion dengue fever model with seasonal developmental durations and intrinsic incubation periods. Firstly, we establish the well-posedness of the model. Secondly, we define the basic reproduction number ℜ 0 for this model and show that ℜ 0 is a threshold parameter: if ℜ 0 < 1 , then the disease-free periodic solution is globally attractive; if ℜ 0 > 1 , the system is uniformly persistent. Thirdly, we study the global attractivity of the positive steady state when the spatial environment is homogeneous and the advection of mosquitoes is ignored. As an example, we use the model to investigate the dengue fever transmission case in Guangdong Province, China, and explore the impact of model parameters on ℜ 0 . Our findings indicate that ignoring seasonality may underestimate ℜ 0 . Additionally, the spatial heterogeneity of transmission may increase the risk of disease transmission, while the increase of seasonal developmental durations, intrinsic incubation periods and advection rates can all reduce the risk of disease transmission.


Basic Reproduction Number , Dengue , Infectious Disease Incubation Period , Mathematical Concepts , Models, Biological , Mosquito Vectors , Seasons , Dengue/transmission , Basic Reproduction Number/statistics & numerical data , Animals , Humans , China/epidemiology , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Aedes/virology , Aedes/growth & development , Epidemiological Models , Dengue Virus/growth & development , Computer Simulation
...