Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Hazard Mater ; 475: 134893, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878438

RESUMEN

Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an important methane (CH4) consumption and nitrogen (N) removal pathway in estuarine and coastal wetlands. Antibiotic contamination is known to affect microbially mediated processes; however, its influences on n-DAMO and the underlying molecular mechanisms remain poorly understood. In the present study, using 13CH4 tracer method combined with molecular techniques, we investigated the responses of n-DAMO microbial abundance, activity, and the associated microbial community composition to sulfamethazine (SMT, a sulfonamide antibiotic, with exposure concentrations of 0.05, 0.5, 5, 20, 50, and 100 µg L-1). Results showed that the effect of SMT exposure on n-DAMO activity was dose-dependent. Exposure to SMT at concentrations of up to 5 µg L-1 inhibited the potential n-DAMO rates (the average rates of nitrite- and nitrate-DAMO decreased by 92.9 % and 79.2 % relative to the control, respectively). In contrast, n-DAMO rates tended to be promoted by SMT when its concentration increased to 20-100 µg L-1 (the average rates of nitrite- and nitrate-DAMO increased by 724.1 % and 630.1 % relative to the low-doses, respectively). Notably, low-doses of SMT suppressed nitrite-DAMO to a greater extent than nitrate-DAMO, indicating that nitrite-DAMO was more sensitive to SMT than nitrate-DAMO. Molecular analyses suggest that the increased n-DAMO activity under high-doses SMT exposure may be driven by changes in microbial communities, especially because of the promotion of methanogens that provide more CH4 to n-DAMO microbes. Moreover, the abundances of n-DAMO microbes at high SMT exposure (20 and 50 µg L-1) were significantly higher than that at low SMT exposure (0.05-5 µg L-1). These results advance our understanding of the ecological effects of SMT on carbon (C) and N interactions in estuarine and coastal wetlands.


Asunto(s)
Desnitrificación , Metano , Oxidación-Reducción , Sulfametazina , Contaminantes Químicos del Agua , Humedales , Metano/metabolismo , Sulfametazina/metabolismo , Anaerobiosis , Desnitrificación/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/farmacología , Estuarios , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Nitritos/metabolismo , Nitratos/metabolismo
2.
Bioresour Technol ; 402: 130767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692373

RESUMEN

The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.


Asunto(s)
Plomo , Nitrógeno , Salinidad , Aguas Residuales , Aguas Residuales/química , Plomo/metabolismo , Nitrógeno/metabolismo , Purificación del Agua/métodos , Oxidación-Reducción , Aguas del Alcantarillado/microbiología , Anaerobiosis/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Reactores Biológicos , Microbiota/efectos de los fármacos , Desnitrificación/efectos de los fármacos
3.
J Hazard Mater ; 472: 134447, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692000

RESUMEN

Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO2--N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, S2O32- oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.


Asunto(s)
Biopelículas , Cromo , Desnitrificación , Azufre , Cromo/toxicidad , Cromo/metabolismo , Cromo/química , Desnitrificación/efectos de los fármacos , Azufre/química , Azufre/metabolismo , Biopelículas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Nitrito Reductasas/metabolismo , Nitrato-Reductasa/metabolismo , Aguas Residuales/química , Especies Reactivas de Oxígeno/metabolismo , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Electrones , Estrés Oxidativo/efectos de los fármacos
4.
J Hazard Mater ; 472: 134540, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733787

RESUMEN

Cyanide is a typical toxic reducing agent prevailing in wastewater with a well-defined chemical mechanism, whereas its exploitation as an electron donor by microorganisms is currently understudied. Given that conventional denitrification requires additional electron donors, the cyanide and nitrogen can be eliminated simultaneously if the reducing HCN/CN- and its complexes are used as inorganic electron donors. Hence, this paper proposes anaerobic cyanides oxidation for nitrite reduction, whereby the biological toxicity and activity of cyanides are modulated by bimetallics. Performance tests illustrated that low toxicity equivalents of iron-copper composite cyanides provided higher denitrification loads with the release of cyanide ions and electrons from the complex structure by the bimetal. Both isotopic labeling and Density Functional Theory (DFT) demonstrated that CN--N supplied electrons for nitrite reduction. The superposition of chemical processes reduces the biotoxicity and enhances the biological activity of cyanides in the CN-/Fe3+/Cu2+/NO2- coexistence system, including complex detoxification of CN- by Fe3+, CN- release by Cu2+ from [Fe(CN)6]3-, and NO release by nitrite substitution of -CN groups. Cyanide is the smallest structural unit of C/N-containing compounds and serves as a probe to extend the electron-donating principle of anaerobic cyanides oxidation to more electron-donor microbial utilization.


Asunto(s)
Cobre , Cianuros , Hierro , Nitritos , Oxidación-Reducción , Cianuros/toxicidad , Cianuros/química , Nitritos/química , Nitritos/toxicidad , Cobre/química , Cobre/toxicidad , Anaerobiosis , Hierro/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Aguas Residuales/toxicidad , Desnitrificación/efectos de los fármacos
5.
J Hazard Mater ; 472: 134593, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38749249

RESUMEN

Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.


Asunto(s)
Desnitrificación , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Desnitrificación/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Tibet , Microplásticos/toxicidad , Plastificantes/toxicidad , Plastificantes/metabolismo , Microbiota/efectos de los fármacos , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Metales Pesados/toxicidad
6.
PLoS One ; 17(1): e0261714, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986185

RESUMEN

A variety of antibiotics are ubiquitous in all freshwater ecosystems that receive wastewater. A wide variety of antibiotics have been developed to kill problematic bacteria and fungi through targeted application, and their use has contributed significantly to public health and livestock management. Unfortunately, a substantial fraction of the antibiotics applied to humans, pets and livestock end up in wastewater, and ultimately many of these chemicals enter freshwater ecosystems. The effect of adding chemicals that are intentionally designed to kill microbes, on freshwater microbial communities remains poorly understood. There are reasons to be concerned, as microbes play an essential role in nutrient uptake, carbon fixation and denitrification in freshwater ecosystems. Chemicals that reduce or alter freshwater microbial communities might reduce their capacity to degrade the excess nutrients and organic matter that characterize wastewater. We performed a laboratory experiment in which we exposed microbial community from unexposed stream sediments to three commonly detected antibiotics found in urban wastewater and urban streams (sulfamethoxazole, danofloxacin, and erythromycin). We assessed how the form and concentration of inorganic nitrogen, microbial carbon, and nitrogen cycling processes changed in response to environmentally relevant doses (10 µg/L) of each of these antibiotics individually and in combination. We expected to find that all antibiotics suppressed rates of microbial mineralization and nitrogen transformations and we anticipated that this suppression of microbial activity would be greatest in the combined treatment. Contrary to our expectations we measured few significant changes in microbially mediated functions in response to our experimental antibiotic dosing. We found no difference in functional gene abundance of key nitrogen cycling genes nosZ, mcrA, nirK, and amoA genes, and we measured no treatment effects on NO3- uptake or N2O, N2, CH4, CO2 production over the course of our seven-day experiment. In the mixture treatment, we measured significant increases in NH4+ concentrations over the first 24 hours of the experiment, which were indistinguishable from controls within six hours. Our results suggest remarkable community resistance to pressure antibiotic exposure poses on naïve stream sediments.


Asunto(s)
Antibacterianos/farmacología , Bacterias/metabolismo , Carbono/metabolismo , Microbiota/efectos de los fármacos , Nitrógeno/metabolismo , Aguas Residuales/microbiología , Desnitrificación/efectos de los fármacos , Ciclo del Nitrógeno/efectos de los fármacos
7.
ACS Appl Mater Interfaces ; 13(39): 46233-46246, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34547889

RESUMEN

While the antibacterial effect of silver nanoparticles (AgNPs) on environmentally beneficial microbes has drawn considerable attention, the stability and microbial toxicity of AgNPs in a system where nitrate reduction is the dominant terminal electron-accepting process remain understudied. Here, we explore the impact of citrate-coated AgNPs (cit-AgNPs) on the growth and metabolism of two metal-sensitive and one nonsensitive bacterial strains under denitrifying conditions. Dose-response analysis revealed that in contrast to the bacteriostatic effect exhibited at 1 ppm, 5 ppm cit-AgNPs were bactericidal to the metal-sensitive strains. It was observed that the growth of the cells initiated Ag(I) formation, and the supplement of chloride (2.7 mM) to the cultures substantially mitigated the bactericidal capacity of cit-AgNPs, indicating that AgNP dissolution to ionic Ag(I) played a key role in AgNP toxicity. Abiotic experiments confirmed that nitrite, not nitrate, had the capacity to oxidize cit-AgNPs. Transcriptomic analysis revealed that (i) the gene encoding for membrane stress was upregulated proportionally to cit-AgNP concentrations; (ii) cit-AgNPs and Ag(I) at higher levels upregulated genes involved in oxidative stress and iron-sulfur clusters, whereas expressions of the genes responsible for electron transport, ATP synthesis, and denitrification were substantially repressed; (iii) the addition of chloride significantly altered the level of transcriptional profiles of all of the genes. These results not only provide evidence of abiotic AgNP oxidation by metabolic intermediate nitrogen species but also suggest that AgNPs and Ag(I) may induce differential toxicity modes to prokaryotes. Our findings reinforce the importance of evaluating the potential ecological toxicity and risks associated with the transformation of nanomaterials.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Antibacterianos/química , Membrana Celular/efectos de los fármacos , Citratos/química , Cupriavidus/efectos de los fármacos , Desnitrificación/efectos de los fármacos , Estabilidad de Medicamentos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pseudomonas stutzeri/efectos de los fármacos , Plata/química , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
8.
Ecotoxicol Environ Saf ; 219: 112355, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34049225

RESUMEN

Florfenicol (FF) is widely used in aquaculture and can interfere with denitrification when released into natural ecosystems. The aim of this study was to analyze the response characteristics of nirS-type denitrifier Paracoccus denitrificans under FF stress and further mine antibiotic-responsive factors in aquatic environment. Phenotypic analysis revealed that FF delayed the nitrate removal with a maximum inhibition value of 82.4% at exponential growth phase, leading to nitrite accumulation reached to 21.9-fold and biofilm biomass decreased by ~38.6%, which were due to the lower bacterial population count (P < 0.01). RNA-seq transcriptome analyses indicated that FF treatment decreased the expression of nirS, norB, nosD and nosZ genes that encoded enzymes required for NO2- to N2 conversion from 1.02- to 2.21-fold (P < 0.001). Furthermore, gene associated with the flagellar system FlgL was also down-regulated by 1.03-fold (P < 0.001). Moreover, 10 confirmed sRNAs were significantly induced, which regulated a wide range of metabolic pathways and protein expression. Interestingly, different bacteria contained the same sRNAs means that sRNAs can spread between them. Overall, this study suggests that the denitrification of nirS-type denitrifiers can be hampered widely by FF and the key sRNAs have great potential to be antibiotic-responsive factors.


Asunto(s)
Antibacterianos/toxicidad , Desnitrificación/efectos de los fármacos , Paracoccus denitrificans/efectos de los fármacos , Tianfenicol/análogos & derivados , Bacterias/metabolismo , Ecosistema , Nitratos/metabolismo , Nitritos , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Tianfenicol/toxicidad
9.
Ecotoxicol Environ Saf ; 219: 112292, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34022628

RESUMEN

Response of nitrogen removal efficiency and microbial interactions to organic pollution has been a major issue in wastewater treatment system. However, the nitrogen removal efficiency and interactions among microbial community under antibiotics press is still unclear. Thus, the effect of sulfamethoxazole (SMX) on nitrogen removal and microbial responses of IVCWs was investigated through recorded the nitrogen removal efficiency before and after adding SMX and random matrix theory (RMT)-based network analysis. Results showed that better NH4+-N removal (>90%) after a long period of operation were achieved in IVCWs, but NO3--N was accumulated. However, nitrate removal rates were significantly increased after long-term exposure (60 d) to 100 µgL-1 SMX (from 27.35% to 35.57%) with relatively high SMX removal (53.50%). Surprisingly, the ammonia nitrogen removal rate (90.07-92.70%) were not significantly affected by SMX in IVCWs. Moreover, the bacterial richness was decreased and the bacterial community structures were altered by the presence of SMX, especially those of nitrogen-transforming microorganisms. Molecular ecological network analysis suggested that SMX had positive influences on denitrifying bacteria interactions but reduced the network complexity and microbial interactions on whole molecular network, and among-module connections were weakened obviously at SMX.


Asunto(s)
Desnitrificación/efectos de los fármacos , Sulfametoxazol/toxicidad , Purificación del Agua , Humedales , Antibacterianos , Bacterias , Microbiota , Nitrógeno/análisis , Aguas Residuales/química
10.
Ecotoxicol Environ Saf ; 213: 112011, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33592374

RESUMEN

Denitrification play an important role in nitrogen cycle and is affected by veterinary drugs entering agricultural soils. In the present study, the effects of copper and florfenicol on denitrification, related antibiotic resistance and environmental variables were characterized using real-time quantitative PCR (qPCR) and amplicon sequencing in a short-term (30 d) soil model experiment. Drug additions significantly decreased the nirS gene abundance (P < 0.05) but maximized the abundance of gene nirK in soil containing florfenicol and moderate copper levels (150 mg kg-1). Surprisingly, copper additions decreased the fexB gene abundance, however, the abundance of gene pcoD significantly increased in soils containing florfenicol, moderate copper levels (150 mg kg-1), and florfenicol and low copper levels (30 mg kg-1), respectively (P < 0.05). Overall, the nirK-type community composition was more complex than that of nirS-type but Proteobacteria predominated (> 90%) in both communities. Correlation analysis indicated that the gene abundance of fexB was highly correlated with NH4+-N (P < 0.05) and NO3--N (P < -0.01), and floR gene abundance was positively correlated with nirK (P < 0.01). Besides, the abundance of nirS-type genera Bradyrhizobium and Pseudomonas were obviously related to total organic matter (TOM), total nitrogen (TN) or total phosphorus (TP) (P < 0.05), while the abundance of nirK-type Rhizobium, Sphingomonas and Bosea showed a significantly correlated with TOM, TN or copper contents (P < 0.05). Taken together, copper and florfenicol contamination increased the possibility of durg resistance genes spread in agricultural soils through nitrogen transformation.


Asunto(s)
Cobre/toxicidad , Desnitrificación/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Tianfenicol/análogos & derivados , Agricultura , Desnitrificación/genética , Nitrógeno , Fósforo , Proteobacteria/genética , Suelo , Tianfenicol/toxicidad , Verduras
11.
J Appl Microbiol ; 129(6): 1598-1608, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32592325

RESUMEN

AIM: Quinoline is a recalcitrant pollutant in coking wastewater which has been broadly investigated with many isolates possessing aerobic quinoline-degrading ability. However, studies on anaerobic degradation and the corresponding bacteria are very scarce. This study attempted to investigate the role of diverse functional members and the redundancy of quinoline degradation in a lab-scale quinoline denitrifying bioreactor. METHODS AND RESULTS: Antibiotics were added to the batch culture under denitrifying conditions to disturb the microbial community of the quinoline-degrading bioreactor. According to the results, the nitrate removal rate remained stable, and the quinoline removal rate increased by 9·7% after treatment with streptomycin. However, PCoA analysis of 16S rRNA gene sequencing data of these samples indicated a significant shift in microbial community structures. Specifically, 12 operational taxonomic units (OTUs), including OTU1 (Pseudomonas) and OTU2 (Achromobacter), were significantly enriched. OTU1 replaced OTU8 (Thauera) as the most predominant denitrifying quinoline-degrading member. However, OTU8 and other predominant OTUs (Comamonas and Pseudoxanthomonas), which were hypothesized to contribute essentially to quinoline degradation in the origin bioreactor, became almost undetectable. CONCLUSION: Functional redundancy due to high biological diversity allowed the role reversal of predominant quinoline-degrading bacteria and other rare bacteria when disturbed by antibiotic stress. Although the abundance of OTU1 was much lower initially, it replaced the essential role of the predominant member OTU8 in the bioreactor community for quinoline degradation once the environmental condition changed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicated that the high biological diversity in a wastewater treatment bacterial community is crucial for maintaining the degrading function of organic pollutants, especially in a changing environment due to external disturbance or stress.


Asunto(s)
Antibacterianos/farmacología , Desnitrificación/efectos de los fármacos , Microbiota/efectos de los fármacos , Quinolinas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , Biodiversidad , Reactores Biológicos/microbiología , Microbiota/genética , ARN Ribosómico 16S/genética
12.
Ecotoxicol Environ Saf ; 201: 110879, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32559694

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are toxic to microorganisms, thereby affecting microbial communities in sludge and soil, but how to repair the toxicity of microorganisms remains unclear. In this study, rutin, an antioxidant, was added into a culture medium with an aerobic denitrification bacteria, Pseudomonas stutzeri, under the exposure of sodium perfluorononyloxy-benzenesulfonate (OBS) to evaluate the repair mechanisms of rutin to the toxicity of OBS to the bacteria. The results showed that rutin could repair the damage of OBS to cell structures, and reduce the death rates of the bacteria under OBS exposure. The dosage of rutin reduced the effect on the inhibition of denitrification ability of P. stutzeri under OBS exposure. Compared with the bacteria exposed to single OBS, the dosage of rutin resulted in that the death rates recovered from 96.2% to 66.4%, the growth inhibition rate decreased from 46.5% to 15.8%, the total nitrogen removal rate recovered from 66.9% to 100%, and the NO2- content recovered from 34.5 mg/L to 0.22 mg/L. The expressions of key denitrification genes (napA, nirS, norB, nosZ) were recovered after adding rutin under OBS exposure. Rutin changed the positive rate of reactive oxygen species, the relative superoxide dismutase and catalase activities in the bacteria which exposed to OBS. The mechanism by which rutin repaired the toxicity of OBS to P. stutzeri related to inhibiting the activities of antioxidant and denitrification enzymes rather than affecting the expressions of genes involved in these enzymes. This study sheds light on the repair method of micro-organics and reveals the repair mechanisms under PFASs exposure.


Asunto(s)
Fluorocarburos/toxicidad , Pseudomonas stutzeri/efectos de los fármacos , Rutina/farmacología , Antioxidantes/farmacología , Catalasa/metabolismo , Desnitrificación/efectos de los fármacos , Desnitrificación/genética , Nitrógeno/análisis , Pseudomonas stutzeri/enzimología , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
13.
Nat Commun ; 11(1): 2372, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398678

RESUMEN

Microplastics are ubiquitous in estuarine, coastal, and deep sea sediments. The impacts of microplastics on sedimentary microbial ecosystems and biogeochemical carbon and nitrogen cycles, however, have not been well reported. To evaluate if microplastics influence the composition and function of sedimentary microbial communities, we conducted a microcosm experiment using salt marsh sediment amended with polyethylene (PE), polyvinyl chloride (PVC), polyurethane foam (PUF) or polylactic acid (PLA) microplastics. We report that the presence of microplastics alters sediment microbial community composition and nitrogen cycling processes. Compared to control sediments without microplastic, PUF- and PLA-amended sediments promote nitrification and denitrification, while PVC amendment inhibits both processes. These results indicate that nitrogen cycling processes in sediments can be significantly affected by different microplastics, which may serve as organic carbon substrates for microbial communities. Considering this evidence and increasing microplastic pollution, the impact of plastics on global ecosystems and biogeochemical cycling merits critical investigation.


Asunto(s)
Desnitrificación/efectos de los fármacos , Microbiota/efectos de los fármacos , Microplásticos/toxicidad , Nitrificación/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Biodegradación Ambiental , Monitoreo del Ambiente , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Microbiota/fisiología , Poliésteres/toxicidad , Poliuretanos/toxicidad , Cloruro de Polivinilo/toxicidad , Agua de Mar/química , Agua de Mar/microbiología
14.
J Biosci Bioeng ; 130(2): 179-186, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32381439

RESUMEN

The sediment-water interface is not only an important location for substrate conversion in a mariculture system, but also a major source of eutrophication. This study aimed to clarify the characteristics of inorganic nitrogen (ammonia, nitrite and nitrate) removal by Marichromatium gracile YL28 in the presence of both organic nitrogen and inorganic nitrogen. The results showed that, in the presence of peptone or urea, seaweed oligosaccharides (SOS) effectively enhanced the ammonia removal capacity of YL28 (6.42 mmol/L) and decreased the residual rate by 54.04% or 8.17%, respectively. With increasing peptone or urea concentrations, the removal of both ammonia and nitrate was gradually inhibited, and the residual rates of ammonia and nitrate reached 22.56-34.36% and 12.03-15.64% in the peptone system and 20.65-24.03% and 12.20-13.21% in the urea system, respectively. However, in the control group the residual rates of ammonia and nitrate reached 11.97% and 5.12%, respectively. In addition, the concentrations of peptone and urea did not affect nitrite removal, and YL28 displayed better cell growth and nitrogen removal activity in the presence of bait and SOS. Overall, the ability of YL28 to remove inorganic nitrogen was enhanced in the presence of organic nitrogen.


Asunto(s)
Acuicultura , Chromatiaceae/metabolismo , Nitrógeno/química , Nitrógeno/aislamiento & purificación , Peptonas/farmacología , Urea/farmacología , Agua/química , Amoníaco/aislamiento & purificación , Amoníaco/metabolismo , Desnitrificación/efectos de los fármacos , Nitratos/aislamiento & purificación , Nitratos/metabolismo , Nitritos/aislamiento & purificación , Nitritos/metabolismo
15.
Chemosphere ; 252: 126478, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32197179

RESUMEN

Biological denitrification is an environmentally sound pathway for the elimination of nitrogen pollution in wastewater treatment. Extreme environmental conditions, such as the co-existence of toxic organic pollutants, can affect biological denitrification. However, the potential underlying mechanism remains largely unexplored. Herein, the effect of a model pollutant, hydroxyethane-(1,1-bisphosphonic acid) (HEDP), a widely applied and consumed bisphosphonate, on microbial denitrification was investigated by exploring the metabolic and transcriptional responses of an isolated denitrifier, Pannonibacter sp. strain DN. Results showed that nitrate removal efficiency decreased from 85% to 50% with an increase in HEDP concentration from 0 to 3.5 mM, leading to nitrite accumulation of 204 mg L-1 in 3.5 mM HEDP. This result was due to the lower bacterial population count and reduction in the live cell percentage. Further investigation revealed that HEDP caused a decrease in membrane potential from 0.080 ±â€¯0.005 to 0.020 ±â€¯0.002 with the increase in HEDP from 0 to 3.5 mM. This hindered electron transfer, which is required for nitrate transformation into nitrogen gas. Moreover, transcriptional profiling indicated that HEDP enhanced the genes involved in ROS (O2-) scavenging, thus protecting cells against oxidative stress damage. However, the suppression of genes responsible for the production of NADH/FADH2 in tricarboxylic acid cycle (TCA), NADH catalyzation (NADH dehydrogenase) in (electron transport chain) ETC system and denitrifying genes, especially nor and nir, in response to 2.5 mM HEDP were identified as the key factor inhibiting transfer of electron from TCA cycle to denitrifying enzymes through ETC system.


Asunto(s)
Desnitrificación/efectos de los fármacos , Ácido Etidrónico/toxicidad , Rhodobacteraceae/efectos de los fármacos , Bacterias/metabolismo , Transporte de Electrón , Electrones , Nitratos/metabolismo , Nitritos/farmacología , Nitrógeno/metabolismo , Oxidación-Reducción , Aguas Residuales
16.
J Hazard Mater ; 389: 122130, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31978824

RESUMEN

The effects of varying concentrations of Ag NPs on coupled nitrification and denitrification (CND) in two suspended sediments (SPSs) sizes were investigated using isotopic tracer method. In general, 0.5 and 5 mg/L Ag NPs had less effect on CND, while 2 and 10 mg/L Ag NPs exhibited the improvement and inhibition effect, respectively. The CND improvement by 2 mg/L NPs was mainly due to the enhanced nitrifying and denitrifying enzyme activity. However, 10 mg/L Ag NPs inhibited NH4+ oxidation by directly reducing the AMO activity and AOB abundance. The inhibition on NAR and NIR activity and their encoding narG and nirK gene abundance further inhibited NO3- and NO2- reduction, leading to a dramatic decrease in the 15N-N2 production. The above inhibition effects were attributed to the nano-effects of Ag NPs, which led to the excessive ROS amount and the decreased T-AOC level in microbial systems. But the connection between nitrification and denitrification was not broken after Ag NPs exposure. Moreover, the results indicated that N-cycling in clay and silt-type SPS systems could be more sensitive than sand-type SPS systems to NP exposure. The findings provide a basis for evaluating the environmental risks of Ag NPs in water-sediment systems.


Asunto(s)
Bacterias/metabolismo , Desnitrificación/efectos de los fármacos , Sedimentos Geológicos/microbiología , Nanopartículas del Metal/química , Nitrificación/efectos de los fármacos , Bacterias/efectos de los fármacos , Enzimas/genética , Expresión Génica/genética , Genes Bacterianos/genética , Plata/química
17.
Chemosphere ; 245: 125394, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31862554

RESUMEN

Nanopesticides are widely applied in modern agricultural systems to replace traditional pesticides, which inevitably leads to their accumulation in soils. Nanopesticides based on copper oxide nanoparticles (CuO NPs) may affect the soil nitrogen cycle, such as the denitrification process; however, the mechanism remains unclear. Here, acute exposure experiments for 60 h were conducted to explore the effects of CuO NPs (10, 100, 500 mg kg-1) on denitrification. In this study, Cu speciation, activities of denitrifying enzymes, electron transport system activity (ETSA), expression of denitrifying functional genes, composition of bacterial communities and reactive oxygen species (ROS) were determined. In all treatments, Cu ions was the dominant form and responsible for the toxicity of CuO NPs. The results indicated that CuO NPs treatments at 500 mg kg-1 remarkably inhibited denitrification, led to an 11-fold increase in NO3- accumulation and N2O emission rates decrease by 10.2-24.1%. In the denitrification process, the activities of nitrate reductase and nitric oxide reductase reduced by 21.1-42.1% and 10.3-16.3%, respectively, which may be a reason for the negative effect of CuO NPs. In addition, ETSA was significantly inhibited with CuO NPs applications, which reflects the ability of denitrification to accept electrons. Denitrifying functional genes and bacterial communities composition were changed, thus further influencing the denitrification process. ROS analysis showed that there were no significant differences among NPs treatments. This research improves the understanding of CuO NPs impact on soil denitrification. Further attention should be paid to the nitrogen transformation in agricultural soils in the presence of nanopesticides.


Asunto(s)
Cobre/química , Transporte de Electrón , Nanopartículas del Metal/química , Agricultura , Bacterias/metabolismo , Cobre/metabolismo , Desnitrificación/efectos de los fármacos , Nanopartículas , Nitrato-Reductasa/metabolismo , Nitrógeno/metabolismo , Óxidos/farmacología , Suelo , Microbiología del Suelo
18.
Environ Sci Pollut Res Int ; 26(30): 31133-31141, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31463752

RESUMEN

To improve crop yielding, a large amount of fungicides is continuously applied during the agricultural management, while the effects of fungicides residues on microbial processing of N in soil need further study. In the present study, two broad spectrum fungicides, chlorothalonil and carbendazim, were applied at the rates of 5, 10, and 50 mg of active ingredient (A.I.) per kg of dry soil combined with urea with 200 mg of N per kg of dry soil under laboratory conditions. The results showed that chlorothalonil obviously retarded the hydrolysis of urea, whereas carbendazim accelerated it in 4 days after the treatments (P < 0.05). Chlorothalonil reduced denitrification, nitrification, and N2O production (P < 0.05), but not for carbendazim. Further analysis on N-associated microbial communities showed chlorothalonil reduced nitrosomonas populations at the rates of 10 and 50 mg of A.I. per kg and autotrophic nitrifying bacterial populations at three application rates (P < 0.05), but Carbendazim decreased nitrosomonas populations only at the rate of 50 mg of A.I. per kg and also autotrophic nitrifying bacterial populations at three rates and heterotrophic nitrifying bacterial populations at the rates of 10 and 50 mg of A.I. per kg. The reasons for this difference were ascribed to arrest urea hydrolysis and impediment of denitrification and nitrification processes by chlorothalonil. In conclusion, to improve crop yielding, chlorothalonil might be more beneficial to conserve soil N by improving soil N fertility, compared with carbendazim.


Asunto(s)
Bencimidazoles/toxicidad , Carbamatos/toxicidad , Nitrilos/toxicidad , Nitrógeno/metabolismo , Microbiología del Suelo , Urea/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Desnitrificación/efectos de los fármacos , Fertilizantes , Fungicidas Industriales/toxicidad , Hidrólisis , Nitrificación/efectos de los fármacos , Nitrógeno/química , Suelo/química , Urea/química
19.
Ecotoxicol Environ Saf ; 183: 109507, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31386942

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) promote biodegradation in water treatment, but the effect of MWCNT on denitrification under aerobic conditions is still unclear. This investigation focused on the denitrification performance of MWCNT and its toxic effects on Alcaligenes sp. TB which showed that 30 mg/L MWCNTs increased NO3- removal efficiency from 84% to 100% and decreased the NO2-and N2O accumulation rates by 36% and 17.5%, respectively. Nitrite reductase and nitrous oxide reductase activities were further increased by 19.5% and 7.5%, respectively. The mechanism demonstrated that electron generation (NADH yield) and electron transportation system activity increased by 14.5% and 104%, respectively. Cell membrane analysis found that MWCNT caused an increase in polyunsaturated fatty acids, which had positive effects on electron transportation and membrane fluidity at a low concentration of 96 mg/kg but caused membrane lipid peroxidation and impaired membrane integrity at a high concentration of 115 mg/L. These findings confirmed that MWCNT affects the activity of Alcaligenes sp. TB and consequently enhances denitrification performance.


Asunto(s)
Alcaligenes/metabolismo , Desnitrificación/fisiología , Nanotubos de Carbono , Purificación del Agua/métodos , Biodegradación Ambiental , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Desnitrificación/efectos de los fármacos , Transporte de Electrón , Ácidos Grasos Insaturados/metabolismo , NAD/metabolismo , Nanotubos de Carbono/toxicidad , Nitratos/aislamiento & purificación
20.
Sci Total Environ ; 695: 133811, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31419687

RESUMEN

Nitrification and denitrification are the most important nitrogen transformation processes in the environment. Recently, due to widespread use, antibiotics have been reported to lead to environmental risks. Tetracycline (TC) is one of the most extensively used antibiotics in many areas. However, its reported effects on nitrogen transformations were conflicting in previous studies. In this study, the effects of TC on nitrogen transformations in sediment were investigated by analyzing TC transport and bacterial activity. It was found that the adsorption of TC onto the sediment was favorable and spontaneous, with adsorption capacity 54.3 mg/kg. The adsorption kinetics of TC onto the sediment and the isotherm fitted the Elvoich and Freundlich models, respectively, indicating that the adsorption was a chemisorption process, including electrostatic interactions and chemical bonding between TC and the sediment. TC showed no effect on nitrification in the sediment, but significantly inhibited the reduction of nitrate and nitrite during denitrification, consistent with observations made for the model denitrifier Paracoccus denitrificans under TC stress. Mechanistic study indicated that TC at 130 µg/g-cell inhibited 50.7% of P. denitrificans growth and 61.6% of cell viability. Meanwhile, the catalytic activities of the key denitrifying enzymes, nitrate reductase (NAR) and nitrite reductase (NIR), decreased to 29.1% and 68.0% of the control levels when the TC concentration was 130 µg/g-cell, suggesting that NAR was more sensitive to the TC than NIR, which contributed to a delay in nitrite accumulation.


Asunto(s)
Antibacterianos/toxicidad , Bacterias/efectos de los fármacos , Sedimentos Geológicos/microbiología , Nitrógeno/metabolismo , Tetraciclina/toxicidad , Adsorción , Desnitrificación/efectos de los fármacos , Sedimentos Geológicos/química , Nitrificación/efectos de los fármacos , Paracoccus denitrificans/efectos de los fármacos , Paracoccus denitrificans/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...