Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.658
1.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722356

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Dental Bonding , Glass , Materials Testing , Resin Cements , Silanes , Surface Properties , Tensile Strength , Water , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Silanes/chemistry , Water/chemistry , Dental Bonding/methods , Glass/chemistry , Microscopy, Electron, Scanning , Dental Stress Analysis
2.
BMC Oral Health ; 24(1): 555, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735948

OBJECTIVE: This study aimed to evaluate the effect of fence tray matching care (FTMC) in bracket bonding by measuring excess adhesive, as well as linear and angular deviations, and by comparing it with the half-wrapped tray (HWT). MATERIALS AND METHODS: An intraoral scanner was used to acquire data on the maxillary dental arch of a patient with periodontitis.Furthermore, 20 maxillary dental arch models were 3D printed. Using 3Shape, PlastyCAD software, and 3D printing technology, 10 FTMC (method I) and HWT (method II) were obtained. By preoperative preparation, intraoperative coordination, and postoperative measurement, the brackets were transferred from the trays to the 3D-printed maxillary dental arch models. Additionally, the bracket's excess adhesive as well as linear and angular deviations were measured, and the differences between the two methods were analyzed. RESULTS: Excess adhesive was observed in both methods, with FTMC showing less adhesive (P< 0.001), with a statistical difference. Furthermore, HWT's vertical, tip and torque, which was significantly greater than FTMC (P< 0.05), with no statistical difference among other respects. The study data of incisors, canines, and premolars, showed that the premolars had more adhesive residue and were more likely to have linear and angular deviations. CONCLUSIONS: The FTMC had higher bracket bonding effect in comparison to HWT, and the adhesive residue, linear and angular deviations are smaller. The fence tray offers an intuitive view of the precise bonding of the bracket, and can remove excess adhesive to prevent white spot lesions via care, providing a different bonding method for clinical applications.


Dental Bonding , Orthodontic Brackets , Humans , Dental Bonding/methods , In Vitro Techniques , Models, Dental , Adhesives , Printing, Three-Dimensional , Dental Cements , Dental Arch
3.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38770704

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Ceramics , Dental Bonding , Materials Testing , Resin Cements , Shear Strength , Silicon Dioxide , Silicon Dioxide/chemistry , Ceramics/chemistry , Time Factors , Resin Cements/chemistry , Computer-Aided Design , Surface Properties , Dental Stress Analysis , Cementation/methods , Dental Porcelain/chemistry , Humans , Composite Resins/chemistry , Dental Cements/chemistry , Potassium Compounds/chemistry , Aluminum Silicates/chemistry , Temperature
4.
J Adhes Dent ; 26(1): 135-145, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38771025

PURPOSE: To measure zirconia-to-zirconia microtensile bond strength (µTBS) using composite cements with and without primer. MATERIALS AND METHODS: Two Initial Zirconia UHT (GC) sticks (1.8x1.8x5.0 mm) were bonded using four cements with and without their respective manufacturer's primer/adhesive (G-CEM ONE [GOne] and G-Multi Primer, GC; Panavia V5 [Pv5]), and Panavia SA Cement Universal [PSAu], and Clearfil Ceramic Plus, Kuraray Noritake; RelyX Universal (RXu) and Scotchbond Universal Plus [SBUp], 3M Oral Care). Specimens were trimmed to an hour-glass shaped specimen whose isthmus is circular in cross-section. After 1-week water storage, the specimens were either tested immediately (1-week µTBS) or first subjected to 50,000 thermocycles (50kTC-aged µTBS). The fracture mode was categorized as either adhesive interfacial failure, cohesive failure in composite cement, or mixed failure, followed by SEM fracture analysis of selected specimens. Data were analyzed using linear mixed-effects statistics (α = 0.05; variables: composite cement, primer/adhesive application, aging). RESULTS: The statistical analysis revealed no significant differences with aging (p = 0.3662). No significant difference in µTBS with/without primer and aging was recorded for GOne and PSAu. A significantly higher µTBS was recorded for Pv5 and RXu when applied with their respective primer/adhesive. Comparing the four composite cements when they were applied in the manner that resulted in their best performance, a significant difference in 50kTC-aged µTBS was found for PSAu compared to Pv5 and RXu. A significant decrease in µTBS upon 50kTC aging was only recorded for RXu in combination with SBUp. CONCLUSION: Adequate bonding to zirconia requires the functional monomer 10-MDP either contained in the composite cement, in which case a separate 10-MDP primer is no longer needed, or in the separately applied primer/adhesive.


Composite Resins , Dental Bonding , Materials Testing , Methacrylates , Resin Cements , Tensile Strength , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Composite Resins/chemistry , Methacrylates/chemistry , Dental Cements/chemistry , Ceramics/chemistry , Dental Stress Analysis , Humans , Time Factors , Water/chemistry , Temperature , Dental Porcelain/chemistry , Surface Properties , Dental Materials/chemistry , Glass Ionomer Cements
5.
Am J Dent ; 37(2): 71-77, 2024 Apr.
Article En | MEDLINE | ID: mdl-38704849

PURPOSE: To investigate the effect of painless low-power Er:YAG laser irradiation of conventional and polymer-infiltrated ceramic network (PICN) type CAD-CAM resin-based composites (RBCs) on resin bonding. METHODS: An Er:YAG laser system, phosphoric acid etchant, universal adhesive, RBC, and two types of CAD-CAM RBC block were used. Microtensile bond strength, fracture mode, scanning electron microscopy (SEM) observations of bonding interfaces and CAD-CAM surfaces, and surface roughness of ground and pretreated surfaces were investigated. As pretreatment methods, low-power Er:YAG laser irradiation and air-abrasion with alumina particles were used. RESULTS: The effect of low-power Er:YAG laser irradiation of CAD-CAM RBCs on bonding to repair resin varied depending on the type of CAD-CAM RBCs. CLINICAL SIGNIFICANCE: The low-power Er:YAG laser irradiation of the conventional CAD-CAM RBCs was shown to be effective as a surface pretreatment for resin bonding, while the laser irradiation of PICN-type CAD-CAM RBCs was not effective.


Composite Resins , Computer-Aided Design , Dental Bonding , Lasers, Solid-State , Microscopy, Electron, Scanning , Surface Properties , Composite Resins/chemistry , Tensile Strength , Materials Testing , Humans , Ceramics/chemistry , Acid Etching, Dental
6.
BMC Oral Health ; 24(1): 513, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698366

BACKGROUND: This study aims to evaluate the effect of surface treatment and resin cement on the shear bond strength (SBS) and mode of failure of polyetheretherketone (PEEK) to lithium disilicate ceramic (LDC). This is suggested to study alternative veneering of PEEK frameworks with a ceramic material. METHODS: eighty discs were prepared from PEEK blank and from lithium disilicate ceramic. Samples were divided into four groups according to surface treatment: Group (A) air abraded with 110 µm Al2O3, Group (AP) air abrasion and primer application, Group (S) 98% sulfuric acid etching for 60 s, Group (SP) Sulfuric acid and primer. Each group was subdivided into two subgroups based on resin cement type used for bonding LDC:1) subgroup (L) self- adhesive resin cement and 2) subgroup (B) conventional resin cement (n = 10). Thermocycling was done for all samples. The bond strength was assessed using the shear bond strength test (SBS). Failure mode analysis was done at 50X magnification with a stereomicroscope. Samples were chosen from each group for scanning electron microscope (SEM). The three-way nested ANOVA followed by Tukey's post hoc test were used for statistical analysis of results. Comparisons of effects were done utilizing one way ANOVA and (p < 0.05). RESULTS: The highest mean of shear bond strength values was demonstrated in Group of air abrasion with primer application using conventional resin cement (APB) (12.21 ± 2.14 MPa). Sulfuric acid groups showed lower shear bond strength values and the majority failed in thermocycling especially when no primer was applied. The failure mode analysis showed that the predominant failure type was adhesive failure between cement and PEEK, while the remaining was mixed failure between cement and PEEK. CONCLUSION: The air abrasion followed by primer application and conventional resin cement used for bonding Lithium Disilicate to PEEK achieved the best bond strength. Primer application did not have an effect when self-adhesive resin cement was used in air-abraded groups. Priming step is mandatory whenever sulfuric acid etching surface treatment is utilized for PEEK.


Benzophenones , Dental Bonding , Dental Porcelain , Dental Stress Analysis , Ketones , Materials Testing , Polyethylene Glycols , Polymers , Resin Cements , Shear Strength , Surface Properties , Dental Bonding/methods , Acid Etching, Dental/methods , Sulfuric Acids , Ceramics/chemistry , Air Abrasion, Dental/methods , Aluminum Oxide , Dental Veneers , Dental Etching/methods , Humans
7.
Swiss Dent J ; 134(1): 72-83, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38716799

Bonded indirect restorations can be difficult to lute in an accurate position due to the lack of preparation geometry. Furthermore, while the use of a rubberdam has been proven to be the best technique for providing the most efficient conditions for adhesive luting, its use often requires the use of secondary clamps, which do not allow the operator to lute more than two prosthetic pieces at the same time. The multi-luting concept is a pragmatic approach that of- fers the possibility to deliver several, if not all restorations, to be bonded at the same time, thus ensuring their correct positioning.


Dental Bonding , Humans , Dental Bonding/methods , Resin Cements , Dental Cements
8.
Clin Exp Dent Res ; 10(3): e888, 2024 Jun.
Article En | MEDLINE | ID: mdl-38712436

OBJECTIVE: To evaluate the effects of metal primer II (MP II) on the shear bond strength (SBS) of orthodontic brackets bonded to teeth and bis-acryl composite provisional material (Bis-Acryl). MATERIAL AND METHODS: Twenty extracted human premolars specimens and 20 premolar shaped Bis-Acryl specimens were obtained and randomly divided into two surface groups. The first group consisted of human premolars (T) bonded to brackets in the conventional way while in the second (T-MP) MP II was applied on the bracket base before bonding. Similarly, one group of provisional material (PM) was prepared according to conventional treatment and another with the application of MP-II metal bonder (PM-MP). In all cases Ortho-brackets (Victory Series, 3 M) were bonded employing Transbond XT resin cement. Then the brackets were debonded under shear and the results were statistically analyzed by two-way analysis of variance and Holm Sidak at α = .05. The debonded surfaces of all specimens were examined by light microscopy and the Adhesive Remnant Index (ARI) was recorded. RESULTS: The SBS results exhibited significant differences er (p < .001). For both the T and TM the application of MP-II increased the SBS compared to respective control groups (p < .001). The T-C group was found inferior compared to PM-C (p < .001) and the same is true for the comparison between T-MP and PM-MP (p < .001). ARI indexes demonstrated that the tooth groups were characterized by a predominantly adhesive failure at the resin-dentin interface. In contrast, the control group for provisional crowns (PM-C) showed a predominantly cohesive failure mode, which moved to predominantly adhesive after the application of MP II. CONCLUSION: The application of MP II enhances the SBS on both, human enamel and provisional crown materials.


Dental Bonding , Orthodontic Brackets , Resin Cements , Shear Strength , Surface Properties , Humans , Resin Cements/chemistry , Dental Bonding/methods , Bicuspid , Dental Stress Analysis , Materials Testing , Acrylic Resins/chemistry , Composite Resins/chemistry , Acid Etching, Dental/methods , Dental Enamel/chemistry , Dental Enamel/drug effects
10.
J Contemp Dent Pract ; 25(3): 231-235, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690695

AIM: This study aimed to compare the bond strength of AH Plus sealer to root canal dentin when used with or without various antibiotics including amoxicillin, clindamycin, and triple antibiotic mixture (TAM). MATERIALS AND METHODS: A total of 80 single-rooted extracted human teeth were instrumented and obturated with gutta-percha and four different sealer-antibiotic combinations (n = 20). Group I: AH Plus without any antibiotics, Group II: AH Plus with amoxicillin, Group III: AH Plus with clindamycin, and Group IV: AH Plus with TAM. After seven days, the roots were sectioned perpendicular to their long axis and 1 mm thick slices were obtained from the midroots. The specimens were subjected to a push-out bond strength test and failure modes were also evaluated. Data was analyzed using Kruskal-Wallis and Dunn's post hoc tests. RESULTS: Group IV had significantly higher bond strength compared to other groups (p ≤ 0.05). No significant differences were found between other groups. While the sealer-antibiotic groups predominantly showed cohesive failure modes, the control group displayed both cohesive and mixed failure modes. CONCLUSION: Within the limitations of this study, the addition of TAM increased the push-out bond strength of AH Plus. CLINICAL SIGNIFICANCE: Amoxicillin, clindamycin, or TAM can be added to AH Plus for increased antibacterial efficacy without concern about their effects on the bond strength of the sealer. How to cite this article: Adl A, Shojaei NS, Ranjbar N. The Effect of Adding Various Antibiotics on the Push-out Bond Strength of a Resin-based Sealer: An In Vitro Study. J Contemp Dent Pract 2024;25(3):231-235.


Amoxicillin , Anti-Bacterial Agents , Dental Bonding , Epoxy Resins , Root Canal Filling Materials , Humans , Root Canal Filling Materials/chemistry , In Vitro Techniques , Clindamycin , Materials Testing , Dental Stress Analysis , Root Canal Obturation/methods
11.
J Contemp Dent Pract ; 25(3): 245-249, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690698

AIM: The aim of the study is to determine the difference in the shear bond strengths to dentin among dental composite (Filtek Z350®, 3M), compomer (Dyract Flow®, Dentsply) and Giomer (Beautifil®, Shofu) with 3MTM Single BondTM Universal Adhesive (SBU) (7th generation, self-etch, single solution adhesive) and AdperTM Single Bond 2 Adhesive (ASB) (5th generation, total-etch, two solution adhesive). MATERIALS AND METHODS: Sixty extracted human permanent teeth were collected, cleansed of debris, and placed in distilled water. The samples were segregated into two groups depicting the two bonding agents-AdperTM (ASB) and 3MTM Single Bond Universal (SBU) and sub-grouped into three groups depicting the three restorative materials (Composite, Giomer, and Compomer) used. Groups were respresented as follows: Group I-ASB + Composite; Group II-ASB + Giomer; Group III-ASB + Compomer; Group IV-SBU + Giomer; Group V-SBU + Compomer; Group VI-SBU + Composite. After applying the bonding agent as per the manufacturer's instructions, following which the restorative material was placed. A Universal Testing Machine (Instron 3366, UK) was employed to estimate the shear bond strength of the individual restorative material and shear bond strengths were calculated. RESULTS: Composite bonded with SBU (group VI) displayed the greatest shear strength (11.16 ± 4.22 MPa). Moreover, Giomers and flowable compomers displayed better bond strengths with ASB compared with their SBU-bonded counterparts. CONCLUSION: These results mark the importance of careful material selection in clinical practice and the bonding agent used to achieve optimal bond strength and enhance the clinical longevity and durability of dental restorations. CLINICAL SIGNIFICANCE: From a clinical perspective, to avoid a compressive or a shear failure, it would be preferrable to use a direct composite restorative material with SBU (Single bond universal adhesive, 7th generation) to achieve maximum bond strength. How to cite this article: Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, et al. Effect of Bonding Agents on the Shear Bond Strength of Tooth-colored Restorative Materials to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):245-249.


Compomers , Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Dentin , Shear Strength , Composite Resins/chemistry , Humans , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , In Vitro Techniques , Compomers/chemistry , Bisphenol A-Glycidyl Methacrylate , Dental Restoration, Permanent/methods , Materials Testing , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Acrylic Resins/chemistry
12.
J Contemp Dent Pract ; 25(3): 226-230, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690694

AIM: To assess the effectiveness of various surface treatments and adhesives on the bond strength of zirconia-based ceramic to dentin. MATERIALS AND METHODS: Eighty samples of zirconia were subjected to the four-surface treatment protocols (sandblasting, 48% hydrofluoric acid (HF), 48% hydrofluoric acid + 70% nitric acid (HNO3) and no treatment (control) following which the samples from each group were subdivided into two subgroups (n = 10) based on the resin cement employed for cementation (RelyX U200 and G-Cem Linkforce). The bonded specimens were subjected to shear stress to measure the bond strength using Universal testing machine. To test the difference in bond strength among the eight study groups, the Kruskal-Wallis ANOVA test was applied and for comparison between cements in each group, Mann-Whitney U test was applied. RESULTS: The highest bond strength values were observed for 48% HF group cemented with G-Cem Linkforce resin cement (16.220 ± 1.574) and lowest for control group-RelyX (4.954 ± 0.972). G-Cem cement showed higher bond strength than RelyX for all surface treatments except 48% HF + 70% nitric acid. CONCLUSION: It can be inferred that 48% HF can etch zirconia and generate a porous structure that proves to be beneficial for bonding. CLINICAL SIGNIFICANCE: The increasing demand for esthetics has led to the replacement of metal-ceramic materials with zirconia-based ceramics. However, the chemical inertness of zirconia to various conventional surface treating agents has continuously challenged researchers to discover a new surface treatment protocol that could enhance the bond strength of zirconia. How to cite this article: Yenamandra MS, Joseph A, Singh P, et al. Effect of Various Surface Treatments of Zirconia on its Adhesive Properties to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):226-230.


Dental Bonding , Dentin , Materials Testing , Resin Cements , Surface Properties , Zirconium , Resin Cements/chemistry , Dental Bonding/methods , In Vitro Techniques , Humans , Dental Stress Analysis , Shear Strength , Hydrofluoric Acid/chemistry , Nitric Acid/chemistry , Ceramics/chemistry
13.
Braz Dent J ; 35: e245720, 2024.
Article En | MEDLINE | ID: mdl-38775593

This study evaluated a new method of adhesive system application on the bond strength between fiber post and root dentin using two adhesive systems. The canals of sixty bovine incisors were prepared and obturated. The roots were divided into six groups (n=10) according to the adhesive system (Clearfil SE - CSE and Single Bond Universal - SBU) and the application strategy (microbrush - MB; rotary brush - RB; and ultrasonic tip - US). The glass fiber posts were cemented with resin cement (RelyX ARC). The roots were sectioned perpendicularly to their long axis, and three slices per root were obtained. Previously to the push-out test, confocal laser scanning microscopy (CLSM) was performed to illustrate the interfacial adaptation of the cement to the root canal walls. Failure patterns were analyzed with 40x magnification. Shapiro-Wilk indicated a normal distribution of the data. The bond strength values were compared using one-way ANOVA and Tukey's tests. Student's T test analyzed the differences between the adhesive systems within each third and protocol. A significance level of 5% was used. CSE with RB showed higher mean bond strength values compared to MB (conventional technique) (P < 0.05). US application resulted in intermediate bond strength values for CSE (P > 0.05). The application of SBU using RB generated higher mean bond strength values compared to MB and US (P < 0.05). Adhesive failures were predominant (65.5%). CSE and SBU application with the new rotary brush improved the bond strength of fiber posts to root dentin compared to the conventional strategy.


Dentin , Post and Core Technique , Resin Cements , Cattle , Animals , Resin Cements/chemistry , Dental Bonding/methods , Bisphenol A-Glycidyl Methacrylate/chemistry , Dentin-Bonding Agents/chemistry , Microscopy, Confocal , Polymethacrylic Acids/chemistry , Materials Testing , Glass/chemistry , Tooth Root , Polyethylene Glycols/chemistry , Dental Stress Analysis
14.
J Adhes Dent ; 26(1): 103-116, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38602234

PURPOSE: To investigate the antibacterial effects of Terminalia catappa Linn (TCL) leaf extracts at different concentrations and the effects of these extracts used as primers on the long-term adhesive properties of two universal adhesives. MATERIALS AND METHODS: After extract preparation, the antimicrobial and antibacterial activities of TCL against Streptococcus mutans (UA 159) were assessed in microdilution assays to provide the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Additionally, to provide quantitative data on the ability of TCL extract to reduce cell viability, colony forming units (CFU) were counted. To examine adhesive properties, 288 human molars were randomly assigned to 32 experimental conditions (n = 9) according to the following variables: (1) treatment agent: negative control (untreated surface), and primers at concentrations of 1xMIC, 5xMIC, and 10xMIC; (2) adhesives: Scotchbond Universal (SBU) and Futurabond Universal (FBU); (3) adhesive strategy: etch-and-rinse (ER) or self-etch (SE); and (4) storage time: 24 h or after 2 years. Primers were applied for 60 s, upon which the teeth were incrementally restored and sectioned into adhesive-dentin bonded sticks. These were tested for microtensile bond strength (µTBS) and nanoleakage (NL) after 24-h and 2-year water storage, as well as in-situ degree of conversion (DC) at 24 h. The chemical profile of the hybrid layer was determined via micro-Raman spectroscopy. Biofilm assay data were analyzed using the Kruskal-Wallis test; the pH of culture media and the chemical profile were analyzed by one-way ANOVA. The adhesive properties (µTBS, NL, DC) were evaluated using a four-way ANOVA and Tukey's test. Significance was set at 5%. RESULTS: Similar values of MIC and MBC were observed (2 mg/ml), showing bactericidal potential. CFU analysis demonstrated that concentrations of 5xMIC and 10xMIC significantly inhibited biofilm formation (p < 0.001). The application of the TCL primer at all concentrations significantly increased the immediate µTBS and DC, and decreased the immediate NL values when compared to the control group (p < 0.05), regardless of the adhesive and adhesive strategies. Despite an increase in the NL values for all groups after 2 years (p > 0.05), in groups where the TCL primer was applied, the µTBS remained constant after 2 years for both adhesives, while a decrease in the µTBS was observed in the control groups (p < 0.05). Usually, 10xMIC showed better results than 1xMIC and 5xMIC (p < 0.05). The application of TCL promoted cross-linking; cross-linking rates increased proportionally to the concentration of TCL (p < 0.05). CONCLUSION: Primers containing TCL promoted bactericidal and bacteriostatic action, as well as cross-linking with dentin, while maintaining the adhesive properties of the adhesive-dentin interface after 2 years of water storage.


Dental Bonding , Terminalia , Humans , Dental Cements/pharmacology , Dental Cements/chemistry , Dentin-Bonding Agents/pharmacology , Dentin-Bonding Agents/chemistry , Composite Resins/chemistry , Dentin , Tensile Strength , Resin Cements/pharmacology , Resin Cements/chemistry , Water/chemistry , Anti-Bacterial Agents/pharmacology , Materials Testing
15.
J Mech Behav Biomed Mater ; 154: 106498, 2024 Jun.
Article En | MEDLINE | ID: mdl-38581962

Chitosan (CS) and phloroglucinol (PhG), two extracts abundantly found in marine life, were investigated for their ability to biomodify demineralized dentin by enhancing collagen crosslinks and improving dentin extracellular matrix (ECM) mechanical and biochemical stability. Dentin obtained from non-carious extracted human molars were demineralized with phosphoric acid. Baseline Fourier-transform infrared (FTIR) spectra, apparent flexural elastic modulus (AE) and dry mass (DM) of each specimen were independently acquired. Specimens were randomly incubated for 5 min into either ultrapure water (no-treatment), 1% glutaraldehyde (GA), 1% CS or 1% PhG. Water and GA were used, respectively, as a negative and positive control for collagen crosslinks. Specimens' post-treatment FTIR spectra, AE, and DM were obtained and compared with correspondent baseline measurements. Additionally, the host-derived proteolytic activity of dentin ECM was assessed using hydroxyproline assay (HYP) and spectrofluorometric analysis of a fluorescent-quenched substrate specific for matrix metalloproteinases (MMPs). Finally, the bond strength of an etch-and-rinse adhesive was evaluated after application of marine compounds as non-rinsing dentin primers. Dentin specimens FTIR spectral profile changed remarkably, and their AE increased significantly after treatment with marine compounds. DM variation, HYP assay and fluorogenic substrate analysis concurrently indicated the biodegradation of CS- and PhG-treated specimens was significantly lesser in comparison with untreated specimens. CS and PhG treatments enhanced biomechanical/biochemical stability of demineralized dentin. These novel results show that PhG is a primer with the capacity to biomodify demineralized dentin, hence rendering it less susceptible to biodegradation by host-proteases.


Chitosan , Dental Bonding , Humans , Dentin/chemistry , Extracellular Matrix/metabolism , Collagen/metabolism , Hydroxyproline , Dentin-Bonding Agents/chemistry , Water/metabolism , Tensile Strength
16.
Biomed Res Int ; 2024: 6670159, 2024.
Article En | MEDLINE | ID: mdl-38606199

Objective: This research study investigated the effect of new decontamination protocols on the bonding capacity of saliva-contaminated monolithic zirconia (MZ) ceramics cemented with two different monomer-containing self-adhesive resin cements. Materials and Methods: Standardized tooth preparations (4 mm. axial height) were performed for eighty human maxillary premolars under constant water cooling system. Eighty monolithic zirconia crowns (Whitepeaks Supreme Monolith) (n = 8/10 groups) were manufactured by CAD-CAM. Specimens were kept in the artificial saliva at pH = 7.3 for 1 minute at 37°C except control groups. The specimens have not been prealumina blasted and grouped according to cleaning methods and resin cements: control groups (C) (no saliva contamination + GPDM + 4-META (N) (CN) and 10-MDP (M) containing resin cement (CM), alumina blasted (AL) + GPDM + 4-META (ALN) and 10-MDP containing resin cement (ALM), zirconium oxide containing universal cleaning agent (IC) applied + GPDM + 4-META (N) (ICN) and 10-MDP containing resin cement (ICM), pumice (P) applied + GPDM + 4-META (PN) and 10-MDP containing resin cement (PM), and air-water spray (AW) applied + GPDM + 4-META (AWN) and 10-MDP containing resin cement (AWM)). Monobond Plus was applied to all surfaces for 40 seconds before cementation. The thermal cycle was applied at 5,000 cycles after cementation. The crowns were tested in tensile mode at a speed of 1 mm/min. The mode of failure was recorded. SEM examinations were carried out at different magnifications. Data were analyzed using rank-based Kruskal-Wallis and Mann-Whitney tests. Results: No significant differences were found between the surface treatments and between the two types of resin cements. Interaction effects between surface treatments and resin cements were found to be significant by two-way ANOVA analysis. ICM group resulted in significantly better bond strength results compared with CN. ICM was found to result in better bond strength results compared with PM. The combination of universal cleaning agent and 10-MDP containing resin cement had significantly the highest cementation bond strength values. The increasing order of mean tensile bond strength values of decontamination protocols was C < AW < P < AL < IC. The mean tensile bond strength of 10-MDP containing resin cement was slightly higher than GPDM + 4-META containing resin cement. Conclusions: Universal cleaning agents can be preferred as an efficient cleaning method with 10-MDP-containing cement after saliva contamination for better adhesive bond strength of 4 mm crown preparation height of monolithic zirconia ceramics.


Dental Bonding , Methacrylates , Resin Cements , Humans , Resin Cements/chemistry , Saliva , Decontamination , Materials Testing , Zirconium/chemistry , Ceramics/chemistry , Water/chemistry , Shear Strength , Surface Properties , Dental Stress Analysis
17.
Eur J Oral Sci ; 132(3): e12989, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679835

This study aimed at examining the bond strength between zirconia and ceramic veneer, following the ISO 9693 guidelines. A total of fifty specimens of zirconia/ceramic-veneer system were produced using two commercial zirconias (VITA YZ-HTWhite and Zolid HT+ White, referred to as Group A and Group B, respectively) and a ceramic-veneering material (Zirkonia 750). The microstructure (via x-ray diffraction analysis, XRD and Secondary Electron mode, SEM) and the mechanical properties (via 3-point bending tests) of the two groups were assessed. Then, experiments were conducted according to the ISO 9693 and conventional protocols applied for producing zirconia/ceramic-veneer restorations. Bond strength values, measured by 3-point bending tests, were 34.42 ± 7.60 MPa for Group A and 31.92 ± 6.95 MPa for Group B. SEM observations of the cohesively fractured surfaces (on the porcelain side) and the examination for normality using the Shapiro-Wilk test suggested the use of Weibull statistical analysis. Median strength (σ50%) for Group A and Group B was 34.76 and 32.22 MPa, while the characteristic strength (σ63.2%) was 35.78 and 33.14 MPa, respectively. The Weibull modulus disparity between groups (12.69 and 13.07) was not significant. Bond strength exceeded the ISO 9693 minimum of 20 MPa, suggesting satisfactory strength for clinical use.


Dental Bonding , Dental Porcelain , Dental Stress Analysis , Dental Veneers , Materials Testing , Microscopy, Electron, Scanning , X-Ray Diffraction , Zirconium , Zirconium/chemistry , Dental Porcelain/chemistry , Surface Properties , Ceramics/chemistry , Dental Materials/chemistry , Humans
18.
J Dent ; 145: 104992, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599563

OBJECTIVES: The objective of this study was to synthesize arginine loaded mesoporous silica nanoparticles (Arg@MSNs), develop a novel orthodontic adhesive using Arg@MSNs as modifiers, and investigate the adhesive performance, antibacterial activity, and biocompatibility. METHODS: Arg@MSNs were synthesized by immobilizing arginine into MSNs and characterized using transmission electron microscope (TEM), dynamic light scattering (DLS), and Fourier Transform Infrared Spectrometer (FT-IR). Arg@MSNs were incorporated into Transbond XT adhesive with different mass fraction to form functional adhesives. The degree of conversion (DC), arginine release behavior, adhesive performance, antibacterial activity against Streptococcus mutans biofilm, and cytotoxicity were comprehensively evaluated. RESULTS: TEM, DLS, and FT-IR characterizations confirmed the successful preparation of Arg@MSNs. The incorporation of Arg@MSNs did not significantly affect DC and exhibited clinically acceptable bonding strength. Compared to the commercial control, the Arg@MSNs modified adhesives greatly suppressed the metabolic activity and polysaccharide production while increased the biofilm pH values. The cell counting kit (CCK)-8 test indicated no cytotoxicity. CONCLUSIONS: The novel orthodontic adhesive containing Arg@MSNs exhibited significantly enhanced antibacterial activities and inhibitory effects on acid production compared to the commercial adhesive without compromising their bonding strength or biocompatibility. CLINICAL SIGNIFICANCE: The novel orthodontic adhesive containing Arg@MSNs exhibits potential clinical benefits in preventing demineralization of enamel surfaces around or beneath orthodontic brackets due to its enhanced antibacterial activities and acid-producing inhibitory effects.


Anti-Bacterial Agents , Arginine , Biofilms , Nanoparticles , Resin Cements , Silicon Dioxide , Streptococcus mutans , Arginine/chemistry , Arginine/pharmacology , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Streptococcus mutans/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Resin Cements/chemistry , Humans , Dental Cements/chemistry , Dental Cements/pharmacology , Porosity , Materials Testing , Microscopy, Electron, Transmission , Dental Bonding , Orthodontic Brackets , Hydrogen-Ion Concentration , Biocompatible Materials/chemistry
19.
J Dent ; 145: 104985, 2024 Jun.
Article En | MEDLINE | ID: mdl-38574846

OBJECTIVE: Clinical contamination during direct adhesive restorative procedures can affect various adhesive interfaces differently and contribute to bulk failure of the restorations. This review aims to summarise the current knowledge on the influence of a variety of clinical contaminants on the bond strength at various adhesive interfaces during adhesive restorative procedures and identify gaps in the literature for future research. DATA AND SOURCES: An electronic database search was performed in PubMed and EMBASE to identify articles that investigated the influence of contaminants on direct restorative bonding procedures. A data-charting form was developed by two researchers to capture the key characteristics of each eligible study. STUDY SELECTION: The initial search yielded 1,428 articles. Fifty-seven articles published between 1 Jan 2007 and 25 Oct 2023 were included in the final review. Thirty-three of the articles examined the influence of saliva contamination, twelve articles examined the influence of blood contamination, and twenty-five articles examined the influence of other contaminants. CONCLUSION: Saliva contamination exerted less influence on the decrease in bond strength when self-etch systems were used, compared to when etch-and-rinse systems were used. Blood contamination adversely affected the bond strength at the interface between resin composite and dentine, and resin composite and resin-modified glass ionomer cement. Treating contaminated surfaces with water spray for 10-30 s followed by air drying could be effective in recovering bond strength following saliva and blood contamination. CLINICAL SIGNIFICANCE: This scoping review provides a valuable overview of the range of potential clinical contaminants that can influence the bond strength between different interfaces in direct adhesive restorative procedures. Additionally, it identifies potential decontamination protocols that can be followed to restore and enhance bond strength.


Composite Resins , Dental Bonding , Humans , Composite Resins/chemistry , Dental Restoration, Permanent/methods , Saliva , Glass Ionomer Cements/chemistry , Dentin-Bonding Agents/chemistry , Materials Testing , Dentin , Dental Cements/chemistry , Dental Stress Analysis , Surface Properties , Resin Cements/chemistry
20.
Dent Med Probl ; 61(2): 249-255, 2024.
Article En | MEDLINE | ID: mdl-38652924

BACKGROUND: As polyether ether ketone (PEEK) is a relatively new material in dentistry, its bonding properties with regard to dental acrylic base materials are not fully known. To ensure the long-term success of removable dentures with a PEEK framework, the base materials must be well bonded to each other. OBJECTIVES: The study aimed to investigate the effects of different kinds of surface roughening treatment on PEEK and acrylic resin bonding. MATERIAL AND METHODS: Eighty PEEK specimens (N = 80) were randomly divided into 5 groups (n = 16 per group) and subjected to various surface roughening treatment (control, grinding, sandblasting, tribochemical silica coating (CoJet), and sulfuric acid etching). Heat-polymerized acrylic resin was applied to the treated surfaces of the PEEK specimens. The shear bond strength (SBS) test, environmental scanning electron microscopy (ESEM) analysis and three-dimensional (3D) surface topography analysis were performed. The statistical analysis of the data was conducted using the analysis of variance (ANOVA) and Tukey's multiple comparison test. RESULTS: The one-way ANOVA showed significant differences in the SBS values between the groups (p = 0.001). Sandblasting, tribochemical silica coating and sulfuric acid etching resulted in high SBS values (p = 0.001). The highest SBS values were observed in the sulfuric acid etching group (8.83 ±3.63 MPa), while the lowest SBS values were observed in the control group (3.33 ±2.50 MPa). CONCLUSIONS: The additional roughening treatment applied to the PEEK surface increases the bond strength with heat-polymerized acrylic resin.


Acrylic Resins , Benzophenones , Dental Bonding , Ketones , Polyethylene Glycols , Polymers , Surface Properties , Pilot Projects , Ketones/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry , Microscopy, Electron, Scanning , Materials Testing , Humans , Shear Strength , Sulfuric Acids/chemistry , Dental Stress Analysis
...