Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Nucleic Acids Res ; 52(9): 5195-5208, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38567730

RESUMEN

Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Plásmidos , Rec A Recombinasas , Plásmidos/genética , Escherichia coli/genética , Rec A Recombinasas/metabolismo , Rec A Recombinasas/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Recombinación Genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Exodesoxirribonucleasa V/metabolismo , Exodesoxirribonucleasa V/genética , ADN Bacteriano/metabolismo , Elementos Transponibles de ADN/genética , Enzimas de Restricción del ADN , Proteínas de Unión al ADN
2.
Nat Microbiol ; 5(9): 1107-1118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32483229

RESUMEN

Type I restriction-modification (R-M) systems are widespread in prokaryotic genomes and provide robust protection against foreign DNA. They are multisubunit enzymes with methyltransferase, endonuclease and translocase activities. Despite extensive studies over the past five decades, little is known about the molecular mechanisms of these sophisticated machines. Here, we report the cryo-electron microscopy structures of the representative EcoR124I R-M system in different assemblies (R2M2S1, R1M2S1 and M2S1) bound to target DNA and the phage and mobile genetic element-encoded anti-restriction proteins Ocr and ArdA. EcoR124I can precisely regulate different enzymatic activities by adopting distinct conformations. The marked conformational transitions of EcoR124I are dependent on the intrinsic flexibility at both the individual-subunit and assembled-complex levels. Moreover, Ocr and ArdA use a DNA-mimicry strategy to inhibit multiple activities, but do not block the conformational transitions of the complexes. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into assembly, operation and inhibition mechanisms of type I R-M systems.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/química , Enzimas de Restricción-Modificación del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Proteínas Bacterianas , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , Enzimas de Restricción-Modificación del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutación , Conformación Proteica , Proteínas Represoras , Proteínas Virales
3.
Int J Antimicrob Agents ; 56(2): 106050, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32544567

RESUMEN

Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) have disseminated worldwide and are a major threat to public health. The multidrug-resistant (MDR)-phenotype of KPC-KP are commonly associated with the presence of high molecular weight blaKPC plasmids. Restriction-modification (R-M) systems provide bacteria with innate defense against plasmids or other infectious gene elements. As blaKPC plasmids are favored by such MDR K. pneumoniae, it was of interest to examine the co-distribution of R-M and acquired blaKPC plasmids in KPC-KP. A total of 459 clinical K. pneumoniae isolates in China and 217 global whole-genome sequences in GenBank were collected to determine the prevalence of type I R-M systems. The type I R-M systems were scarce in the KPC-positive group and high-risk Klebsiella pneumoniae clonal group 258 (CG258). The polymorphisms of type I R-M observed in K. pneumoniae revealed the ubiquity of their recognition sequences in DNA; therefore, the type I R-M systems could attack most invading DNA elements, such as blaKPC genes. Overall, this work indicated the type I R-M systems may impact the acquisition of blaKPC genes in K. pneumoniae.


Asunto(s)
Proteínas Bacterianas/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Transferencia de Gen Horizontal , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Humanos , Secuencias Repetitivas Esparcidas , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/clasificación , Plásmidos/genética , Polimorfismo Genético , Secuenciación Completa del Genoma
4.
FASEB J ; 34(1): 1038-1051, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914596

RESUMEN

Over recent years several examples of randomly switching methyltransferases, associated with Type III restriction-modification (R-M) systems, have been described in pathogenic bacteria. In every case examined, changes in simple DNA sequence repeats result in variable methyltransferase expression and result in global changes in gene expression, and differentiation of the bacterial cell into distinct phenotypes. These epigenetic regulatory systems are called phasevarions, phase-variable regulons, and are widespread in bacteria, with 17.4% of Type III R-M system containing simple DNA sequence repeats. A distinct, recombination-driven random switching system has also been described in Streptococci in Type I R-M systems that also regulate gene expression. Here, we interrogate the most extensive and well-curated database of R-M systems, REBASE, by searching for all possible simple DNA sequence repeats in the hsdRMS genes that encode Type I R-M systems. We report that 7.9% of hsdS, 2% of hsdM, and of 4.3% of hsdR genes contain simple sequence repeats that are capable of mediating phase variation. Phase variation of both hsdM and hsdS genes will lead to differential methyltransferase expression or specificity, and thereby the potential to control phasevarions. These data suggest that in addition to well characterized phasevarions controlled by Type III mod genes, and the previously described Streptococcal Type I R-M systems that switch via recombination, approximately 10% of all Type I R-M systems surveyed herein have independently evolved the ability to randomly switch expression via simple DNA sequence repeats.


Asunto(s)
Epigénesis Genética , Repeticiones de Microsatélite , Regulón , Proteínas Bacterianas/genética , Biología Computacional , ADN/análisis , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Fusobacterium nucleatum , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Mannheimia haemolytica , Metiltransferasas/metabolismo , Fenotipo , Pseudomonas aeruginosa , Salmonella enterica
5.
mBio ; 10(6)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848274

RESUMEN

Staphylococcus epidermidis is a significant opportunistic pathogen of humans. Molecular studies in this species have been hampered by the presence of restriction-modification (RM) systems that limit introduction of foreign DNA. Here, we establish the complete genomes and methylomes for seven clinically significant, genetically diverse S. epidermidis isolates and perform the first systematic genomic analyses of the type I RM systems within both S. epidermidis and Staphylococcus aureus Our analyses revealed marked differences in the gene arrangement, chromosomal location, and movement of type I RM systems between the two species. Unlike S. aureus, S. epidermidis type I RM systems demonstrate extensive diversity even within a single genetic lineage. This is contrary to current assumptions and has important implications for approaching the genetic manipulation of S. epidermidis Using Escherichia coli plasmid artificial modification (PAM) to express S. epidermidishsdMS, we readily overcame restriction barriers in S. epidermidis and achieved electroporation efficiencies equivalent to those of modification-deficient mutants. With these functional experiments, we demonstrated how genomic data can be used to predict both the functionality of type I RM systems and the potential for a strain to be electroporation proficient. We outline an efficient approach for the genetic manipulation of S. epidermidis strains from diverse genetic backgrounds, including those that have hitherto been intractable. Additionally, we identified S. epidermidis BPH0736, a naturally restriction-defective, clinically significant, multidrug-resistant ST2 isolate, as an ideal candidate for molecular studies.IMPORTANCEStaphylococcus epidermidis is a major cause of hospital-acquired infections, especially those related to implanted medical devices. Understanding how S. epidermidis causes disease and devising ways to combat these infections have been hindered by an inability to genetically manipulate clinically significant hospital-adapted strains. Here, we provide the first comprehensive analyses of the barriers to the uptake of foreign DNA in S. epidermidis and demonstrate that these are distinct from those described for S. aureus Using these insights, we demonstrate an efficient approach for the genetic manipulation of S. epidermidis to enable the study of clinical isolates for the first time.


Asunto(s)
Biología Computacional , Minería de Datos , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Epigenoma , Epigenómica , Perfilación de la Expresión Génica , Staphylococcus epidermidis/fisiología , Mapeo Cromosómico , Biología Computacional/métodos , Elementos Transponibles de ADN , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Epigenómica/métodos , Evolución Molecular , Interacciones Huésped-Patógeno , Humanos , Filogenia , Plásmidos/genética , Plásmidos/metabolismo , Fagos de Staphylococcus/genética , Staphylococcus epidermidis/clasificación , Staphylococcus epidermidis/virología
6.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389763

RESUMEN

The gastrointestinal colonizer Enterococcus faecium is a leading cause of hospital-acquired infections. Multidrug-resistant (MDR) E. faecium isolates are particularly concerning for infection treatment. Previous comparative genomic studies revealed that subspecies referred to as clade A and clade B exist within E. faecium MDR E. faecium isolates belong to clade A, while clade B consists of drug-susceptible fecal commensal E. faecium isolates. Isolates from clade A are further grouped into two subclades, clades A1 and A2. In general, clade A1 isolates are hospital-epidemic isolates, whereas clade A2 isolates are isolates from animals and sporadic human infections. Such phylogenetic separation indicates that reduced gene exchange occurs between the clades. We hypothesize that endogenous barriers to gene exchange exist between E. faecium clades. Restriction-modification (R-M) systems are such barriers in other microbes. We utilized a bioinformatics analysis coupled with second-generation and third-generation deep-sequencing platforms to characterize the methylomes of two representative E. faecium strains, one from clade A1 and one from clade B. We identified a type I R-M system that is clade A1 specific, is active for DNA methylation, and significantly reduces the transformability of clade A1 E. faecium Based on our results, we conclude that R-M systems act as barriers to horizontal gene exchange in E. faecium and propose that R-M systems contribute to E. faecium subspecies separation.IMPORTANCEEnterococcus faecium is a leading cause of hospital-acquired infections around the world. Rising antibiotic resistance in certain E. faecium lineages leaves fewer treatment options. The overarching aim of this work was to determine whether restriction-modification (R-M) systems contribute to the structure of the E. faecium species, wherein hospital-epidemic and non-hospital-epidemic isolates have distinct evolutionary histories and highly resolved clade structures. R-M provides bacteria with a type of innate immunity to horizontal gene transfer (HGT). We identified a type I R-M system that is enriched in the hospital-epidemic clade and determined that it is active for DNA modification activity and significantly impacts HGT. Overall, this work is important because it provides a mechanism for the observed clade structure of E. faecium as well as a mechanism for facilitated gene exchange among hospital-epidemic E. faecium isolates.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I/genética , Enterococcus faecium/genética , Evolución Molecular , Genoma Bacteriano/genética , Biología Computacional , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Enterococcus faecium/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Hospitales
7.
Nucleic Acids Res ; 46(17): 9067-9080, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30165537

RESUMEN

Restriction Modification (RM) systems prevent the invasion of foreign genetic material into bacterial cells by restriction and protect the host's genetic material by methylation. They are therefore important in maintaining the integrity of the host genome. RM systems are currently classified into four types (I to IV) on the basis of differences in composition, target recognition, cofactors and the manner in which they cleave DNA. Comparing the structures of the different types, similarities can be observed suggesting an evolutionary link between these different types. This work describes the 'deconstruction' of a large Type I RM enzyme into forms structurally similar to smaller Type II RM enzymes in an effort to elucidate the pathway taken by Nature to form these different RM enzymes. Based upon the ability to engineer new enzymes from the Type I 'scaffold', an evolutionary pathway and the evolutionary pressures required to move along the pathway from Type I RM systems to Type II RM systems are proposed. Experiments to test the evolutionary model are discussed.


Asunto(s)
ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Modelos Genéticos , Secuencia de Aminoácidos , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Relación Estructura-Actividad
8.
J Biol Chem ; 293(39): 15043-15054, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30054276

RESUMEN

Although EcoR124 is one of the better-studied Type I restriction-modification enzymes, it still presents many challenges to detailed analyses because of its structural and functional complexity and missing structural information. In all available structures of its motor subunit HsdR, responsible for DNA translocation and cleavage, a large part of the HsdR C terminus remains unresolved. The crystal structure of the C terminus of HsdR, obtained with a crystallization chaperone in the form of pHluorin fusion and refined to 2.45 Å, revealed that this part of the protein forms an independent domain with its own hydrophobic core and displays a unique α-helical fold. The full-length HsdR model, based on the WT structure and the C-terminal domain determined here, disclosed a proposed DNA-binding groove lined by positively charged residues. In vivo and in vitro assays with a C-terminal deletion mutant of HsdR supported the idea that this domain is involved in complex assembly and DNA binding. Conserved residues identified through sequence analysis of the C-terminal domain may play a key role in protein-protein and protein-DNA interactions. We conclude that the motor subunit of EcoR124 comprises five structural and functional domains, with the fifth, the C-terminal domain, revealing a unique fold characterized by four conserved motifs in the IC subfamily of Type I restriction-modification systems. In summary, the structural and biochemical results reported here support a model in which the C-terminal domain of the motor subunit HsdR of the endonuclease EcoR124 is involved in complex assembly and DNA binding.


Asunto(s)
Proteínas de Unión al ADN/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Secuencia de Aminoácidos , Fenómenos Biofísicos , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Conformación Proteica , Dominios Proteicos/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética
9.
J Mol Model ; 24(7): 176, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29943199

RESUMEN

Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.


Asunto(s)
ADN Helicasas/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Adenosina Trifosfato/química , Secuencia de Aminoácidos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Activación Enzimática , Hidrólisis , Simulación de Dinámica Molecular , Complejos Multienzimáticos/química , Mutación , Análisis de Componente Principal , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
10.
J Comput Aided Mol Des ; 31(12): 1063-1072, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29177929

RESUMEN

I-DmoI, from the hyperthermophilic archaeon Desulfurococcus mobilis, belongs to the LAGLIDADG homing endonuclease protein family. Its members are highly specific enzymes capable of recognizing long DNA target sequences, thus providing potential tools for genome manipulation. Working towards this particular application, many efforts have been made to generate mesophilic variants of I-DmoI that function at lower temperatures than the wild-type. Here, we report a structural and computational analysis of two I-DmoI mesophilic mutants. Despite very limited structural variations between the crystal structures of these variants and the wild-type, a different dynamical behaviour near the cleavage sites is observed. In particular, both the dynamics of the water molecules and the protein perturbation effect on the cleavage site correlate well with the changes observed in the experimental enzymatic activity.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I , Modelos Moleculares , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Simulación por Computador , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Desulfurococcaceae/enzimología , Mutación , Unión Proteica , Conformación Proteica
11.
Mol Biol (Mosk) ; 51(5): 831-835, 2017.
Artículo en Ruso | MEDLINE | ID: mdl-29116070

RESUMEN

Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Sustitución de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Mutación Missense , Dominios Proteicos
12.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 9): 672-6, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27599856

RESUMEN

The HsdR subunit of the type I restriction-modification system EcoR124I is responsible for the translocation as well as the restriction activity of the whole complex consisting of the HsdR, HsdM and HsdS subunits, and while crystal structures are available for the wild type and several mutants, the C-terminal domain comprising approximately 150 residues was not resolved in any of these structures. Here, three fusion constructs with the GFP variant pHluorin developed to overexpress, purify and crystallize the C-terminal domain of HsdR are reported. The shortest of the three encompassed HsdR residues 887-1038 and yielded crystals that belonged to the orthorhombic space group C2221, with unit-cell parameters a = 83.42, b = 176.58, c = 126.03 Å, α = ß = γ = 90.00° and two molecules in the asymmetric unit (VM = 2.55 Å(3) Da(-1), solvent content 50.47%). X-ray diffraction data were collected to a resolution of 2.45 Å.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas Fluorescentes Verdes/química , Subunidades de Proteína/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Difracción de Rayos X
13.
Adv Exp Med Biol ; 915: 81-97, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27193539

RESUMEN

The Type I DNA restriction-modification (RM) systems of Staphylococcus aureus are known to act as a significant barrier to horizontal gene transfer between S. aureus strains belonging to different clonal complexes. The livestock-associated clonal complexes CC133/771 and CC398 contain Type I RM systems not found in human MRSA strains as yet but at some point transfer will occur. When this does take place, horizontal gene transfer of resistance will happen more easily between these strains. The reservoir of antibiotic resistance, virulence and host-adaptation genes present in livestock-associated MRSA will then potentially contribute to the development of newly evolving MRSA clones. The target sites recognised by the Type I RM systems of CC133/771 and CC398 were identified as CAG(N)5RTGA and ACC(N)5RTGA, respectively. Assuming that these enzymes recognise the methylation state of adenine, the underlined A and T bases indicate the unique positions of methylation. Target methylation points for enzymes from CC1 were also identified. The methylation points for CC1-1 are CCAY(N)5TTAA and those for CC1-2 are CCAY(N)6 TGT with the underline indicating the adenine methylation site thus clearing up the ambiguity noted previously (Roberts et al. 2013, Nucleic Acids Res 41:7472-7484) for the half sites containing two adenine bases.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Transferencia de Gen Horizontal , Ganado/microbiología , Staphylococcus aureus Resistente a Meticilina/enzimología , Leche/microbiología , Infecciones Estafilocócicas/microbiología , Adenina/metabolismo , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Secuencia de Bases , Bovinos , Metilación de ADN , ADN Bacteriano/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Farmacorresistencia Bacteriana/genética , Genotipo , Interacciones Huésped-Patógeno , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Datos de Secuencia Molecular , Fenotipo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/transmisión , Especificidad por Sustrato , Virulencia/genética
14.
ACS Chem Biol ; 11(5): 1401-7, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26909878

RESUMEN

Homing endonucleases, such as I-DmoI, specifically recognize and cleave long DNA target sequences (∼20 bp) and are potentially powerful tools for genome manipulation. However, inefficient and off-target DNA cleavage seriously limits specific editing in complex genomes. One approach to overcome these limitations is to unambiguously identify the key structural players involved in catalysis. Here, we report the E117A I-DmoI mutant crystal structure at 2.2 Šresolution that, together with the wt and Q42A/K120M constructs, is combined with computational approaches to shed light on protein cleavage activity. The cleavage mechanism was related both to key structural effects, such as the position of water molecules and ions participating in the cleavage reaction, and to dynamical effects related to protein behavior. In particular, we found that the protein perturbation pattern significantly changes between cleaved and noncleaved DNA strands when the ions and water molecules are correctly positioned for the nucleophilic attack that initiates the cleavage reaction, in line with experimental enzymatic activity. The proposed approach paves the way for an effective, general, and reliable procedure to analyze the enzymatic activity of endonucleases from a very limited data set, i.e., structure and dynamics.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Desulfurococcaceae/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desulfurococcaceae/química , Desulfurococcaceae/metabolismo , Simulación de Dinámica Molecular , Mutación Puntual , Conformación Proteica , Alineación de Secuencia
15.
PLoS One ; 10(6): e0128700, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039067

RESUMEN

Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling.


Asunto(s)
Adenosina Trifosfato/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Exodesoxirribonucleasa V/química , Subunidades de Proteína/química , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , División del ADN , ADN Bacteriano , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/metabolismo , Expresión Génica , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transducción de Señal
16.
J Biol Chem ; 290(30): 18534-44, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26045557

RESUMEN

Homing endonucleases are useful tools for genome modification because of their capability to recognize and cleave specifically large DNA targets. These endonucleases generate a DNA double strand break that can be repaired by the DNA damage response machinery. The break can be repaired by homologous recombination, an error-free mechanism, or by non-homologous end joining, a process susceptible to introducing errors in the repaired sequence. The type of DNA cleavage might alter the balance between these two alternatives. The use of "nickases" producing a specific single strand break instead of a double strand break could be an approach to reduce the toxicity associated with non-homologous end joining by promoting the use of homologous recombination to repair the cleavage of a single DNA break. Taking advantage of the sequential DNA cleavage mechanism of I-DmoI LAGLIDADG homing endonuclease, we have developed a new variant that is able to cut preferentially the coding DNA strand, generating a nicked DNA target. Our structural and biochemical analysis shows that by decoupling the action of the catalytic residues acting on each strand we can inhibit one of them while keeping the other functional.


Asunto(s)
Desoxirribonucleasa I/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Marcación de Gen , Ingeniería de Proteínas , Secuencias de Aminoácidos , Dominio Catalítico , Dicroismo Circular , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Recombinación Homóloga/genética , Simulación de Dinámica Molecular
17.
J Mol Model ; 20(7): 2334, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24972799

RESUMEN

Restriction-modification systems protect bacteria from foreign DNA. Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA-cleavage and ATP-dependent DNA translocation activities located on endonuclease/motor subunit HsdR. The recent structure of the first intact motor subunit of the type I restriction enzyme from plasmid EcoR124I suggested a mechanism by which stalled translocation triggers DNA cleavage via a lysine residue on the endonuclease domain that contacts ATP bound between the two helicase domains. In the present work, molecular dynamics simulations are used to explore this proposal. Molecular dynamics simulations suggest that the Lys-ATP contact alternates with a contact with a nearby loop housing the conserved QxxxY motif that had been implicated in DNA cleavage. This model is tested here using in vivo and in vitro experiments. The results indicate how local interactions are transduced to domain motions within the endonuclease/motor subunit.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sitios de Unión , Catálisis , Secuencia Conservada , ADN/química , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Genotipo , Hidrólisis , Cinética , Lisina , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Teoría Cuántica , Relación Estructura-Actividad
18.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 489-92, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699746

RESUMEN

Independently of the restriction (HsdR) subunit, the specificity (HsdS) and methylation (HsdM) subunits interact with each other, and function as a methyltransferase in type I restriction-modification systems. A single gene that combines the HsdS and HsdM subunits in Vibrio vulnificus YJ016 was expressed and purified. A crystal suitable for X-ray diffraction was obtained from 25%(w/v) polyethylene glycol monomethylether 5000, 0.1 M HEPES pH 8.0, 0.2 M ammonium sulfate at 291 K by hanging-drop vapour diffusion. Diffraction data were collected to a resolution of 2.31 Šusing synchrotron radiation. The crystal belonged to the primitive monoclinic space group P21, with unit-cell parameters a = 93.25, b = 133.04, c = 121.49 Å, ß = 109.7°. With four molecules in the asymmetric unit, the crystal volume per unit protein weight was 2.61 Å(3) Da(-1), corresponding to a solvent content of 53%.


Asunto(s)
Clonación Molecular , Cristalización/métodos , Cristalografía por Rayos X/métodos , Desoxirribonucleasas de Localización Especificada Tipo I/química , Vibrio vulnificus/enzimología , Secuencia de Aminoácidos , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Metilación , Datos de Secuencia Molecular , Subunidades de Proteína , Homología de Secuencia de Aminoácido , Sincrotrones
19.
Nucleic Acids Res ; 41(15): 7472-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23771140

RESUMEN

A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Evolución Molecular , Transferencia de Gen Horizontal , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biología Computacional/métodos , División del ADN , Enzimas de Restricción-Modificación del ADN/genética , ADN Bacteriano/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Biblioteca de Genes , Staphylococcus aureus Resistente a Meticilina/enzimología , Sistemas de Lectura Abierta , Plásmidos/genética , Plásmidos/metabolismo
20.
DNA Repair (Amst) ; 12(7): 529-34, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23684799

RESUMEN

Double-strand breaks (DSBs) in chromosomal DNA can induce both homologous recombination (HR) and non-homologous end-joining (NHEJ). Recently we showed that single-strand nicks induce HR with a significant reduction in toxicity and mutagenic effects associated with NHEJ. To further investigate the differences and similarities of DSB- and nick-induced repair, we used an integrated reporter system in human cells to measure HR and NHEJ produced by the homing endonuclease I-AniI and a designed 'nickase' variant that nicks the same target site, focusing on the PARP and HR repair pathways. PARP inhibitors, which block single-strand break repair, increased the rate of nick-induced HR up to 1.7-fold but did not affect DSB-induced HR or mutNHEJ. Additionally, expression of the PALB2 WD40 domain in trans acted as a dominant-negative inhibitor of both DSB- and nick-induced HR, sensitized cells to PARP inhibition, and revealed an alternative mutagenic repair pathway for nicks. Thus, while both DSB- and nick-induced HR use a common pathway, their substrates are differentially processed by cellular factors. These results also suggest that the synthetic lethality of PARP and BRCA may be due to repair of nicks through an error prone, NHEJ-like mechanism that is active when both PARP and HR pathways are blocked.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN por Unión de Extremidades , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reparación del ADN por Recombinación , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Células HEK293 , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...