Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 377
1.
J Phys Chem A ; 128(6): 1109-1123, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38316031

We report a combined experimental and computational study of adenosine cation radicals that were protonated at adenine and furnished with a radical handle in the form of an acetoxyl radical, •CH2COO, that was attached to ribose 5'-O. Radicals were generated by collision-induced dissociation (CID) and characterized by tandem mass spectrometry and UV-vis photodissociation action spectroscopy. The acetoxyl radical was used to probe the kinetics of intramolecular hydrogen transfer from the ribose ring positions that were specifically labeled with deuterium at C1', C2', C3', C4', C5', and in the exchangeable hydroxyl groups. Hydrogen transfer was found to chiefly involve 3'-H with minor contributions by 5'-H and 2'-H, while 4'-H was nonreactive. The hydrogen transfer rates were affected by deuterium isotope effects. Hydrogen transfer triggered ribose ring cleavage by consecutive dissociations of the C4'-O and C1'-C2' bonds, resulting in expulsion of a C6H9O4 radical and forming a 9-formyladenine ion. Rice-Ramsperger-Kassel-Marcus (RRKM) and transition-state theory (TST) calculations of unimolecular constants were carried out using the effective CCSD(T)/6-311++G(3d,2p) and M06-2X/aug-cc-pVTZ potential energy surfaces for major isomerizations and dissociations. The kinetic analysis showed that hydrogen transfer to the acetoxyl radical was the rate-determining step, whereas the following ring-opening reactions in ribose radicals were fast. Using DFT-computed energies, a comparison was made between the thermochemistry of radical reactions in adenosine and 2'-deoxyadenosine cation radicals. The 2'-deoxyribose ring showed lower TS energies for both the rate-determining 3'-H transfer and ring cleavage reactions.


Adenosine , Deoxyadenosines , Ribose , Kinetics , Deuterium , Deoxyribose/chemistry , Hydrogen , Cations/chemistry , Free Radicals/chemistry
2.
Int J Mol Sci ; 24(10)2023 May 13.
Article En | MEDLINE | ID: mdl-37240053

When modified uridine derivatives are incorporated into DNA, radical species may form that cause DNA damage. This category of molecules has been proposed as radiosensitizers and is currently being researched. Here, we study electron attachment to 5-bromo-4-thiouracil (BrSU), a uracil derivative, and 5-bromo-4-thio-2'-deoxyuridine (BrSdU), with an attached deoxyribose moiety via the N-glycosidic (N1-C) bond. Quadrupole mass spectrometry was used to detect the anionic products of dissociative electron attachment (DEA), and the experimental results were supported by quantum chemical calculations performed at the M062X/aug-cc-pVTZ level of theory. Experimentally, we found that BrSU predominantly captures low-energy electrons with kinetic energies near 0 eV, though the abundance of bromine anions was rather low compared to a similar experiment with bromouracil. We suggest that, for this reaction channel, proton-transfer reactions in the transient negative ions limit the release of bromine anions.


Deoxyribose , Electrons , Deoxyribose/chemistry , Bromine , Anions , Bromodeoxyuridine
3.
Nucleic Acids Res ; 51(8): 3754-3769, 2023 05 08.
Article En | MEDLINE | ID: mdl-37014002

The N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and ß deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase. The structure of a complex between the active site unedited mutant CΔ100 P2G hNEIL1 (K242) glycosylase and double-stranded (ds) DNA containing a urea lesion reveals a pre-cleavage intermediate, in which the Gly2 N-terminal amine forms a conjugate with the deoxyribose C1' of the lesion, with the urea moiety remaining intact. This structure supports a proposed catalytic mechanism in which Glu3-mediated protonation of O4' facilitates attack at deoxyribose C1'. The deoxyribose is in the ring-opened configuration with the O4' oxygen protonated. The electron density of Lys242 suggests the 'residue 242-in conformation' associated with catalysis. This complex likely arises because the proton transfer steps involving Glu6 and Lys242 are hindered due to Glu6-mediated H-bonding with the Gly2 and the urea lesion. Consistent with crystallographic data, biochemical analyses show that the CΔ100 P2G hNEIL1 (K242) glycosylase exhibits a residual activity against urea-containing dsDNA.


DNA Glycosylases , DNA Repair , Deoxyribose , Urea , Deoxyribose/chemistry , DNA/chemistry , DNA Damage , DNA Glycosylases/metabolism , Humans
4.
Cells ; 11(6)2022 03 11.
Article En | MEDLINE | ID: mdl-35326409

Catechin is an extensively investigated plant flavan-3-ol with a beneficial impact on human health that is often associated with antioxidant activities and iron coordination complex formation. The aim of this study was to explore these properties with FeII and FeIII using a combination of nanoelectrospray-mass spectrometry, differential pulse voltammetry, site-specific deoxyribose degradation assay, FeII autoxidation assay, and brine shrimp mortality assay. Catechin primarily favored coordination complex formation with Fe ions of the stoichiometry catechin:Fe in the ratio of 1:1 or 2:1. In the detected Fe-catechin coordination complexes, FeII prevailed. Differential pulse voltammetry, the site-specific deoxyribose degradation, and FeII autoxidation assays proved that coordination complex formation affected catechin's antioxidant effects. In situ formed Fe-catechin coordination complexes showed no toxic activities in the brine shrimp mortality assay. In summary, catechin has properties for the possible treatment of pathological processes associated with ageing and degeneration, such as Alzheimer's and Parkinson's diseases.


Catechin , Coordination Complexes , Antioxidants/chemistry , Antioxidants/pharmacology , Catechin/chemistry , Catechin/pharmacology , Coordination Complexes/pharmacology , Deoxyribose/chemistry , Deoxyribose/metabolism , Ferric Compounds , Ferrous Compounds , Humans , Mass Spectrometry
5.
Chem Res Toxicol ; 35(2): 203-217, 2022 02 21.
Article En | MEDLINE | ID: mdl-35124963

Abasic sites are common in cellular and synthetic DNA. As a result, it is important to characterize the chemical fate of these lesions. Amine-catalyzed strand cleavage at abasic sites in DNA is an important process in which conversion of small amounts of the ring-opened abasic aldehyde residue to an iminium ion facilitates ß-elimination of the 3'-phosphoryl group. This reaction generates a trans-α,ß-unsaturated iminium ion on the 3'-terminus of the strand break as an obligate intermediate. The canonical product expected from amine-catalyzed cleavage at an AP site is the corresponding trans-α,ß-unsaturated aldehyde sugar remnant resulting from hydrolysis of this iminium ion. Interestingly, a handful of studies have reported noncanonical 3'-sugar remnants generated by amine-catalyzed strand cleavage, but the formation and properties of these products are not well-understood. To address this knowledge gap, a nucleoside system was developed that enabled chemical characterization of the sugar remnants generated by amine-catalyzed ß-elimination in the 2-deoxyribose system. The results predict that amine-catalyzed strand cleavage at an AP site under physiological conditions has the potential to reversibly generate noncanonical cleavage products including cis-alkenal, 3-thio-2,3-dideoxyribose, and 2-deoxyribose groups alongside the canonical trans-alkenal residue on the 3'-terminus of the strand break. Thus, the model reactions provide evidence that the products generated by amine-catalyzed strand cleavage at abasic sites in cellular DNA may be more complex that commonly thought, with trans-α,ß-unsaturated iminium ion intermediates residing at the hub of interconverting product mixtures. The results expand the list of possible 3'-sugar remnants arising from amine-catalyzed cleavage of abasic sites in DNA that must be chemically or enzymatically removed for the completion of base excision repair and single-strand break repair in cells.


Amines/chemistry , Biomimetic Materials/chemistry , DNA/drug effects , Deoxyribose/chemistry , Nucleosides/chemistry , Catalysis , DNA Damage , DNA Repair , Nucleic Acid Conformation
6.
Molecules ; 26(19)2021 Sep 30.
Article En | MEDLINE | ID: mdl-34641475

Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.


Deoxyribose/chemistry , Nucleotides/chemistry , Base Pairing , Models, Molecular , Nucleic Acid Conformation
7.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article En | MEDLINE | ID: mdl-33947069

The accurate knowledge of the elastic properties of single-stranded DNA (ssDNA) is key to characterize the thermodynamics of molecular reactions that are studied by force spectroscopy methods where DNA is mechanically unfolded. Examples range from DNA hybridization, DNA ligand binding, DNA unwinding by helicases, etc. To date, ssDNA elasticity has been studied with different methods in molecules of varying sequence and contour length. A dispersion of results has been reported and the value of the persistence length has been found to be larger for shorter ssDNA molecules. We carried out pulling experiments with optical tweezers to characterize the elastic response of ssDNA over three orders of magnitude in length (60-14 k bases). By fitting the force-extension curves (FECs) to the Worm-Like Chain model we confirmed the above trend:the persistence length nearly doubles for the shortest molecule (60 b) with respect to the longest one (14 kb). We demonstrate that the observed trend is due to the different force regimes fitted for long and short molecules, which translates into two distinct elastic regimes at low and high forces. We interpret this behavior in terms of a force-induced sugar pucker conformational transition (C3'-endo to C2'-endo) upon pulling ssDNA.


DNA, Single-Stranded/chemistry , Deoxyribose/chemistry , Nucleic Acid Conformation , DNA, Single-Stranded/ultrastructure , Elasticity , Optical Tweezers , Stress, Mechanical , Thermodynamics
8.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article En | MEDLINE | ID: mdl-33572317

In this work, we used ωB97XD density functional and 6-31++G** basis set to study the structure, electron affinity, populations via Boltzmann distribution, and one-electron reduction potentials (E°) of 2'-deoxyribose sugar radicals in aqueous phase by considering 2'-deoxyguanosine and 2'-deoxythymidine as a model of DNA. The calculation predicted the relative stability of sugar radicals in the order C4'• > C1'• > C5'• > C3'• > C2'•. The Boltzmann distribution populations based on the relative stability of the sugar radicals were not those found for ionizing radiation or OH-radical attack and are good evidence the kinetic mechanisms of the processes drive the products formed. The adiabatic electron affinities of these sugar radicals were in the range 2.6-3.3 eV which is higher than the canonical DNA bases. The sugar radicals reduction potentials (E°) without protonation (-1.8 to -1.2 V) were also significantly higher than the bases. Thus the sugar radicals will be far more readily reduced by solvated electrons than the DNA bases. In the aqueous phase, these one-electron reduced sugar radicals (anions) are protonated from solvent and thus are efficiently repaired via the "electron-induced proton transfer mechanism". The calculation shows that, in comparison to efficient repair of sugar radicals by the electron-induced proton transfer mechanism, the repair of the cyclopurine lesion, 5',8-cyclo-2'-dG, would involve a substantial barrier.


DNA/chemistry , Deoxyribose/chemistry , Electrons , Density Functional Theory , Free Radicals/chemistry , Oxidation-Reduction , Protons
9.
Nucleic Acids Res ; 49(1): 79-89, 2021 01 11.
Article En | MEDLINE | ID: mdl-33300028

The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.


Algorithms , Models, Chemical , Nucleic Acids/chemistry , Software , DNA/chemistry , Deoxyribose/chemistry , Molecular Structure , Nucleic Acid Conformation , RNA/chemistry
10.
Biochem Biophys Res Commun ; 532(4): 662-667, 2020 11 19.
Article En | MEDLINE | ID: mdl-32907714

DNA triplex is a popular, higher-order structural arrangement with several biological importance. In the present article, we examined the impact of replacing regular deoxyribose sugar by conformationally locked sugar on the structure/stability of a DNA triplex. We individually modified single strands of DNA triplex (3'-5' strand/5'-3' strand) and observed the consequences in terms of the overall structural integrity and energetics using all-atom explicit-solvent Gaussian accelerated molecular dynamics simulations at biological salt concentration. As anticipated, the control DNA triplex maintained the structural integrity throughout the simulations. However, it is striking to note that a duplex evolved from both the modified systems (3'-5' modified triplex as well as 5'-3' modified triplex). The resultant duplexes in both cases contain a modified strand and a regular strand, whereas the third strand (regular ssDNA) left the binding site entirely. We observed that the modified ssDNA binds to the regular ssDNA with high affinities in both the hybrid duplexes (∼-64 kcal/mol), significantly higher than the regular ssDNA - regular ssDNA interaction (∼-52 kcal/mol). The remarkable binding of modified ssDNA to regular ssDNA can be utilized to design new antisense oligonucleotides, and the role of such modified oligonucleotides in anticancer therapy is foreseen.


DNA/chemistry , Deoxyribose/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation
11.
Microvasc Res ; 131: 104035, 2020 09.
Article En | MEDLINE | ID: mdl-32593538

BACKGROUND: Delayed neovascularisation of tissue-engineered (TE) complex constructs is a major challenge that causes their failure post-implantation. Although significant progress has been made in the field of angiogenesis, ensuring rapid neovascularisation still remains a challenge. The use of pro-angiogenic agents is an effective approach to promote angiogenesis, and vascular endothelial growth factor (VEGF) has been widely studied both at the biological and molecular levels and is recognised as a key stimulator of angiogenesis. However, the exogenous use of VEGF in an uncontrolled manner has been shown to result in leaky, permeable and haemorrhagic vessels. Thus, researchers have been actively seeking alternative agents to upregulate VEGF production rather than exogenous use of VEGF in TE systems. We have previously revealed the potential of 2-deoxy-d-ribose (2dDR) as an alternative pro-angiogenic agent to induce angiogenesis and accelerates wound healing. However, to date, there is not any clear evidence on whether 2dDR influences the angiogenic cascade that involves VEGF. METHODS: In this study, we explored the angiogenic properties of 2dDR either by its direct application to human aortic endothelial cells (HAECs) or when released from commercially available alginate dressings and demonstrated that when 2dDR promotes angiogenesis, it also increases the VEGF production of HAECs. RESULTS: The VEGF quantification results suggested that VEGF production by HAECs was increased with 2dDR treatment but not with other sugars, including 2-deoxy-l-ribose (2dLR) and d-glucose (DG). The stability studies demonstrated that approximately 40-50% of the 2dDR had disappeared in the media over 14 days, either in the presence or absence of HAECs, and the reduction was higher when cells were present. The concentration of VEGF in the media also fell after day 4 associated with the reduction in 2dDR. CONCLUSION: This study suggests that 2dDR (but not other sugars tested in this study) stimulates angiogenesis by increasing the production of VEGF. We conclude 2dDR appears to be a practical and effective indirect route to upregulating VEGF for several days, leading to increased angiogenesis.


Angiogenesis Inducing Agents/pharmacology , Chorioallantoic Membrane/blood supply , Deoxyribose/pharmacology , Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/metabolism , Alginates/chemistry , Angiogenesis Inducing Agents/chemistry , Animals , Cells, Cultured , Chick Embryo , Delayed-Action Preparations , Deoxyribose/chemistry , Drug Carriers , Drug Stability , Endothelial Cells/metabolism , Humans , Signal Transduction , Up-Regulation
12.
J Tissue Eng Regen Med ; 14(7): 973-988, 2020 07.
Article En | MEDLINE | ID: mdl-32473079

The absorption capacity of cotton dressings is a critical factor in their widespread use where they help absorb wound exudate. Cotton wax dressings, in contrast, are used for wounds where care is taken to avoid adhesion of dressings to sensitive wounds such as burn injuries. Accordingly, we explored the loading of 2-deoxy-D-ribose (2dDR), a small sugar, which stimulates angiogenesis and wound healing in normal and diabetic rats, into both types of dressings and measured the release of it over several days. The results showed that approximately 90% of 2dDR was released between 3 and 5 days when loaded into cotton dressings. For wax-coated cotton dressings, several methods of loading of 2dDR were explored. A strategy similar to the commercial wax coating methodology was found the best protocol which provided a sustained release over 5 days. Cytotoxicity analysis of 2dDR loaded cotton dressing showed that the dressing stimulated metabolic activity of fibroblasts over 7 days confirming the non-toxic nature of this sugar-loaded dressings. The results of the chick chorioallantoic membrane (CAM) assay demonstrated a strong angiogenic response to both 2dDR loaded cotton dressing and to 2dDR loaded cotton wax dressings. Both dressings were found to increase the number of newly formed blood vessels significantly when observed macroscopically and histologically. We conclude this study offers a simple approach to developing affordable wound dressings as both have the potential to be evaluated as pro-active dressings to stimulate wound healing in wounds where management of exudate or prevention of adherence to the wounds are clinical requirements.


Angiogenesis Inducing Agents , Bandages , Cotton Fiber , Deoxyribose , Materials Testing , Neovascularization, Physiologic/drug effects , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/pharmacology , Animals , Chick Embryo , Chorioallantoic Membrane/metabolism , Deoxyribose/chemistry , Deoxyribose/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Mice , NIH 3T3 Cells , Rats , Wound Healing
13.
Org Lett ; 22(6): 2167-2172, 2020 03 20.
Article En | MEDLINE | ID: mdl-32108487

A stereoselective nine-step synthesis of the potent HIV nucleoside reverse transcriptase translocation inhibitor (NRTTI) islatravir (EfdA, MK-8591) from 2-deoxyribose is described. Key findings include a diastereodivergent addition of an acetylide nucleophile to an enolizable ketone, a chemoselective ozonolysis of a terminal olefin and a biocatalytic glycosylation cascade that uses a unique strategy of byproduct precipitation to drive an otherwise-reversible transformation forward.


Deoxyadenosines/chemical synthesis , Deoxyribose/chemistry , Alkynes/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Silanes/chemistry , Stereoisomerism
14.
Curr Protein Pept Sci ; 21(9): 924-935, 2020.
Article En | MEDLINE | ID: mdl-32053073

The non-enzymatic glycosylation is a very common phenomenon in the physiological conditions which is mediated by distinct chemical entities containing reactive carbonyl species (RCS) and participates in the modification of various macromolecules particularly proteins. To date, various carbonyl species, i.e., glucose, fructose, D-ribose and methylglyoxal have been used frequently to assess the in-vitro non-enzymatic glycosylation. Similarly, 2'-Deoxyribose is one of the most abundant reducing sugar of the living organisms which forms the part of deoxyribonucleic acid and may react with proteins leading to the production of glycation intermediates, advanced glycation end products (AGEs) and highly reactive RCS. Thymidine phosphorylase derived degradation of thymidine contributes to the formation of 2'-Deoxyribose, therefore, acting as a major source of cellular 2'- Deoxyribose. Since albumin is a major serum protein which plays various roles including binding and transporting endogenous and exogenous ligands, it is more prone to be modified through different physiological modifiers; therefore, it may serve as a model protein for in-vitro experiments to study the effect of 2'Deoxyribose mediated modifications in the protein. In this study, Bovine Serum Albumin (BSA) was glycated with 50 and 100 mM 2'-Deoxyribose followed by examining secondary and tertiary structural modifications in BSA as compared to its native (unmodified) form by using various physicochemical techniques. We evident a significant modification in 2'-Deoxyribose-glycated BSA which was confirmed through increased hyperchromicity, keto amine moieties, carbonyl and hydroxymethylfurfural content, fluorescent AGEs, altered secondary structure conformers (α helix and ß sheets), band shift in the amide-I region and diminished free lysine and free arginine content. These modifications were reported to be higher in 100 mM 2'-Deoxyribose-glycated BSA than 50 mM 2'- Deoxyribose-glycated BSA. Our findings also demonstrated that the rate of glycation is positively affected by the increased concentration of 2'-Deoxyribose. The results of the performed study can be implied to uncover the phenomenon of serum protein damage caused by 2'-Deoxyribose leading towards diabetic complications and the number of AGE-related diseases.


Arginine/chemistry , Deoxyribose/chemistry , Furaldehyde/analogs & derivatives , Glycation End Products, Advanced/chemistry , Lysine/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Furaldehyde/chemistry , Glycosylation , Kinetics , Oxidation-Reduction , Protein Carbonylation , Protein Structure, Secondary , Solutions , Spectrometry, Fluorescence
15.
J Orthop Res ; 37(11): 2278-2286, 2019 11.
Article En | MEDLINE | ID: mdl-31283054

Bone allografts are inferior to autografts for the repair of critical-sized defects. Prior studies have suggested that bone morphogenetic protein-2 (BMP-2) can be combined with allografts to produce superior healing. We created a bioactive coating on bone allografts using polycondensed deoxyribose isobutyrate ester (PDIB) polymer to deliver BMP-2 ± the bisphosphonate zoledronic acid (ZA) and tested its ability to enhance the functional utility of allografts in preclinical Wistar rat models. One ex vivo and two in vivo proof-of-concept studies were performed. First, PDIB was shown to be able to coat bone grafts (BGs). Second, PDIB was used to coat structural allogenic corticocancellous BG with BMP-2 ± ZA ± hydroxyapatite (HA) microparticles and compared with PDIB-coated grafts in a rat muscle pouch model. Next, a rat critical defect model was performed with treatment groups including (i) empty defect, (ii) BG, (iii) collagen sponge + BMP-2, (iv) BG + PDIB/BMP-2, and (v) BG + PDIB/BMP-2/ZA. Key outcome measures included detection of fluorescent bone labels, microcomputed tomography (CT) quantification of bone, and radiographic healing. In the muscle pouch study, BMP-2 did not increase net bone volume measured by microCT, however, fluorescent labeling showed large amounts of new bone. Addition of ZA increased BV by sevenfold (p < 0.01). In the critical defect model, allografts were insufficient to promote reliable union, however, union was achieved in collagen/BMP-2 and all BG/BMP-2 groups. Statement of clinical significance: These data support the concept that PDIB is a viable delivery method for BMP-2 and ZA delivery to enhance the bone forming potential of allografts. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2278-2286, 2019.


Bone Density Conservation Agents/administration & dosage , Bone Morphogenetic Protein 2/administration & dosage , Bone Transplantation , Zoledronic Acid/administration & dosage , Allografts , Animals , Deoxyribose/chemistry , Drug Delivery Systems , Drug Evaluation, Preclinical , Isobutyrates/chemistry , Male , Polymers/chemistry , Rats, Wistar
16.
ACS Synth Biol ; 8(5): 955-961, 2019 05 17.
Article En | MEDLINE | ID: mdl-31042360

An RNA-dependent RNA polymerase ribozyme that was highly optimized through in vitro evolution for the ability to copy a broad range of template sequences exhibits promiscuity toward other nucleic acids and nucleic acid analogues, including DNA, threose nucleic acid (TNA), and arabinose nucleic acid (ANA). By operating on various RNA templates, the ribozyme catalyzes multiple successive additions of DNA, TNA, or ANA monomers, although with reduced efficiency compared to RNA monomers. The ribozyme can also copy DNA or TNA templates to complementary RNAs, and to a lesser extent it can operate when both the template and product strands are composed of DNA, TNA, or ANA. These results suggest that polymerase ribozymes, which are thought to have replicated RNA genomes during the early history of life, could have transferred RNA-based genetic information to and from DNA, enabling the emergence of DNA genomes prior to the emergence of proteins. In addition, genetic systems based on nucleic acid-like molecules, which have been proposed as precursors or contemporaries of RNA-based life, could have been operated upon by a promiscuous polymerase ribozyme, thus enabling the evolutionary transition between early genetic systems.


Arabinose/chemistry , Deoxyribose/chemistry , Nucleic Acids/metabolism , RNA, Catalytic/metabolism , Tetroses/chemistry , Biocatalysis , Nucleic Acid Conformation , Nucleic Acids/chemistry , Polymerization
17.
Article En | MEDLINE | ID: mdl-30266519

There are >80 species of turmeric (Curcuma spp.) and some species have multiple varieties, for example, Curcuma longa (C. longa) has 70 varieties. They could be different in their chemical properties and biological activities. Therefore, we compared antioxidant activity, total phenolic and flavonoid content of different species and varieties of turmeric namely C. longa [variety: Ryudai gold (RD) and Okinawa ukon], C. xanthorrhiza, C. aromatica, C. amada, and C. zedoaria. The antioxidant activity was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, oxygen radical absorbance capacity (ORAC), reducing power and 2-deoxyribose (2-DR) oxidation assay. Our results suggested that RD contained significantly higher concentrations of total phenolic (157.4 mg gallic acid equivalent/g extract) and flavonoids (1089.5 mg rutin equivalent/g extract). RD also showed significantly higher DPPH radical-scavenging activity (IC50: 26.4 µg/mL), ORAC (14,090 µmol Trolox equivalent/g extract), reducing power absorbance (0.33) and hydroxyl radical scavenging activity (IC50: 7.4 µg/mL). Therefore, RD was chosen for the isolation of antioxidant compounds using silica gel column, Toyopearl HW-40F column, and high-performance liquid chromatography. Structural identification of the compounds was conducted using 1H NMR, 13C NMR, and liquid chromatography-tandem mass spectrometry. The purified antioxidant compounds were bisabolone-9-one (1), 4-methyllene-5-hydroxybisabola-2,10-diene-9-one (2), turmeronol B (3), 5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-1-hepten-3-one (4), 3-hydroxy-1,7-bis(4-hydroxyphenyl)-6-hepten-1,5-dione (5), cyclobisdemethoxycurcumin (6), bisdemethoxycurcumin (7), demethoxycurcumin (8) and curcumin (9). The IC50 for DPPH radical-scavenging activity were 474, 621, 234, 29, 39, 257, 198, 47 and 18 µM and hydroxyl radical-scavenging activity were 25.1, 24.4, 20.2, 2.1, 5.1, 17.2, 7.2, 3.3 and 1.5 µM for compound 1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively. Our findings suggested that the RD variety of C. longa, developed by the University of the Ryukyus, Okinawa, Japan, is a promising source of natural antioxidants.


Antioxidants/isolation & purification , Curcuma/chemistry , Diarylheptanoids/pharmacology , Drug Discovery , Phytochemicals/isolation & purification , Rhizome/chemistry , Spices/analysis , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Curcuma/growth & development , Curcumin/analogs & derivatives , Curcumin/analysis , Curcumin/chemistry , Curcumin/isolation & purification , Curcumin/pharmacology , Deoxyribose/chemistry , Diarylheptanoids/analysis , Diarylheptanoids/chemistry , Diarylheptanoids/isolation & purification , Free Radical Scavengers/analysis , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Japan , Methanol/chemistry , Molecular Structure , Osmolar Concentration , Oxidation-Reduction , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Breeding , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Rhizome/growth & development , Solvents/chemistry , Species Specificity
18.
Methods Mol Biol ; 1881: 129-151, 2019.
Article En | MEDLINE | ID: mdl-30350203

Cell proliferation plays a central role in the pathogenesis of every neoplastic disease as well as many other types of illness. Labeling of newly replicated DNA with deuterium (2H), a nonradioactive isotope of hydrogen, administered to the patients in drinking water (2H2O) is a safe and reliable method to measure the in vivo birth rates of cells. Here, we describe a protocol to measure chronic lymphocytic leukemia B-cell birth/proliferation and death rates over time using this approach.


B-Lymphocytes/pathology , Deoxyribose/analysis , Deuterium Oxide/administration & dosage , Gas Chromatography-Mass Spectrometry/methods , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Apoptosis , B-Lymphocytes/metabolism , Cell Proliferation , DNA/chemistry , DNA/isolation & purification , DNA Replication , Deoxyribose/chemistry , Deuterium Oxide/chemistry , Gas Chromatography-Mass Spectrometry/instrumentation , Humans , Kinetics , Leukemia, Lymphocytic, Chronic, B-Cell/blood
19.
ACS Appl Mater Interfaces ; 11(3): 2870-2879, 2019 Jan 23.
Article En | MEDLINE | ID: mdl-30589525

Injectable and phase-transitioning carriers from natural polysaccharides have great potential for the minimally invasive delivery of therapeutic proteins in the field of bone tissue engineering. In this study, a novel and highly viscous drug carrier was synthesized by a sequential process of deoxyribose polycondensation and esterification. The effect of synthesis parameters on the molecular weight, viscosity, and adhesion of the material was studied and correlated to temperature and time of polycondensation ( Tp and tp), time and temperature of esterification ( Te and te), and the molar ratio of the monomer ( R). The formulations were evaluated for molecular weight and distribution properties using GPC, chemical structures by FTIR and NMR spectra, and rheological properties using a rheometer. Formulations illustrated a wide range of viscosities (0.736 to 2225 Pa s), adhesion (0.896 to 58.45 N), and molecular weights (637 to 4216 Da), where viscosity was significantly reduced in the presence of low amounts of solvents (10-20%). The sustained release of BSA was observed over 42 days in vitro. The biocompatibility of poly(deoxyribose) isobutyrate (PDIB) as well as its potential as a bone morphogenetic protein delivery system was assessed in vivo using a rat ectopic bone model, where bone nodules were observed at 2 weeks. In summary, PDIB is a promising molecule with multiple applications for protein delivery, including for bone tissue engineering.


Biocompatible Materials/pharmacology , Bone Morphogenetic Protein 2/pharmacology , Drug Delivery Systems , Tissue Engineering , Biocompatible Materials/chemistry , Bone Morphogenetic Protein 2/chemistry , Deoxyribose/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacology , Humans , Isobutyrates/chemistry , Rheology , Viscosity/drug effects
20.
Biochemistry (Mosc) ; 83(10): 1161-1172, 2018 Oct.
Article En | MEDLINE | ID: mdl-30472954

Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.


Aptamers, Nucleotide/chemistry , Nucleotidases/chemistry , SELEX Aptamer Technique , Amino Acids/chemistry , Base Pairing , Click Chemistry , Deoxyribose/chemistry , Oligonucleotides/chemistry
...