Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.854
1.
Hum Genomics ; 18(1): 51, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778419

OBJECTIVE: This study aimed to identify candidate loci and genes related to sleep disturbances in depressed individuals and clarify the co-occurrence of sleep disturbances and depression from the genetic perspective. METHODS: The study subjects (including 58,256 self-reported depressed individuals and 6,576 participants with PHQ-9 score ≥ 10, respectively) were collected from the UK Biobank, which were determined based on the Patient Health Questionnaire (PHQ-9) and self-reported depression status, respectively. Sleep related traits included chronotype, insomnia, snoring and daytime dozing. Genome-wide association studies (GWASs) of sleep related traits in depressed individuals were conducted by PLINK 2.0 adjusting age, sex, Townsend deprivation index and 10 principal components as covariates. The CAUSALdb database was used to explore the mental traits associated with the candidate genes identified by the GWAS. RESULTS: GWAS detected 15 loci significantly associated with chronotype in the subjects with self-reported depression, such as rs12736689 at RNASEL (P = 1.00 × 10- 09), rs509476 at RGS16 (P = 1.58 × 10- 09) and rs1006751 at RFX4 (P = 1.54 × 10- 08). 9 candidate loci were identified in the subjects with PHQ-9 ≥ 10, of which 2 loci were associated with insomnia such as rs115379847 at EVC2 (P = 3.50 × 10- 08), and 7 loci were associated with daytime dozing, such as rs140876133 at SMYD3 (P = 3.88 × 10- 08) and rs139156969 at ROBO2 (P = 3.58 × 10- 08). Multiple identified genes, such as RNASEL, RGS16, RFX4 and ROBO2 were reported to be associated with chronotype, depression or cognition in previous studies. CONCLUSION: Our study identified several candidate genes related to sleep disturbances in depressed individuals, which provided new clues for understanding the biological mechanism underlying the co-occurrence of depression and sleep disorders.


Depression , Genome-Wide Association Study , Sleep Wake Disorders , Humans , Male , Female , Sleep Wake Disorders/genetics , Middle Aged , Depression/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease , Aged , Adult
2.
Medicine (Baltimore) ; 103(21): e38234, 2024 May 24.
Article En | MEDLINE | ID: mdl-38788001

Although observational studies have found both a positive and negative association between depression and hypercholesterolemia, the findings are mixed and contradictory. To our knowledge, this is the first study that employs the bidirectional Mendelian randomization (MR) and multivariable MR analysis with extensive genome-wide association studies (GWAS) data to examine the causal effect between depression and hypercholesterolemia. Using summary statistics obtained from GWAS of individuals with European ancestry, we utilize a bidirectional 2-sample MR approach to explore the potential causal association between hypercholesterolemia and depressive symptoms. Multivariable Mendelian randomization analysis was used to examine whether the direct causal effect of depression on the risk of hypercholesterolemia can be affected by traits associated with the increased risk of hypercholesterolemia. This MR analysis utilized inverse variance weighted (IVW), MR-Egger regression, weighted mode, and weighted median methods. Data on the summary level of depression were acquired from a GWAS that involved 500,199 participants. We used summary GWAS datasets for hypercholesterolemia including 206,067 participants. We also used another GWAS databases of hypercholesterolemiat (n = 463,010) to validate our results. By utilizing IVW, it was discovered that there is a possibility of a 31% rise in the risk of hypercholesterolemia due to depression (OR = 1.31, 95% CI = 1.10-1.57, P = .002). We found a consistent causal effect of depression on hypercholesterolemia from the IVW analyses using different hypercholesterolemia datasets. After adjustment of smoking, physical activity, and obesity, there remains significant causal relationship between depression and hypercholesterolemia (OR = 1.25, 95% CI = 1.01-1.54, P = .040). However, we did not find any evidence indicating that hypercholesterolemia leads to depression in the opposite direction. Directional pleiotropy was not observed in the MR-Egger regression analysis. Additionally, the MR-PRESSO analysis validated these discoveries. Neither the leave-one-out sensitivity test nor the funnel plots revealed any outliers. In both the unadjusted and adjusted estimates, depression has a consistent direct causal effect on hypercholesterolemia. Our study has led to an improved comprehension of the causal connections between hypercholesterolemia and depression, which could aid in the prevention and treatment of hypercholesterolemia.


Depression , Genome-Wide Association Study , Hypercholesterolemia , Mendelian Randomization Analysis , Humans , Hypercholesterolemia/genetics , Hypercholesterolemia/epidemiology , Depression/genetics , Depression/epidemiology , Causality , Risk Factors
3.
Genes (Basel) ; 15(5)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38790175

Statistical genetic models of genotype-by-environment (G×E) interaction can be divided into two general classes, one on G×E interaction in response to dichotomous environments (e.g., sex, disease-affection status, or presence/absence of an exposure) and the other in response to continuous environments (e.g., physical activity, nutritional measurements, or continuous socioeconomic measures). Here we develop a novel model to jointly account for dichotomous and continuous environments. We develop the model in terms of a joint genotype-by-sex (for the dichotomous environment) and genotype-by-social determinants of health (SDoH; for the continuous environment). Using this model, we show how a depression variable, as measured by the Beck Depression Inventory-II survey instrument, is not only underlain by genetic effects (as has been reported elsewhere) but is also significantly determined by joint G×Sex and G×SDoH interaction effects. This model has numerous applications leading to potentially transformative research on the genetic and environmental determinants underlying complex diseases.


Gene-Environment Interaction , Genotype , Models, Genetic , Humans , Depression/genetics , Models, Statistical , Male
4.
Genes (Basel) ; 15(5)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38790194

Depression is heritable, differs by sex, and has environmental risk factors such as cigarette smoking. However, the effect of single nucleotide polymorphisms (SNPs) on depression through cigarette smoking and the role of sex is unclear. In order to examine the association of SNPs with depression and smoking in the UK Biobank with replication in the COPDGene study, we used counterfactual-based mediation analysis to test the indirect or mediated effect of SNPs on broad depression through the log of pack-years of cigarette smoking, adjusting for age, sex, current smoking status, and genetic ancestry (via principal components). In secondary analyses, we adjusted for age, sex, current smoking status, genetic ancestry (via principal components), income, education, and living status (urban vs. rural). In addition, we examined sex-stratified mediation models and sex-moderated mediation models. For both analyses, we adjusted for age, current smoking status, and genetic ancestry (via principal components). In the UK Biobank, rs6424532 [LOC105378800] had a statistically significant indirect effect on broad depression through the log of pack-years of cigarette smoking (p = 4.0 × 10-4) among all participants and a marginally significant indirect effect among females (p = 0.02) and males (p = 4.0 × 10-3). Moreover, rs10501696 [GRM5] had a marginally significant indirect effect on broad depression through the log of pack-years of cigarette smoking (p = 0.01) among all participants and a significant indirect effect among females (p = 2.2 × 10-3). In the secondary analyses, the sex-moderated indirect effect was marginally significant for rs10501696 [GRM5] on broad depression through the log of pack-years of cigarette smoking (p = 0.01). In the COPDGene study, the effect of an SNP (rs10501696) in GRM5 on depressive symptoms and medication was mediated by log of pack-years (p = 0.02); however, no SNPs had a sex-moderated mediated effect on depressive symptoms. In the UK Biobank, we found SNPs in two genes [LOC105378800, GRM5] with an indirect effect on broad depression through the log of pack-years of cigarette smoking. In addition, the indirect effect for GRM5 on broad depression through smoking may be moderated by sex. These results suggest that genetic regions associated with broad depression may be mediated by cigarette smoking and this relationship may be moderated by sex.


Depression , Polymorphism, Single Nucleotide , Humans , Male , Female , Depression/genetics , Depression/epidemiology , Middle Aged , Aged , Smoking/genetics , Sex Factors , Genetic Predisposition to Disease , United Kingdom/epidemiology , Cigarette Smoking/genetics , Cigarette Smoking/adverse effects , Risk Factors
5.
PLoS One ; 19(5): e0302809, 2024.
Article En | MEDLINE | ID: mdl-38718064

BACKGROUND: Previous cross-sectional studies have identified multiple potential risk factors for functional dyspepsia (FD). However, the causal associations between these factors and FD remain elusive. Here we aimed to fully examine the causal relationships between these factors and FD utilizing a two-sample MR framework. METHODS: A total of 53 potential FD-related modifiable factors, including those associated with hormones, metabolism, disease, medication, sociology, psychology, lifestyle and others were obtained through a comprehensive literature review. Independent genetic variants closely linked to these factors were screened as instrumental variables from genome-wide association studies (GWASs). A total of 8875 FD cases and 320387 controls were available for the analysis. The inverse variance weighted (IVW) method was employed as the primary analytical approach to assess the relationship between genetic variants of risk factors and the FD risk. Sensitivity analyses were performed to evaluate the consistency of the findings using the weighted median model, MR-Egger and MR-PRESSO methods. RESULTS: Genetically predicted depression (OR 1.515, 95% confidence interval (CI) 1.231 to 1.865, p = 0.000088), gastroesophageal reflux disease (OR 1.320, 95%CI 1.153 to 1.511, p = 0.000057) and years of education (OR 0.926, 95%CI 0.894 to 0.958, p = 0.00001) were associated with risk for FD in univariate MR analyses. Multiple medications, alcohol consumption, poultry intake, bipolar disorder, mood swings, type 1 diabetes, elevated systolic blood pressure and lower overall health rating showed to be suggestive risk factors for FD (all p<0.05 while ≥0.00167). The positive causal relationship between depression, years of education and FD was still significant in multivariate MR analyses. CONCLUSIONS: Our comprehensive MR study demonstrated that depression and lower educational attainment were causal factors for FD at the genetic level.


Dyspepsia , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Dyspepsia/genetics , Dyspepsia/epidemiology , Risk Factors , Depression/genetics , Depression/epidemiology , Depression/complications , Gastroesophageal Reflux/genetics , Gastroesophageal Reflux/complications , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
6.
Nat Commun ; 15(1): 4347, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773146

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


AlkB Homolog 5, RNA Demethylase , Astrocytes , Depressive Disorder, Major , Mice, Knockout , Animals , Astrocytes/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Mice , Humans , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/genetics , Depressive Disorder, Major/pathology , Male , Female , Disease Models, Animal , Mice, Inbred C57BL , Neurons/metabolism , Stress, Psychological/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Behavior, Animal , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Depression/metabolism , Depression/genetics , Adult , Synaptic Transmission , Middle Aged
7.
Curr Gene Ther ; 24(4): 292-306, 2024.
Article En | MEDLINE | ID: mdl-38783529

BACKGROUND: Many studies have suggested that tea has antidepressant effects; however, the underlying mechanism is not fully studied. As the main anti-inflammatory polyphenol in tea, catechin may contribute to the protective role of tea against depression. OBJECTIVE: The objective of this study is to prove that catechin can protect against lipopolysaccharide (LPS)-induced depressive-like behaviours in mice, and then explore the underlying molecular mechanisms. METHODS: Thirty-one C57BL/6J mice were categorized into the normal saline (NS) group, LPS group, catechin group, and amitriptyline group according to their treatments. Elevated Plus Maze (EPM), Tail Suspension Test (TST), and Open Field Test (OFT) were employed to assess depressive- like behaviours in mice. RNA sequencing (RNA-seq) and subsequent Bioinformatics analyses, such as differential gene analysis and functional enrichment, were performed on the four mouse groups. RESULTS: In TST, the mice in the LPS group exhibited significantly longer immobility time than those in the other three groups, while the immobility times for the other three groups were not significantly different. Similarly in EPM, LPS-treated mice exhibited a significantly lower percentage in the time/path of entering open arms than the mice in the other three groups, while the percentages of the mice in the other three groups were not significantly different. In OFT, LPS-treated mice exhibited significantly lower percentages in the time/path of entering the centre area than those in the other three groups. The results suggested that the LPS-induced depression models were established successfully and catechin can reverse (LPS)-induced depressive-like behaviours in mice. Finally, RNA-seq analyses revealed 57 differential expressed genes (DEGs) between LPS and NS with 19 up-regulated and 38 down-regulated. Among them, 13 genes were overlapped with the DEGs between LPS and cetechin (in opposite directions), with an overlapping p-value < 0.001. The 13 genes included Rnu7, Lcn2, C4b, Saa3, Pglyrp1, Gpx3, Lyz2, S100a8, S100a9, Tmem254b, Gm14288, Hbb-bt, and Tmem254c, which might play key roles in the protection of catechin against LPS-induced depressive-like behaviours in mice. The 13 genes were significantly enriched in defense response and inflammatory response, indicating that catechin might work through counteracting changes in the immune system induced by LPS. CONCLUSION: Catechin can protect mice from LPS-induced depressive-like behaviours through affecting inflammatory pathways and neuron-associated gene ontologies.


Behavior, Animal , Catechin , Depression , Lipopolysaccharides , Mice, Inbred C57BL , Animals , Lipopolysaccharides/toxicity , Lipopolysaccharides/adverse effects , Catechin/pharmacology , Mice , Depression/drug therapy , Depression/chemically induced , Depression/genetics , Male , Behavior, Animal/drug effects , Disease Models, Animal , Inflammation/drug therapy , Inflammation/genetics , Inflammation/chemically induced , Neurons/drug effects , Neurons/metabolism , Gene Expression Regulation/drug effects
8.
Clin Epigenetics ; 16(1): 71, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802956

BACKGROUND: Methylation of serotonin-related genes has been proposed as a plausible gene-by-environment link which may mediate environmental stress, depressive and anxiety symptoms. DNA methylation is often measured in blood cells, but little is known about the association between this peripheral epigenetic modification and brain serotonergic architecture. Here, we evaluated the association between whole-blood-derived methylation of four CpG sites in the serotonin transporter (SLC6A4) and six CpG sites of the tryptophan hydroxylase 2 (TPH2) gene and in-vivo brain levels of serotonin transporter (5-HTT) and serotonin 4 receptor (5-HT4) in a cohort of healthy individuals (N = 254) and, for 5-HT4, in a cohort of unmedicated patients with depression (N = 90). To do so, we quantified SLC6A4/TPH2 methylation using bisulfite pyrosequencing and estimated brain 5-HT4 and 5-HTT levels using positron emission tomography. In addition, we explored the association between SLC6A4 and TPH2 methylation and measures of early life and recent stress, depressive and anxiety symptoms on 297 healthy individuals. RESULTS: We found no statistically significant association between peripheral DNA methylation and brain markers of serotonergic neurotransmission in patients with depression or in healthy individuals. In addition, although SLC6A4 CpG2 (chr17:30,236,083) methylation was marginally associated with the parental bonding inventory overprotection score in the healthy cohort, statistical significance did not remain after accounting for blood cell heterogeneity. CONCLUSIONS: We suggest that findings on peripheral DNA methylation in the context of brain serotonin-related features should be interpreted with caution. More studies are needed to rule out a role of SLC6A4 and TPH2 methylation as biomarkers for environmental stress, depressive or anxiety symptoms.


Brain , DNA Methylation , Depression , Epigenesis, Genetic , Serotonin Plasma Membrane Transport Proteins , Serotonin , Synaptic Transmission , Tryptophan Hydroxylase , Humans , DNA Methylation/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Male , Female , Adult , Tryptophan Hydroxylase/genetics , Serotonin/metabolism , Serotonin/blood , Brain/metabolism , Depression/genetics , Depression/metabolism , Epigenesis, Genetic/genetics , Synaptic Transmission/genetics , CpG Islands/genetics , Middle Aged , Young Adult , Receptors, Serotonin, 5-HT4/genetics , Receptors, Serotonin, 5-HT4/metabolism , Positron-Emission Tomography , Cohort Studies
9.
PLoS One ; 19(5): e0300275, 2024.
Article En | MEDLINE | ID: mdl-38805405

BACKGROUND: Previous retrospective studies have shown a correlation between depression and increased risk of infections, including a moderate rise in sepsis likelihood associated with severe depression and anxiety. To investigate the potential causal links between depression, sepsis, and mortality risks, while considering confounding factors, we employed a Mendelian randomization (MR) approach. METHODS: In this two-sample Mendelian randomization study, we analyzed data from a large-scale genome-wide association study on depression, involving 807,553 European individuals (246,363 cases, 561,190 controls). We extracted SNP associations with sepsis and 28-day mortality from UK Biobank GWAS outcomes. The correlation analysis primarily employed the inverse-variance weighted method, supplemented by sensitivity analyses for heterogeneity and pleiotropy assessment. RESULTS: Our analysis revealed a potential causal link between depression and an increased risk of sepsis (OR = 1.246, 95% CI: 1.076-1.442, P = 0.003), but no causal association was found with sepsis-induced mortality risk (OR = 1.274, 95% CI: 0.891-1.823, P = 0.184). Sensitivity analyses confirmed the robustness of these findings. CONCLUSIONS: We identified a potential causal association between depression and heightened sepsis risk, while no link was found with sepsis-induced mortality. These findings suggest that effective management of depression could be important in preventing sepsis.


Depression , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Sepsis , Humans , Sepsis/genetics , Sepsis/mortality , Depression/genetics , Genetic Predisposition to Disease , Male , Risk Factors , Female
10.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119740, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697303

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of GABA transporters (GATs). mGAT4 (encoded by Slc6a11) is another GAT besides GAT1 (encoded by Slc6a1) that functions in GABA reuptake in CNS. Research on the function of mGAT4 is still in its infancy. We developed an mGat4 knockout mouse model (mGat4-/- mice) and performed a series of behavioral analyses for the first time to study the effect of mGat4 on biological processes in CNS. Our results indicated that homozygous mGat4-/- mice had less depression, anxiety-like behavior and more social activities than their wild-type littermate controls. However, they had weight loss and showed motor incoordination and imbalance. Meanwhile, mGat4-/- mice showed increased pain threshold and hypoalgesia behavior in nociceptive stimulus and learning and memory impairments. The expression of multiple components of the GABAergic system including GAD67, GABAA and KCC2 was altered. There is little or no compensatory change in mGat1. In a word, mGat4 may play a key role in normal motor coordination, sensation, emotion, learning and memory and could be the potential target of neurological disorders.


GABA Plasma Membrane Transport Proteins , Mice, Knockout , Animals , GABA Plasma Membrane Transport Proteins/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Mice , gamma-Aminobutyric Acid/metabolism , Male , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/genetics , Anxiety/genetics , Anxiety/metabolism , Symporters/genetics , Symporters/metabolism , K Cl- Cotransporters , Behavior, Animal , Mice, Inbred C57BL , Depression/genetics , Depression/metabolism
12.
J Agric Food Chem ; 72(19): 11205-11220, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708789

Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.


Anxiety , Autophagy , Behavior, Animal , Depression , Mice, Inbred ICR , Oxidative Stress , Pesticides , Animals , Female , Male , Mice , Autophagy/drug effects , Anxiety/chemically induced , Anxiety/physiopathology , Anxiety/metabolism , Depression/metabolism , Depression/genetics , Depression/chemically induced , Depression/physiopathology , Oxidative Stress/drug effects , Pesticides/toxicity , Pesticides/adverse effects , Behavior, Animal/drug effects , Locomotion/drug effects , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Chlorpyrifos/toxicity , Chlorpyrifos/adverse effects
13.
Bull Exp Biol Med ; 176(5): 612-616, 2024 Mar.
Article En | MEDLINE | ID: mdl-38730106

We experimentally demonstrated that chronic social stress during the development of a depression-like state enhances lung metastasis and modifies the expression of many carcinogenesis- and apoptosis-related genes in the hypothalamus of mice, including genes involved in lung cancer pathogenesis in humans. Analysis of the expression of genes encoding the major clinical markers of lung cancer in the hypothalamus of mice with depression-like behavior revealed increased expression of the Eno2 gene encoding neuron-specific enolase, a blood marker of lung cancer progression in humans. It was shown that the expression of this gene in the hypothalamus correlated with the expression of many carcinogenesis- and apoptosis-related genes. The discovered phenomenon may have a fundamental significance and requires further studies.


Apoptosis , Carcinogenesis , Depression , Hypothalamus , Lung Neoplasms , Phosphopyruvate Hydratase , Animals , Mice , Hypothalamus/metabolism , Hypothalamus/pathology , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Apoptosis/genetics , Depression/genetics , Depression/metabolism , Depression/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinogenesis/genetics , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Stress, Psychological/genetics , Stress, Psychological/metabolism
14.
Front Endocrinol (Lausanne) ; 15: 1369676, 2024.
Article En | MEDLINE | ID: mdl-38745947

Background: Depression and coronary heart disease (CHD) have common risk mechanisms. Common single nucleotide polymorphisms (SNPs) may be associated with the risk of depression combined with coronary heart disease. Methods: This study was designed according to the PRISMA-P guidelines. We will include case-control studies and cohort studies investigating the relationship between gene SNPs and depression and coronary heart disease comorbidities. The Newcastle-Ottawa Scale (NOS) will be used to assess the risk of bias. When measuring dichotomous outcomes, we will use the odds ratio (OR) and 95% confidence interval (95%CIs) in a case-control study. Five genetic models (allele model, homozygous model, co-dominant model, dominant model, and recessive model) will be evaluated for each included study. Subgroup analysis by ethnicity will be performed. If necessary, post hoc analysis will be made according to different types. Results: A total of 13 studies were included in this study, and the types of genes included are FKBP5 and SGK1 genes that act on glucocorticoid; miR-146a, IL-4-589, IL-6-174, TNF-α-308, CRP-717 genes that act on inflammatory mechanisms; eNOS genes from endothelial cells; HSP70 genes that act on the autoimmune response; ACE2 and MAS1 genes that act to mediate Ang(1-7) in the RAS system; 5-HTTLPR gene responsible for the transport of serotonin 5-HT and neurotrophic factor BDNF gene. There were three studies on 5-HTTLPR and BDNF genes, respectively, while there was only one study targeting FKBP5, SGK1, miR-146a, IL-4-589, IL-6-174, TNF-alpha-308, CRP-717, eNOS, HSP70, ACE2, and MAS1 genes. We did not perform a meta-analysis for genes reported in a single study, and meta-analysis was performed separately for studies exploring the 5-HTTLPR and BDNF genes. The results showed that for the 5-HTTLPR gene, there was a statistically significant association between 5-HTTLPR gene polymorphisms and depression in combination with coronary diseases (CHD-D) under the co-dominant model (LS vs LL: OR 1.76, 95%CI 1.20-2.59; SS vs LL: OR 2.80, 95%CI 1.45 to 5.41), the dominant model (LS+SS vs LL: OR 2.06, 95%CI 1.44 to 2.96), and the homozygous model (SS vs LL: OR 2.80 95%CI 1.45 to 5.5.41) were statistically significant for CHD-D, demonstrating that polymorphisms in the 5-HTTLPR gene are associated with the development of CHD-D and that the S allele in the 5-HTTLPR gene is likely to be a risk factor for CHD-D. For the BDNF gene, there were no significant differences between one of the co-dominant gene models (AA vs GG: OR 6.63, 95%CI 1.44 to 30.64), the homozygous gene model (AA vs GG: OR 6.63,95% CI 1.44 to 30.64), the dominant gene model (GA+AA vs GG: OR4.29, 95%CI 1.05 to 17.45), recessive gene model (AA vs GG+GA: OR 2.71, 95%CI 1.16 to 6.31), and allele model (A vs G: OR 2.59, 95%CI 1.18 to 5.67) were statistically significant for CHD-D, demonstrating that BDNFrs6265 gene polymorphisms are associated with the CHD-D development and that the A allele in the BDNFrs6265 gene is likely to be a risk factor for CHD-D. We analyzed the allele frequencies of SNPs reported in a single study and found that the SNPs in the microRNA146a gene rs2910164, the SNPs in the ACE2 gene rs2285666 and the SNPs in the SGK1 gene rs1743963 and rs1763509 were risk factors for the development of CHD-D. We performed a subgroup analysis of three studies involving the BDNFrs6265 gene. The results showed that European populations were more at risk of developing CHD-D than Asian populations in both dominant model (GA+AA vs GG: OR 10.47, 95%CI 3.53 to 31.08) and co-dominant model (GA vs GG: OR 6.40, 95%CI 1.98 to 20.73), with statistically significant differences. In contrast, the studies involving the 5-HTTLPR gene were all Asian populations, so subgroup analyses were not performed. We performed sensitivity analyses of studies exploring the 5-HTTLPR and BDNF rs6265 genes. The results showed that the results of the allele model, the dominant model, the recessive model, the homozygous model and the co-dominant model for both 5-HTTLPR and BDNF rs6265 genes were stable. Due to the limited number of studies of the 5-HTTLPR and BDNF genes, it was not possible to determine the symmetry of the funnel plot using Begg's funnel plot and Egger's test. Therefore, we did not assess publication bias. Discussion: SNPs of the microRNA146a gene at rs2910164, the ACE2 gene at the rs2285666 and the SGK1 gene at rs1743963 and rs1763509, and the SNPs at the 5-HTTLPR and BDNF gene loci are associated with the onset of comorbid depression in coronary heart disease. We recommend that future research focus on studying SNPs' impact on comorbid depression in coronary heart disease, specifically targeting the 5-HTTLPR and BDNF gene at rs6265. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42021229371.


Coronary Disease , Depression , Polymorphism, Single Nucleotide , Humans , Depression/genetics , Depression/epidemiology , Coronary Disease/genetics , Genetic Predisposition to Disease
15.
Cells ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38727295

Strain differences have been reported for motor behaviors, and only a subset of spinal cord injury (SCI) patients develop neuropathic pain, implicating genetic or genomic contribution to this condition. Here, we evaluated neuropsychiatric behaviors in A/J, BALB/c, and C57BL/6 male mice and tested genetic or genomic alterations following SCI. A/J and BALB/c naive mice showed significantly less locomotor activity and greater anxiety-like behavior than C57BL/6 mice. Although SCI elicited locomotor dysfunction, C57BL/6 and A/J mice showed the best and the worst post-traumatic recovery, respectively. Mild (m)-SCI mice showed deficits in gait dynamics. All moderate/severe SCI mice exhibited similar degrees of anxiety/depression. mSCI in BALB/c and A/J mice resulted in depression, whereas C57BL/6 mice did not exhibit depression. mSCI mice had significantly lower mechanical thresholds than their controls, indicating high cutaneous hypersensitivity. C57BL/6, but not A/J and BLAB/c mice, showed significantly lower heat thresholds than their controls. C57BL/6 mice exhibited spontaneous pain. RNAseq showed that genes in immune responses and wound healing were upregulated, although A/J mice showed the largest increase. The cell cycle and the truncated isoform of trkB genes were robustly elevated in SCI mice. Thus, different genomics are associated with post-traumatic recovery, underscoring the likely importance of genetic factors in SCI.


Depression , Hyperalgesia , Locomotion , Spinal Cord Injuries , Animals , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology , Hyperalgesia/genetics , Locomotion/genetics , Mice , Depression/genetics , Depression/physiopathology , Male , Mice, Inbred C57BL , Disease Models, Animal , Species Specificity
16.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1896-1904, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812202

This study aims to analyze the constituents of Jiaotai Pills migrating to the blood in normal rats by UHPLC-TOF-MS technique and reveal the underlying mechanism of Jiaotai Pills in the treatment of depression by network pharmacology and animal experiments. UHPLC-TOF-MS technique was used to detect the constituents of Jiaotai Pills in the blood of rats after intragastric administration. The intersection target of the constituents and depression was screened by DisGeNET and SwissTargetPrediction database, and the protein-protein interaction(PPI) network was constructed. Key targets were imported into the DAVID platform for Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway annotation. Combined with constituents, targets, and pathways, the "constituent-target-pathway" network was constructed by Cytoscape 3.9.1 software, through which the key targets and pathways of Jiaotai Pills against depression were predicted. The depression model of chronic unpredictable mild stress(CUMS) was established on rats. After that, behavioral experiments were conducted. The expression of inflammatory factors in serum and the neurotransmitters in the brain were detected by ELISA, and the expression of key targets in the hippocampus was detected by Western blot. The results showed that a total of 17 constituents of Jiaotai Pills were identified in the blood, including 10 alkaloids. There were 124 intersection targets between constituents of Jiaotai Pills and depression disorder. A total of 52 core targets were screened according to PPI results, including NLRP3 and caspase-1, etc. KEGG enrichment analysis mainly involved 15 typical pathways such as NOD-like receptor pathway. The results of animal experiments showed that Jiaotai Pills significantly improved the depression-like behavior of CUMS depressive model on rats, decreased the levels of IL-1ß, TNF-α and IL-6 in serum, and increased the expression of neurotransmitters such as 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in the brain. Besides, Jiaotai Pills also down-regulated the expression of NLRP3 and caspase-1 proteins in the hippocampus and inhibited the NLRP3-mediated NOD-like receptor signaling pathway. In conclusion, Jiaotai Pills may play a role in the treatment of depression by inhibiting the NLRP3 inflammasome and the NOD-like receptor pathway mediated by NLRP3.


Depression , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Depression/drug therapy , Depression/genetics , Depression/metabolism , Rats , Male , Chromatography, High Pressure Liquid , Protein Interaction Maps , Mass Spectrometry , Humans , Hippocampus/drug effects , Hippocampus/metabolism
17.
J Cell Mol Med ; 28(11): e18365, 2024 Jun.
Article En | MEDLINE | ID: mdl-38818577

Traditional Chinese medicine, particularly Zhi-zi-chi decoction (ZZCD), is gaining recognition as a potential treatment for depression. This study aimed to uncover the molecular mechanisms behind ZZCD's antidepressant effects, focusing on lncRNA Six3os1 and histone H3K4 methylation at the BDNF promoter. Network pharmacology and in vivo experiments were conducted to identify ZZCD targets and evaluate its impact on depression-related behaviours and neuron injury. The role of Six3os1 in recruiting KMT2A to the BDNF promoter and its effects on oxidative stress and neuron injury were investigated. ZZCD reduced depression-like behaviours and neuron injury in mice subjected to chronic stress. It upregulated Six3os1, which facilitated KMT2A recruitment to the BDNF promoter, leading to increased histone H3K4 methylation and enhanced BDNF expression. ZZCD also inhibited CORT-induced neuron injury, inflammatory response and oxidative stress in vitro. ZZCD's antidepressant properties involve Six3os1 upregulation, which exerts neuroprotective effects by inhibiting oxidative stress and neuron injury, thereby alleviating depressive symptoms. Targeting Six3os1 upregulation may offer a potential therapeutic intervention for depression.


Brain-Derived Neurotrophic Factor , Depression , Drugs, Chinese Herbal , Histones , Oxidative Stress , Promoter Regions, Genetic , RNA, Long Noncoding , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Histones/metabolism , Depression/drug therapy , Depression/genetics , Depression/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Drugs, Chinese Herbal/pharmacology , Male , Oxidative Stress/drug effects , Methylation/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Gene Expression Regulation/drug effects , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Disease Models, Animal
18.
Nat Commun ; 15(1): 4411, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782943

Cross-sectional studies have demonstrated strong associations between physical frailty and depression. However, the evidence from prospective studies is limited. Here, we analyze data of 352,277 participants from UK Biobank with 12.25-year follow-up. Compared with non-frail individuals, pre-frail and frail individuals have increased risk for incident depression independent of many putative confounds. Altogether, pre-frail and frail individuals account for 20.58% and 13.16% of depression cases by population attributable fraction analyses. Higher risks are observed in males and individuals younger than 65 years than their counterparts. Mendelian randomization analyses support a potential causal effect of frailty on depression. Associations are also observed between inflammatory markers, brain volumes, and incident depression. Moreover, these regional brain volumes and three inflammatory markers-C-reactive protein, neutrophils, and leukocytes-significantly mediate associations between frailty and depression. Given the scarcity of curative treatment for depression and the high disease burden, identifying potential modifiable risk factors of depression, such as frailty, is needed.


Brain , Depression , Frailty , Inflammation , Mendelian Randomization Analysis , Humans , Male , Female , Depression/genetics , Frailty/genetics , Aged , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Middle Aged , Inflammation/genetics , Risk Factors , United Kingdom/epidemiology , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Cross-Sectional Studies , Prospective Studies , Adult , Biomarkers , Neutrophils
19.
BMC Med Genomics ; 17(1): 123, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711022

BACKGROUND: Depression is a common chronic debilitating disease with a heavy social burden. single nucleotide polymorphisms (SNPs) can affect the function of microRNAs (miRNAs), which is in turn associated with neurological diseases. However, the association between SNPs located in the promoter region of miR-17-92 and the risk of depression remains unclear. Therefore, we investigated the association between rs982873, rs9588884 and rs1813389 polymorphisms in the promoter region of miR-17-92 and the incidence of depression in a Chinese population. METHODS: we used GWAS (Genome-wide association study) and NCBI (National Center for Biotechnology Information) to screen three SNPs in the miR-17-92 cluster binding sites. A case-control study (including 555 cases and 541 controls) was conducted to investigate the relationship between the SNPs and risk of depression in different regions of China. The gene sequencing ii was used to genotype the collected blood samples. RESULTS: the following genotypes were significantly associated with a reduced risk of depression: rs982873 TC (TC vs. TT: OR = 0.72, 95% CI, 0.54-0.96, P = 0.024; TC/CC vs. TT: OR = 0.74, 95% Cl, 0.56-0.96, P = 0.025); CG genotype of rs9588884 (CG vs. CC: OR = 0.74, 95% CI, 0.55-0.98, P = 0.033; CG/GG vs. CC: OR = 0.75, 95% Cl, 0.57-0.98, P = 0.036); and AG genotype of rs1813389 (AG vs. AA: OR = 0.75, 95% CI, 0.57-1.00, P = 0.049; AG/GG vs. AA: OR = 0.76, 95% Cl, 0.59-1.00, P = 0.047). Stratified analysis showed that there was no significant correlation between the three SNPS and variables such as family history of suicidal tendency (P > 0.05). CONCLUSIONS: our findings suggest that rs982873, rs9588884, and rs1813389 polymorphisms may be associated with protective factors for depression.


Depression , Genetic Predisposition to Disease , MicroRNAs , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , RNA, Long Noncoding , Humans , Male , Depression/genetics , Female , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Middle Aged , Case-Control Studies , China , Asian People/genetics , Adult , Genome-Wide Association Study , East Asian People
20.
Mol Biol Rep ; 51(1): 481, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578530

BACKGROUND AND AIM: Type 2 diabetes mellitus (T2DM) and depression are often linked. Several studies have reported the role of molecular markers either in diabetes or depression. The present study aimed at molecular level profiling of Indoleamine-2,3-dioxygenase (IDO), brain-derived neurotrophic factor (BDNF) and cellular senescence in patients with type 2 diabetes with and without depression compared to individuals with healthy controls. METHODS: A total of 120 individuals diagnosed with T2DM were enlisted for the study, with a subset of participants with and without exhibiting depression. The gene expression analysis was done using quantitative real-time PCR. RESULTS: Indoleamine 2,3 dioxygenase (p < 0.001) and senescence genes (p < 0.001) were significantly upregulated, while brain derived neurotrophic factor (p < 0.01) was significantly downregulated in T2DM patients comorbid with and without depression when compared to healthy controls. CONCLUSION: Indoleamine 2,3 dioxygenase, Brain derived neurotrophic factor and cellular senescence may play a role in the progression of the disease. The aforementioned discoveries offer significant contributions to our understanding of the molecular mechanisms that underlie T2DM with depression, potentially aiding in the advancement of prediction and diagnostic methods for this particular ailment.


Depression , Diabetes Mellitus, Type 2 , Humans , Brain-Derived Neurotrophic Factor/genetics , Cellular Senescence/genetics , Depression/genetics , Depression/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
...