Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.965
1.
PLoS One ; 19(5): e0303887, 2024.
Article En | MEDLINE | ID: mdl-38771749

BACKGROUND: Norovirus (NoV) is the leading cause of diarrheal disease worldwide and the impact is high in developing countries, including Ethiopia. Moreover, there is a significant and fluctuating global genetic diversity that varies across diverse environments over time. Nevertheless, there is a scarcity of data on the genetic diversity of NoV in Ethiopia. OBJECTIVE: This study was aimed to assess the genetic diversity and distribution of NoVs circulating in the Amhara National Regional State, Ethiopia, by considering all age groups. METHODS: A total of 519 fecal samples were collected from diarrheal patients from May 01/2021 to November 30/ 2021. The fecal samples were screened for the presence of NoVs using real-time RT-PCR by targeting a portion of the major capsid protein coding region. The positive samples were further amplified using conventional RT-PCR, and sequenced. RESULTS: The positivity rate of NoV was (8.9%; 46/519). The detection rate of NoV genogroup II (GII) and genogroup I (GI) was 38 (82.6%) and 8 (17.4%), respectively. Overall, five distinct GII (GII.3, GII.6, GII.10, GII.17, and GII.21) and two GI (GI.3 and GI.5) genotypes were detected. Within the GII types, GII.3 was the predominant (34.2%) followed by GII.21 (15.8%), GII.17 (10.5%), GII.6 and GII.10 each (2.6%). Norovirus GII.21 is reported for the first time in Ethiopia. The genetic diversity and distribution of NoVs were significantly different across the four sampling sits and age groups. The phylogenetic analysis revealed close relatedness of the current strains with published strains from Ethiopia and elsewhere. CONCLUSION: The distribution and genetic diversity of NoV was considerably high, with predominance of non-GII.4 genotypes. The GII.21 genotype is a new add on the growing evidences on the genetic diversity of NoVs in Ethiopia. Future nationwide surveillance studies are necessary to gain comprehensive data in Ethiopia.


Caliciviridae Infections , Diarrhea , Genetic Variation , Norovirus , Phylogeny , Humans , Norovirus/genetics , Norovirus/isolation & purification , Norovirus/classification , Ethiopia/epidemiology , Diarrhea/virology , Diarrhea/epidemiology , Adult , Adolescent , Child, Preschool , Female , Male , Child , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Infant , Young Adult , Middle Aged , Feces/virology , Genotype , Aged , Infant, Newborn , Gastroenteritis/virology , Gastroenteritis/epidemiology
2.
J Med Virol ; 96(5): e29650, 2024 May.
Article En | MEDLINE | ID: mdl-38727133

To analyze the epidemiological characteristics of group A rotavirus (RVA) diarrhea in Beijing between 2019 and 2022 and evaluate the effectiveness of the RV5 vaccine. Stool specimens were collected from patients with acute diarrhea, and RVA was detected and genotyped. The whole genome of RVA was sequenced by fragment amplification and Sanger sequencing. Phylogenetic trees were constructed using Bayesian and maximum likelihood methods. Descriptive epidemiological methods were used to analyze the characteristics of RVA diarrhea. Test-negative design was used to evaluate the vaccine effectiveness (VE) of the RV5. Compared with 2011-2018, RVA-positive rates in patients with acute diarrhea under 5 years of age and adults decreased significantly between 2019 and 2022, to 9.45% (249/634) and 3.66% (220/6016), respectively. The predominant genotype of RVA had changed from G9-VIP[8]-III between 2019 and 2021 to G8-VP[8]-III in 2022, and P[8] sequences from G8-VP[8]-III strains formed a new branch called P[8]-IIIb. The complete genotype of G8-VP[8]-III was G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. The VE of 3 doses of RV5 was 90.4% (95% CI: 28.8%-98.7%) against RVA diarrhea. The prevalence of RVA decreased in Beijing between 2019 and 2022, and the predominant genotype changed to G8P[8], which may be related to RV5 vaccination. Continuous surveillance is necessary to evaluate vaccine effectiveness and improve vaccine design.


Diarrhea , Feces , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus/genetics , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/prevention & control , Diarrhea/virology , Diarrhea/epidemiology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Child, Preschool , Prevalence , Beijing/epidemiology , Male , Infant , Female , Adult , Feces/virology , Middle Aged , Child , Young Adult , Adolescent , Vaccine Efficacy , Aged , Genome, Viral , Infant, Newborn
3.
J Med Virol ; 96(5): e29681, 2024 May.
Article En | MEDLINE | ID: mdl-38773815

Rotavirus gastroenteritis is accountable for an estimated 128 500 deaths among children younger than 5 years worldwide, and the majority occur in low-income countries. Although the clinical trials of rotavirus vaccines in Bangladesh revealed a significant reduction of severe rotavirus disease by around 50%, the vaccines are not yet included in the routine immunization program. The present study was designed to provide data on rotavirus diarrhea with clinical profiles and genotypes before (2017-2019) and during the COVID-19 pandemic period (2020-2021). Fecal samples were collected from 2% of the diarrheal patients at icddr,b Dhaka hospital of all ages between January 2017 and December 2021 and were tested for VP6 rotavirus antigen using ELISA. The clinical manifestations such as fever, duration of diarrhea and hospitalization, number of stools, and dehydration and so on were collected from the surveillance database (n = 3127). Of the positive samples, 10% were randomly selected for genotyping using Sanger sequencing method. A total of 12 705 fecal samples were screened for rotavirus A antigen by enzyme immunoassay. Overall, 3369 (27%) were rotavirus antigen-positive, of whom children <2 years had the highest prevalence (88.6%). The risk of rotavirus A infection was 4.2 times higher in winter than in summer. Overall, G3P[8] was the most prominent genotype (45.3%), followed by G1P[8] (32.1%), G9P[8] (6.8%), and G2P[4] (6.1%). The other unusual combinations, such as G1P[4], G1P[6], G2P[6], G3P[4], G3P[6], and G9P[6], were also present. Genetic analysis on Bangladeshi strains revealed that the selection pressure (dN/dS) was estimated as <1. The number of hospital visits showed a 37% drop during the COVID-19 pandemic relative to the years before the pandemic. Conversely, there was a notable increase in the rate of rotavirus positivity during the pandemic (34%, p < 0.00) compared to the period before COVID-19 (23%). Among the various clinical symptoms, only the occurrence of watery stool significantly increased during the pandemic. The G2P[4] strain showed a sudden rise (19%) in 2020, which then declined in 2021. In the same year, G1P[8] was more prevalent than G3P[8] (40% vs. 38%, respectively). The remaining genotypes were negligible and did not exhibit much fluctuation. This study reveals that the rotavirus burden remained high during the COVID-19 prepandemic and pandemic in Bangladesh. Considering the lack of antigenic variations between the circulating and vaccine-targeted strains, integrating the vaccine into the national immunization program could reduce the prevalence of the disease, the number of hospitalizations, and the severity of cases.


COVID-19 , Feces , Genotype , Rotavirus Infections , Rotavirus , Humans , Bangladesh/epidemiology , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Child, Preschool , Infant , COVID-19/epidemiology , COVID-19/virology , COVID-19/prevention & control , Feces/virology , Female , Male , Child , Diarrhea/virology , Diarrhea/epidemiology , Adolescent , Adult , Antigens, Viral/genetics , Infant, Newborn , Gastroenteritis/epidemiology , Gastroenteritis/virology , Young Adult , Prevalence , SARS-CoV-2/genetics , SARS-CoV-2/classification , Middle Aged , Seasons
4.
J Infect ; 88(6): 106169, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697269

Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0 % (95 % CI 24.0-39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0 % (95 % CI 12.0-20.0), 10 % (95 % CI 6-15), 4.0 % (95 % CI 2.0-6.0), 4 % (95 % CI 3-6), and 2.3 % (95 % CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (39 %), followed by G3P[8] (11.7 %), G9P[8] (8.7 %), and G2P[4] (7.1 %); although, unusual genotypes were also observed, including G3P[6] (2.7 %), G8P[6] (1.7 %), G1P[6] (1.5 %), G10P[8] (0.9 %), G8P[4] (0.5 %), and G4P[8] (0.4 %). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6 %, 613/725 vs 14.9 %, 108/725), with the GII.4 (79.3 %) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.


Gastroenteritis , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Child, Preschool , Infant , Africa/epidemiology , Prevalence , Diarrhea/virology , Diarrhea/epidemiology , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Infant, Newborn , Genotype , Virus Diseases/epidemiology , Virus Diseases/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
5.
Vet Microbiol ; 293: 110100, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718527

Recent epidemiological studies have discovered that a lot of cases of porcine epidemic diarrhea virus (PEDV) infection are frequently accompanied by porcine kobuvirus (PKV) infection, suggesting a potential relationship between the two viruses in the development of diarrhea. To investigate the impact of PKV on PEDV pathogenicity and the number of intestinal lymphocytes, piglets were infected with PKV or PEDV or co-infected with both viruses. Our findings demonstrate that co-infected piglets exhibit more severe symptoms, acute gastroenteritis, and higher PEDV replication compared to those infected with PEDV alone. Notably, PKV alone does not cause significant intestinal damage but enhances PEDV's pathogenicity and alters the number of intestinal lymphocytes. These results underscore the complexity of viral interactions in swine diseases and highlight the need for comprehensive diagnostic and treatment strategies addressing co-infections.


Coinfection , Coronavirus Infections , Intestines , Kobuvirus , Lymphocytes , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/pathogenicity , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/virology , Coinfection/virology , Coinfection/veterinary , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Lymphocytes/virology , Kobuvirus/pathogenicity , Kobuvirus/genetics , Intestines/virology , Diarrhea/virology , Diarrhea/veterinary , Virus Replication , Gastroenteritis/virology , Gastroenteritis/veterinary , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology
6.
Sci Rep ; 14(1): 10926, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740833

In contrast to acute diarrhoea, the aetiology of persistent digestive disorders (≥ 14 days) is poorly understood in low-resource settings and conventional diagnostic approaches lack accuracy. In this multi-country study, we compared multiplex real-time PCR for enteric bacterial, parasitic and viral pathogens in stool samples from symptomatic patients and matched asymptomatic controls in Côte d'Ivoire, Mali and Nepal. Among 1826 stool samples, the prevalence of most pathogens was highest in Mali, being up to threefold higher than in Côte d'Ivoire and up to tenfold higher than in Nepal. In all settings, the most prevalent bacteria were EAEC (13.0-39.9%) and Campylobacter spp. (3.9-35.3%). Giardia intestinalis was the predominant intestinal protozoon (2.9-20.5%), and adenovirus 40/41 was the most frequently observed viral pathogen (6.3-25.1%). Significantly different prevalences between symptomatic and asymptomatic individuals were observed for Campylobacter, EIEC and ETEC in the two African sites, and for norovirus in Nepal. Multiple species pathogen infection was common in Côte d'Ivoire and Mali, but rarely found in Nepal. We observed that molecular testing detected multiple enteric pathogens and showed low discriminatory accuracy to distinguish between symptomatic and asymptomatic individuals. Yet, multiplex PCR allowed for direct comparison between different countries and revealed considerable setting-specificity.


Abdominal Pain , Diarrhea , Feces , Multiplex Polymerase Chain Reaction , Humans , Cote d'Ivoire/epidemiology , Diarrhea/microbiology , Diarrhea/parasitology , Diarrhea/virology , Diarrhea/epidemiology , Diarrhea/diagnosis , Multiplex Polymerase Chain Reaction/methods , Nepal/epidemiology , Mali/epidemiology , Male , Female , Adult , Feces/microbiology , Feces/parasitology , Feces/virology , Adolescent , Child , Middle Aged , Child, Preschool , Young Adult , Infant , Prevalence , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Aged , Giardia lamblia/isolation & purification , Giardia lamblia/genetics
7.
J Virol ; 98(5): e0021224, 2024 May 14.
Article En | MEDLINE | ID: mdl-38591886

Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.


Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Swine Diseases , Vaccines, Subunit , Animals , Swine , Rotavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Rotavirus Infections/prevention & control , Rotavirus Infections/veterinary , Rotavirus Infections/immunology , Rotavirus Infections/virology , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Mice , Female , Mice, Inbred BALB C , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Diarrhea/prevention & control , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/immunology , Genotype , Immunity, Cellular , Vaccination
8.
Virol J ; 21(1): 94, 2024 04 24.
Article En | MEDLINE | ID: mdl-38659036

BACKGROUND: The causative agents of diarrhea, rotavirus B (RVB) and rotavirus C (RVC) are common in adults and patients of all age groups, respectively. Due to the Rotavirus A (RVA) vaccination program, a significant decrease in the number of gastroenteritis cases has been observed globally. The replacement of RVA infections with RVB, RVC, or other related serogroups is suspected due to the possibility of reducing natural selective constraints due to RVA infections. The data available on RVB and RVC incidence are scant due to the lack of cheap and rapid commercial diagnostic assays and the focus on RVA infections. The present study aimed to develop real-time RT‒PCR assays using the data from all genomic RNA segments of human RVB and RVC strains available in the Gene Bank. RESULTS: Among the 11 gene segments, NSP3 and NSP5 of RVB and the VP6 gene of RVC were found to be suitable for real-time RT‒PCR (qRT‒PCR) assays. Fecal specimens collected from diarrheal patients were tested simultaneously for the presence of RVB (n = 192) and RVC (n = 188) using the respective conventional RT‒PCR and newly developed qRT‒PCR assays. All RVB- and RVC-positive specimens were reactive in their respective qRT‒PCR assays and had Ct values ranging between 23.69 and 41.97 and 11.49 and 36.05, respectively. All known positive and negative specimens for other viral agents were nonreactive, and comparative analysis showed 100% concordance with conventional RT‒PCR assays. CONCLUSIONS: The suitability of the NSP5 gene of RVB and the VP6 gene of RVC was verified via qRT‒PCR assays, which showed 100% sensitivity and specificity. The rapid qRT‒PCR assays developed will be useful diagnostic tools, especially during diarrheal outbreaks for testing non-RVA rotaviral agents and reducing the unnecessary use of antibiotics.


Diarrhea , Feces , Real-Time Polymerase Chain Reaction , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Rotavirus Infections/diagnosis , Real-Time Polymerase Chain Reaction/methods , Feces/virology , Diarrhea/virology , Diarrhea/diagnosis , Sensitivity and Specificity , Reverse Transcriptase Polymerase Chain Reaction/methods , Viral Nonstructural Proteins/genetics , Antigens, Viral/genetics , RNA, Viral/genetics , Capsid Proteins/genetics , Genome, Viral/genetics , Gastroenteritis/virology , Gastroenteritis/diagnosis
9.
Lancet Glob Health ; 12(6): e919-e928, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648812

BACKGROUND: Information on the causes of deaths from diarrhoea in children younger than 5 years is needed to design improved preventive and therapeutic approaches. We aimed to conduct a systematic analysis of studies to report estimates of the causes of deaths from diarrhoea in children younger than 5 years at global and regional levels during 2000-21. METHODS: For this systematic review and Bayesian multinomial analysis, we included 12 pathogens with the highest attributable incidence in the Global Enteric Multicenter Study. We searched PubMed, Scopus, Embase, Web of Science, Global Health Index Medicus, Global Health OVID, IndMed, Health Information Platform for the Americas (PLISA), Africa-Wide Information, and Cochrane Collaboration for articles published between Jan 1, 2000, and Dec 31, 2020, using the search terms "child", "hospital", "diarrhea", "diarrhoea", "dysentery", "rotavirus", "Escherichia coli", "salmonella", "shigella", "campylobacter", "Vibrio cholerae", "cryptosporidium", "norovirus", "astrovirus", "sapovirus", and "adenovirus". To be included, studies had to have a patient population of children younger than 5 years who were hospitalised for diarrhoea (at least 90% of study participants), at least a 12-month duration, reported prevalence in diarrhoeal stools of at least two of the 12 pathogens, all patients with diarrhoea being included at the study site or a systematic sample, at least 100 patients with diarrhoea, laboratory tests done on rectal swabs or stool samples, and standard laboratory methods (ie, quantitative PCR [qPCR] or non-qPCR). Studies published in any language were included. Studies were excluded if they were limited to nosocomial, chronic, antibiotic-associated, or outbreak diarrhoea or to a specific population (eg, only children with HIV or AIDS). Each article was independently reviewed by two researchers; a third arbitrated in case of disagreement. If both reviewers identified an exclusion criterion, the study was excluded. Data sought were summary estimates. Data on causes from published studies were adjusted when necessary to account for the poor sensitivity of non-qPCR methods and for attributable fraction based on quantification of pathogens in children who are ill or non-ill. The causes of deaths from diarrhoea were modelled on the causes of hospitalisations for diarrhoea. We separately modelled studies reporting causes of diarrhoea in children who were hospitalised in low-income and middle-income countries (LMICs) and in high-income countries (HICs). FINDINGS: Of 74 282 papers identified in the initial database search, we included 138 studies (91 included data from LMICs and 47 included data from HICs) from 73 countries. We modelled estimates for 194 WHO member states (hereafter referred to as countries), including 42 HICs and 152 LMICs. We could attribute a cause to 1 003 448 (83·8%) of the estimated 1 197 044 global deaths from diarrhoea in children younger than 5 years in 2000 and 360 730 (81·3%) of the estimated 443 833 global deaths from diarrhoea in children younger than 5 years in 2021. The cause with the largest estimated global attribution was rotavirus; in LMICs, the proportion of deaths from diarrhoea due to rotavirus in children younger than 5 years appeared lower in 2021 (108 322 [24·4%] of 443 342, 95% uncertainty interval 21·6-29·5) than in 2000 (316 382 [26·5%] of 1 196 134, 25·7-28·5), but the 95% CIs overlapped. In 2000, the second largest estimated attribution was norovirus GII (95 817 [8·0%] of 1 196 134 in LMICs and 225 [24·7%] of 910 in HICs); in 2021, Shigella sp had the second largest estimated attribution in LMICs (36 082 [8·1%] of 443 342), but norovirus remained with the second largest estimated attribution in HICs (84 [17·1%] of 490). INTERPRETATION: Our results indicate progress in the reduction of deaths from diarrhoea caused by 12 pathogens in children younger than 5 years in the past two decades. There is a need to increase efforts for prevention, including with rotavirus vaccine, and treatment to eliminate further deaths. FUNDING: Bill & Melinda Gates Foundation via Johns Hopkins University and the University of Virginia.


Bayes Theorem , Cause of Death , Diarrhea , Global Health , Humans , Diarrhea/epidemiology , Diarrhea/mortality , Diarrhea/virology , Infant , Child, Preschool , Global Health/statistics & numerical data , Infant, Newborn
10.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(4): 506-512, 2024 Apr 10.
Article Zh | MEDLINE | ID: mdl-38678345

Objective: To investigate the epidemiological characteristics and genotype trends of rotavirus infection among the population with diarrhea in China, from 2009 to 2020 and provide evidence for strategic surveillance and prevention. Methods: Surveillance data on diarrhea syndrome from 252 sentinel hospitals across 28 provinces (municipalities, autonomous regions) were obtained from the information management system of the Infectious Disease Surveillance Technology Platform of the National Science and Technology Major Project. Descriptive epidemiological methods were employed to analyze the distribution of rotavirus diarrhea cases in different climatic zones, populations, and times from 2009 to 2020, as well as the genotyping characteristics and changing trends of group A rotavirus diarrhea cases. Results: From 2009 to 2020, a total of 114 606 diarrhea cases were tested for rotavirus, and the positive rate was 19.1% (21 872/114 606); group A rotavirus was dominant (98.2%, 21 471/21 872). The positive rate of rotavirus was the highest in 2009 (36.9%, 2 436/6 604) and 2010 (30.6%, 5 130/16 790), fluctuated between 14.0% to 18.0% from 2011 to 2017, raised slightly in 2018 (20.3%, 2 211/10 900), and declined continuously in the following two years (15.5%, 2 262/14 611 and 9.5%, 470/4 963). The positive rate of males (20.2%, 13 660/67 471) was significantly higher than that of females (17.4%, 8 212/47 135). Children under five had the highest positive rate (28.4%, 18 261/64 300), more than four times that of adults. The positive rate peaked from December to February in the mediate temperate zone, warm temperate zone, and subtropical zone, while there were two peaks from November to January and May to June in the frigid zone of the plateau. The dominant genotype of group A rotavirus gradually changed from G3P[8] and G1P[8] to G9P[8] during 2009-2020. Conclusions: The overall rotavirus infection rate in China was on a downward trend. Meanwhile, significant variations of positive rates were observed in seasonal epidemics and different age groups from 2009 to 2020. Rotavirus diarrhea in children was still a prominent concern. Vaccination of rotavirus vaccine should be promoted, and the epidemiological characteristics and genotypes of rotavirus diarrhea should be continuously monitored.


Diarrhea , Genotype , Rotavirus Infections , Rotavirus , Humans , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , China/epidemiology , Rotavirus/genetics , Diarrhea/epidemiology , Diarrhea/virology , Female , Male , Infant , Child, Preschool , Child
11.
Microb Pathog ; 190: 106612, 2024 May.
Article En | MEDLINE | ID: mdl-38467166

Rotavirus group A (RVA) is a main pathogen causing diarrheal diseases in humans and animals. Various genotypes are prevalent in the Chinese pig herd. The genetic diversity of RVA lead to distinctly characteristics. In the present study, a porcine RVA strain, named AHFY2022, was successfully isolated from the small intestine tissue of piglets with severe diarrhea. The AHFY2022 strain was identified by cytopathic effects (CPE) observation, indirect immunofluorescence assay (IFA), electron microscopy (EM), high-throughput sequencing, and pathogenesis to piglets. The genomic investigation using NGS data revealed that AHFY2022 exhibited the genotypes G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1, using the online platform the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (https://www.bv-brc.org/). Moreover, experimental inoculation in 5-day-old and 27-day-old piglets demonstrated that AHFY2022 caused severe diarrhea, fecal shedding, small intestinal villi damage, and colonization in all challenged piglets. Taken together, our results detailed the virological features of the porcine rotavirus G9P[23] from China, including the whole-genome sequences, genotypes, growth kinetics in MA104 cells and the pathogenicity in suckling piglets.


Diarrhea , Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Rotavirus/pathogenicity , Swine , Rotavirus Infections/virology , Rotavirus Infections/veterinary , China , Swine Diseases/virology , Diarrhea/virology , Diarrhea/veterinary , Intestine, Small/virology , Intestine, Small/pathology , Feces/virology , High-Throughput Nucleotide Sequencing
12.
Front Public Health ; 12: 1356932, 2024.
Article En | MEDLINE | ID: mdl-38463163

Introduction: Rotavirus-associated diarrheal diseases significantly burden healthcare systems, particularly affecting infants under five years. Both Rotarix™ (RV1) and RotaTeq™ (RV5) vaccines have been effective but have distinct application schedules and limited interchangeability data. This study aims to provide evidence on the immunogenicity, reactogenicity, and safety of mixed RV1-RV5 schedules compared to their standard counterparts. Methods: This randomized, double-blind study evaluated the non-inferiority in terms of immunogenicity of mixed rotavirus vaccine schedules compared to standard RV1 and RV5 schedules in a cohort of 1,498 healthy infants aged 6 to 10 weeks. Participants were randomly assigned to one of seven groups receiving various combinations of RV1, and RV5. Standard RV1 and RV5 schedules served as controls of immunogenicity, reactogenicity, and safety analysis. IgA antibody levels were measured from blood samples collected before the first dose and one month after the third dose. Non-inferiority was concluded if the reduction in seroresponse rate in the mixed schemes, compared to the standard highest responding scheme, did not exceed the non-inferiority margin of -0.10. Reactogenicity traits and adverse events were monitored for 30 days after each vaccination and analyzed on the entire cohort. Results: Out of the initial cohort, 1,365 infants completed the study. Immunogenicity analysis included 1,014 infants, considering IgA antibody titers ≥20 U/mL as seropositive. Mixed vaccine schedules demonstrated non-inferiority to standard schedules, with no significant differences in immunogenic response. Safety profiles were comparable across all groups, with no increased incidence of serious adverse events or intussusception. Conclusion: The study confirms that mixed rotavirus vaccine schedules are non-inferior to standard RV1 and RV5 regimens in terms of immunogenicity and safety. This finding supports the flexibility of rotavirus vaccination strategies, particularly in contexts of vaccine shortage or logistic constraints. These results contribute to the global effort to optimize rotavirus vaccination programs for broader and more effective pediatric coverage.Clinical trial registration: ClinicalTrials.gov, NCT02193061.


Rotavirus Infections , Rotavirus Vaccines , Humans , Infant , Diarrhea/virology , Immunoglobulin A , Rotavirus Infections/complications , Rotavirus Infections/prevention & control , Rotavirus Vaccines/adverse effects , Double-Blind Method
13.
J Virol ; 98(3): e0166023, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38421167

Rotavirus (RV) NSP2 is a multifunctional RNA chaperone that exhibits numerous activities that are essential for replication and viral genome packaging. We performed an in silico analysis that highlighted a distant relationship of NSP2 from rotavirus B (RVB) to proteins from other human RVs. We solved a cryo-electron microscopy structure of RVB NSP2 that shows structural differences with corresponding proteins from other human RVs. Based on the structure, we identified amino acid residues that are involved in RNA interactions. Anisotropy titration experiments showed that these residues are important for nucleic acid binding. We also identified structural motifs that are conserved in all RV species. Collectively, our data complete the structural characterization of rotaviral NSP2 protein and demonstrate its structural diversity among RV species.IMPORTANCERotavirus B (RVB), also known as adult diarrhea rotavirus, has caused epidemics of severe diarrhea in China, India, and Bangladesh. Thousands of people are infected in a single RVB epidemic. However, information on this group of rotaviruses remains limited. As NSP2 is an essential protein in the viral life cycle, including its role in the formation of replication factories, it may be a target for future antiviral strategy against viruses with similar mechanisms.


RNA-Binding Proteins , Rotavirus , Viral Nonstructural Proteins , Adult , Humans , Cryoelectron Microscopy , Diarrhea/virology , RNA/metabolism , Rotavirus/metabolism , Rotavirus Infections/virology , Viral Nonstructural Proteins/chemistry , RNA-Binding Proteins/chemistry
14.
Virus Res ; 335: 199185, 2023 10 02.
Article En | MEDLINE | ID: mdl-37532142

Enterovirus G belongs to the family Picornaviridae and are associated with a variety of animal diseases. We isolated and characterized a novel EV-G2 strain, CHN-SCMY2021, the first genotype 2 strain isolated in China. CHN-SCMY2021 is about 25 nm diameter with morphology typical of picornaviruses and its genome is 7341 nucleotides. Sequence alignment and phylogenetic analysis based on VP1 indicated that this isolate is a genotype 2 strain. The whole genome similarity between CHN-SCMY2021 and other EV-G genotype 2 strains is 78.3-86.4%, the greatest similarity is to EVG/Porcine/JPN/Iba26-506/2014/G2 (LC316792.1). Recombination analysis indicated that CHN-SCMY2021 resulted from recombination between 714,171/CaoLanh_VN (KT265894.2) and LP 54 (AF363455.1). Except for ST cells, CHN-SCMY2021 has a broad spectrum of cellular adaptations, which are susceptible to BHK-21, PK-15, IPEC-J2, LLC-PK and Vero cells. In piglets, CHN-SCMY2021 causes mild diarrhea and thinning of the intestinal wall. The virus was mainly distributed to intestinal tissue but was also found in heart, liver, spleen, lung, kidney, brain, and spinal cord. CHN-SCMY2021 is the first systematically characterized EV-G genotype 2 strain from China, our results enrich the information on the epidemiology, molecular evolution and pathogenicity associated with EV-G.


Enteroviruses, Porcine , Animals , Swine , Enteroviruses, Porcine/classification , Enteroviruses, Porcine/genetics , Enteroviruses, Porcine/pathogenicity , Phylogeny , Genome, Viral , Recombination, Genetic , Vero Cells , Chlorocebus aethiops , Diarrhea/veterinary , Diarrhea/virology , Intestines/pathology , Intestines/virology
15.
Arch Virol ; 168(3): 97, 2023 Feb 27.
Article En | MEDLINE | ID: mdl-36843047

We evaluated differences in the pathology and humoral immune status in one- and two-month-old weaned pigs infected with virulent Chinese genotype GIIa and GIIb strains of porcine epidemic diarrhea virus (PEDV). All pigs infected with the GIIa strain developed severe diarrhea (100%), while the morbidity of the GIIb strain in one- and two-month-old weaned pigs was 80% (4/5) and 40% (2/5), respectively. There was no significant difference in IgA, IgG, or virus-neutralizing (VN) antibody levels associated with GIIa and GIIb in one-month-old weaned pigs (P > 0.05), but in two-month-old weaned pigs, the IgA, IgG, and VN antibody levels associated with GIIa were significantly higher than those associated with GIIb (P < 0.05).


Porcine epidemic diarrhea virus , Swine Diseases , Animals , Diarrhea/veterinary , Diarrhea/virology , Genotype , Immunoglobulin A , Immunoglobulin G , Porcine epidemic diarrhea virus/pathogenicity , Swine , Swine Diseases/virology , Virulence
16.
J Virol ; 97(1): e0145522, 2023 01 31.
Article En | MEDLINE | ID: mdl-36633410

Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission.


Chiroptera , Murinae , Rotavirus Infections , Rotavirus , Animals , Chiroptera/virology , Diarrhea/veterinary , Diarrhea/virology , Genome, Viral , Genotype , Kenya , Phylogeny , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus Infections/veterinary , Murinae/virology
17.
Geriatr Gerontol Int ; 23(3): 179-187, 2023 Mar.
Article En | MEDLINE | ID: mdl-36669482

AIM: The risk of developing infectious diarrhea among elderly residents at Japanese geriatric intermediate care facilities is unclear. We investigated the incidence rate and risk factors of norovirus-related diarrhea at such facilities. METHODS: This prospective cohort study followed 1727 residents from November 2018 to April 2020 at 10 geriatric intermediate care facilities in Osaka, Japan regarding the occurrence of diarrhea. Resident data were collected from their medical records using structured forms at two to three of the following three time points: at recruitment, if they developed diarrhea, and when they left the facility. Residents who developed diarrhea were tested using rapid diagnostic tests for norovirus. Cox proportional hazard model was employed to hazard ratios (HRs) with 95% confidence intervals (CIs) to estimate the risk factors for norovirus-related diarrhea. RESULTS: During the study period, 74 residents developed diarrhea, 13 of whom were norovirus positive. The incidence rate of norovirus-related diarrhea was 10.11 per 1000 person-years (95% CI: 4.61-15.61). In terms of risk factors, people with care-needs level 3 were at a higher risk for developing norovirus-related diarrhea (adjusted HR [aHR] = 7.35, 95% CI: 1.45-37.30). Residents with hypertension (aHR = 3.41, 95% CI: 1.05-11.04) or stroke (aHR = 8.84, 95% CI: 2.46-31.83), and those who walked with canes (aHR = 16.68, 95% CI: 1.35-206.52) also had a significantly higher risk for norovirus-related diarrhea. CONCLUSIONS: Throughout the study period, the incidence of development of diarrhea was low. Care-needs level 3, stroke, hypertension and use of a cane were identified as risk factors for norovirus-related diarrhea in Japanese geriatric intermediate care facilities. Geriatr Gerontol Int 2023; 23: 179-187.


Caliciviridae Infections , Diarrhea , Gastroenteritis , Intermediate Care Facilities , Norovirus , Aged , Humans , Diarrhea/epidemiology , Diarrhea/virology , East Asian People , Incidence , Prospective Studies , Risk Factors , Gastroenteritis/epidemiology , Gastroenteritis/virology , Caliciviridae Infections/epidemiology
18.
Vet Ital ; 59(4)2023 Dec 31.
Article En | MEDLINE | ID: mdl-38756026

Fowlpox virus (FPV) infects chickens and turkeys giving rise to pock lesions on various body parts like combs, wattles, legs, shanks, eyes, mouth, etc. The birds, affected with FPV, also show anemia and a ruffled appearance which are clinical symptoms of reticuloendotheliosis. Interestingly, the field strains of FPV are integrated with the provirus of reticuloendotheliosis virus (REV). Due to this integration, the infected birds, upon replication of FPV, give rise to free REV virions, causing severe immunosuppression and anemia. Pox scabs, collected from the infected birds, not only show positive PCR results upon performing FPV-specific 4b core protein gene PCR but also show positive results for the PCR of REV-specific env gene and FPV-REV 5'LTR junction. Homogenized suspension of the pock lesions, upon inoculating to the chorio-allantoic membrane (CAM) of 10-day-old specific pathogen-free embryonated chicken eggs, produces characteristic pock lesions in serial passages. However, the lesions also harbor REV mRNA or free virion, which can be identified by performing REV-specific env gene PCR using REV RNA from FPV-infected CAMs. The study suggests successful replication and availability of REV mRNA and free virion alongside the FPV, although the CAM is an ill-suited medium for any retroviral (like REV) growth and replication.


Reverse Transcriptase Polymerase Chain Reaction , Animals , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Diarrhea/veterinary , Diarrhea/virology , India , Fowlpox virus/genetics , Fowlpox/virology , Sheep , Goat Diseases/virology , Turkeys/virology , Goats , Chickens/virology , Sheep Diseases/virology , Poultry Diseases/virology
19.
Viruses ; 16(1)2023 Dec 22.
Article En | MEDLINE | ID: mdl-38257722

(1) Background: Group A rotaviruses (RVAs) are the primary cause of severe intestinal diseases in piglets. Porcine rotaviruses (PoRVs) are widely prevalent in Chinese farms, resulting in significant economic losses to the livestock industry. However, isolation of PoRVs is challenging, and their pathogenicity in piglets is not well understood. (2) Methods: We conducted clinical testing on a farm in Jiangsu Province, China, and isolated PoRV by continuously passaging on MA104 cells. Subsequently, the pathogenicity of the isolated strain in piglets was investigated. The piglets of the PoRV-infection group were orally inoculated with 1 mL of 1.0 × 106 TCID50 PoRV, whereas those of the mock-infection group were fed with an equivalent amount of DMEM. (3) Results: A G5P[23] genotype PoRV strain was successfully isolated from one of the positive samples and named RVA/Pig/China/JS/2023/G5P[23](JS). The genomic constellation of this strain was G5-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Sequence analysis revealed that the genes VP3, VP7, NSP2, and NSP4 of the JS strain were closely related to human RVAs, whereas the remaining gene segments were closely related to porcine RVAs, indicating a reassortment between porcine and human strains. Furthermore, infection of 15-day-old piglets with the JS strain resulted in a diarrheal rate of 100% (8 of 8) and a mortality rate of 37.5% (3 of 8). (4) Conclusions: The isolated G5P[23] genotype rotavirus strain, which exhibited strong pathogenicity in piglets, may have resulted from recombination between porcine and human strains. It may serve as a potential candidate strain for developing vaccines, and its immunogenicity can be tested in future studies.


Rotavirus Infections , Rotavirus , Animals , China , Diarrhea/veterinary , Diarrhea/virology , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/pathogenicity , Swine/virology , Virulence/genetics , Rotavirus Infections/genetics , Rotavirus Infections/veterinary , Rotavirus Infections/virology
20.
PLoS One ; 17(10): e0273148, 2022.
Article En | MEDLINE | ID: mdl-36190936

INTRODUCTION & BACKGROUND: Prolonged (duration >7 to 13 days) diarrhea (ProD) in under-five children is a universal health problem including Bangladesh. Data on epidemiology and associated or risk factors of ProD are limited, particularly in Bangladesh where a high burden of ProD is reported. This study intended to assess the case load of ProD and its associated or risk factors compared to acute diarrhea (AD, duration ≤7 days). METHODS: We analyzed the data collected between 1996-2014 from a hospital-based Diarrheal-Disease-Surveillance-System (DDSS) in the 'Dhaka Hospital' of International Centre for Diarrhoeal Diseases, Bangladesh (icddr,b). The DDSS enrolled a 2% systematic sample, regardless of age, sex, and diarrhea severity. The data included information on socio-demographic factors, environmental history, clinical characteristics, nutritional status, and diarrhea-pathogens. After cleaning of data, relevant information of 21,566 under-five children were available who reported with ≤13 days diarrhea (including AD and ProD), and their data were analyzed. Variables found significantly associated with ProD compared to AD in bi-variate analysis were used in logistic regression model after checking the multicollinearity between independent variables. RESULTS: The mean±SD age of the children was 14.9±11.7 months and 40.4% were female; 7.6% had ProD and 92.4% had AD. Age <12 months, mucoid- or bloody-stool, warmer months (April-September), drug used at home before seeking care from hospital, and history of diarrhea within last one month were found associated with ProD (p<0.05); however, rotavirus infection was less common in children with ProD (p<0.05). ProD children more often needed inpatient admission than AD children (14.4 vs. 6.3, p<0.001). Case fatality rate of ProD vs. AD was 0.3% (n = 5) vs. 0.1% (n- = 22) respectively (p = 0.051). CONCLUSION: A considerable proportion (7.6%) of under-five children reporting to icddr,b hospital suffered from ProD. Understanding the above-mentioned associated or risk factors is likely to help policy makers formulating appropriate strategies for alleviating the burden and effectively managing ProD in under-five children.


Diarrhea , Rotavirus Infections , Bangladesh/epidemiology , Child, Preschool , Diarrhea/epidemiology , Diarrhea/virology , Female , Humans , Infant , Male , Risk Factors , Rotavirus Infections/complications , Rotavirus Infections/epidemiology
...