Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 309
1.
Front Immunol ; 15: 1391949, 2024.
Article En | MEDLINE | ID: mdl-38765015

Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.


Dimethyl Fumarate , Encephalomyelitis, Autoimmune, Experimental , Lymph Nodes , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymph Nodes/immunology , Lymph Nodes/drug effects , Mice , Female , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Mesentery , Cytokines/metabolism , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Disease Models, Animal
2.
Front Immunol ; 15: 1375340, 2024.
Article En | MEDLINE | ID: mdl-38711519

Allergic asthma is a widely prevalent inflammatory condition affecting people across the globe. T cells and their secretory cytokines are central to the pathogenesis of allergic asthma. Here, we have evaluated the anti-inflammatory impact of dimethyl fumarate (DMF) in allergic asthma with more focus on determining its effect on T cell responses in allergic asthma. By utilizing the ovalbumin (OVA)-induced allergic asthma model, we observed that DMF administration reduced the allergic asthma symptoms and IgE levels in the OVA-induced mice model. Histopathological analysis showed that DMF treatment in an OVA-induced animal model eased the inflammation in the nasal and bronchial tissues, with a particular decrease in the infiltration of immune cells. Additionally, RT-qPCR analysis exhibited that treatment of DMF in an OVA-induced model reduced the expression of inflammatory cytokine (IL4, IL13, and IL17) while augmenting anti-inflammatory IL10 and Foxp3 (forkhead box protein 3). Mechanistically, we found that DMF increased the expression of Foxp3 by exacerbating the expression of nuclear factor E2-related factor 2 (Nrf2), and the in-vitro activation of Foxp3+ Tregs leads to an escalated expression of Nrf2. Notably, CD4-specific Nrf2 deletion intensified the allergic asthma symptoms and reduced the in-vitro iTreg differentiation. Meanwhile, DMF failed to exert protective effects on OVA-induced allergic asthma in CD4-specific Nrf2 knock-out mice. Overall, our study illustrates that DMF enhances Nrf2 signaling in T cells to assist the differentiation of Tregs, which could improve the anti-inflammatory immune response in allergic asthma.


Asthma , Dimethyl Fumarate , Disease Models, Animal , NF-E2-Related Factor 2 , Signal Transduction , T-Lymphocytes, Regulatory , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , NF-E2-Related Factor 2/metabolism , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Mice , Signal Transduction/drug effects , Ovalbumin/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Mice, Knockout , Female , Mice, Inbred BALB C
3.
J Physiol Pharmacol ; 75(1)2024 02.
Article En | MEDLINE | ID: mdl-38583440

This study was designed to examine the anti-oxidative stress effect of dimethyl fumarate (DMF) on pentylenetetrazole (PTZ)-induced epileptic mice, and to evaluate the correlation of its mechanism with the nuclear factor E2-related factor 2 (Nrf2)-mediated signaling pathway. The experimental mice were separated into three groups: control, model, and DMF groups. Mice in the model group were administered PTZ to establish an epilepsy model, mice in the DMF group were administered DMF concurrently when modeling, and mice in the control group were administered a 0.9% NaCl solution. The latency, severity, and frequency of epileptic seizures in mice after each treatment were recorded, and the modelling success rate was computed at the conclusion of the experiment. The mice were euthanized, their levels of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), 8-hydroxy-deoxyguanosine (8-OHdG), and Nrf2 were measured, and the electron microscope was used to examine the mitochondrial damage of brain tissue. The latency of epileptic seizures was longer in the DMF group compared to the model group (P<0.05). The levels of MDA and ROS in the DMF group were lower than those in the model group (P<0.0001), and the activity of SOD in the DMF group was higher than that in the model group (P<0.0001); however, the levels of MDA and ROS were elevated and the activity of SOD was lower in both groups relative to the control group. The levels of 8-OHdG were lower in the DMF group than the model group (P<0.0001), however, the levels were higher in both groups compared to the control group. Mitochondrial abnormalities were more prevalent in the model group than in the DMF group, and more prevalent in both groups compared to the control group. The DMF group contained more Nrf2 content than the model group (P<0.0001), and both groups contained more Nrf2 than the control group. We concluded that the mechanism by which DMF reduced the level of oxidative stress in epileptic mice might involve the Nrf2-mediated signaling pathway.


Dimethyl Fumarate , Epilepsy , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Epilepsy/chemically induced , Epilepsy/drug therapy , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Pentylenetetrazole/pharmacology , Reactive Oxygen Species/metabolism , Seizures/chemically induced , Seizures/drug therapy , Superoxide Dismutase/metabolism
4.
J Neuroinflammation ; 21(1): 112, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684986

BACKGROUND: Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking. METHODS: To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF. RESULTS: Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells. CONCLUSIONS: DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.


Autoimmune Diseases , Dimethyl Fumarate , Mice, Inbred C57BL , Uveitis , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Mice , Uveitis/drug therapy , Uveitis/metabolism , Uveitis/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Single-Cell Analysis , Sequence Analysis, RNA/methods , Female , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use
5.
Cell Death Dis ; 15(3): 224, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38494482

Microenvironmental signals strongly influence chronic lymphocytic leukemia (CLL) cells through the activation of distinct membrane receptors, such as B-cell receptors, and inflammatory receptors, such as Toll-like receptors (TLRs). Inflammatory pathways downstream of these receptors lead to NF-κB activation, thus protecting leukemic cells from apoptosis. Dimethyl fumarate (DMF) is an anti-inflammatory and immunoregulatory drug used to treat patients with multiple sclerosis and psoriasis in which it blocks aberrant NF-κB pathways and impacts the NRF2 antioxidant circuit. Our in vitro analysis demonstrated that increasing concentrations of DMF reduce ATP levels and lead to the apoptosis of CLL cells, including cell lines, splenocytes from Eµ-TCL1-transgenic mice, and primary leukemic cells isolated from the peripheral blood of patients. DMF showed a synergistic effect in association with BTK inhibitors in CLL cells. DMF reduced glutathione levels and activated the NRF2 pathway; gene expression analysis suggested that DMF downregulated pathways related to NFKB and inflammation. In primary leukemic cells, DMF disrupted the TLR signaling pathways induced by CpG by reducing the mRNA expression of NFKBIZ, IL6, IL10 and TNFα. Our data suggest that DMF targets a vulnerability of CLL cells linked to their inflammatory pathways, without impacting healthy donor peripheral blood mononuclear cells.


Leukemia, Lymphocytic, Chronic, B-Cell , Mice , Animals , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , NF-kappa B/metabolism , Leukocytes, Mononuclear/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Apoptosis , Mice, Transgenic
6.
Methods Mol Biol ; 2761: 457-475, 2024.
Article En | MEDLINE | ID: mdl-38427255

Multiple sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) infecting 2.5 million people worldwide. It is the most common nontraumatic neurological impairment in young adults. The blood-brain barrier rupture for multiple sclerosis pathogenesis has two effects: first, during the onset of the immunological attack, and second, for the CNS self-sustained "inside-out" demyelination and neurodegeneration processes. In addition to genetic variations, environmental and lifestyle variables can also significantly increase the risk of developing MS. Dimethyl fumarate (DMF) and sphingosine-1-phosphate (S1P) receptor modulators that may pass the blood-brain barrier and have positive direct effects in the CNS with quite diverse mechanisms of action raise the possibility that a combination therapy could be successful in treating MS. Lipid nanocarriers are recognized as one of the best drug delivery techniques to the brain for effective brain delivery. Numerous scientific studies have shown that lipid nanoparticles can enhance the lipid solubility, oral bioavailability, and brain availability of the drugs. Nanolipidic carriers for DMF delivery could be derived through vitamin D, tocopherol acetate, stearic acid, quercetin, cell-mimicking platelet-based, and chitosan-alginate core-shell-corona-shaped nanoparticles. Clinical and laboratory diagnosis of MS can be performed mainly through magnetic resonance imaging. The advancements in nanotechnology have enabled the clinicians to cross the blood-brain barrier and to target the brain and central nervous system of the patient with multiple sclerosis.


Dimethyl Fumarate , Multiple Sclerosis , Humans , Dimethyl Fumarate/therapeutic use , Dimethyl Fumarate/pharmacology , Multiple Sclerosis/drug therapy , Immunosuppressive Agents/pharmacology , Brain , Lipids/pharmacology
7.
Biol Sex Differ ; 15(1): 16, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38350966

BACKGROUND: Major depressive disorder (MDD) is a recurring affective disorder that is two times more prevalent in females than males. Evidence supports immune system dysfunction as a major contributing factor to MDD, notably in a sexually dimorphic manner. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of antioxidant signalling during inflammation, is dysregulated in many chronic inflammatory disorders; however, its role in depression and the associated sex differences have yet to be explored. Here, we investigated the sex-specific antidepressant and immunomodulatory effects of the potent Nrf2 activator dimethyl fumarate (DMF), as well as the associated gene expression profiles. METHODS: Male and female rats were treated with vehicle or DMF (25 mg/kg) whilst subjected to 8 weeks of chronic unpredictable stress. The effect of DMF treatment on stress-induced depression- and anxiety-like behaviours, as well as deficits in recognition and spatial learning and memory were then assessed. Sex differences in hippocampal (HIP) microglial activation and gene expression response were also evaluated. RESULTS: DMF treatment during stress exposure had antidepressant effects in male but not female rats, with no anxiolytic effects in either sex. Recognition learning and memory and spatial learning and memory were impaired in chronically stressed males and females, respectively, and DMF treatment rescued these deficits. DMF treatment also prevented stress-induced HIP microglial activation in males. Conversely, females displayed no HIP microglial activation associated with stress exposure. Last, chronic stress elicited sex-specific alterations in HIP gene expression, many of which were normalized in animals treated with DMF. Of note, most of the differentially expressed genes in males normalized by DMF were related to antioxidant, inflammatory or immune responses. CONCLUSIONS: Collectively, these findings support a greater role of immune processes in males than females in a rodent model of depression. This suggests that pharmacotherapies that target Nrf2 have the potential to be an effective sex-specific treatment for depression.


Major depressive disorder is two times more prevalent in females than males. Further, immune system dysfunction has been shown to contribute to the development of depression, with previous studies consistently reporting chronic low-grade inflammation in depressed individuals. Not surprisingly, the immune system dysfunction associated with depression appears to be sex specific. As such, whilst anti-inflammatory drugs have shown antidepressant effects in preclinical studies, the sex differences in these effects are seldomly investigated. Thus, this study sought to determine the sex-specific antidepressant and cognitive effects of dimethyl fumarate (DMF) treatment. DMF is a drug that activates the protein nuclear factor erythroid 2-related factor 2 to initiate anti-inflammatory processes. Here, male and female rats were exposed to 8 weeks of chronic stress whilst receiving daily DMF treatment. Subsequently, their expression of depression- and anxiety-like behaviours, as well as learning and memory deficits were assessed. Alterations in gene expression were also evaluated. DMF treatment had antidepressant effects in male rats only but did not have anti-anxiety effects in either sex. The learning and memory deficits in both sexes were rescued with DMF treatment. Notably, DMF normalized several of the sex-specific gene alterations induced by chronic stress, with many of the male-specific genes relating to inflammatory processes. These data suggest that DMF may be an effective antidepressant treatment in males.


Depression , Depressive Disorder, Major , Animals , Female , Male , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antioxidants , Depression/drug therapy , Depression/metabolism , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
8.
Life Sci ; 341: 122505, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38364937

Nonalcoholic fatty liver disease (NAFLD) is characterized by an excessive lipid accumulation in the liver, with a global prevalence of approximately 25 %. While early-stage steatosis is reversible and can be intervened upon, it has the potential to progress to some serious complications, including cirrhosis and even liver cancer. Dimethyl fumarate (DMF), a derivative of fumaric acid shows promise in intervening in certain diseases. However, the precise effect and underlying mechanism of DMF on hepatic steatosis remain unclear. In this study, we demonstrated that DMF mitigates hepatic steatosis in mice subjected to high-fat/high-cholesterol (HFHC) diets. Meanwhile, our in vivo and in vitro results showed that DMF relieves lipid accumulation, oxidative stress, and endoplasmic reticulum (ER) stress. Mechanically, our findings revealed that the effect of DMF on reducing lipid accumulation is linked to the restoration of Ca2+ homeostasis. Furthermore, we found that activation of the SIRT1 signal by DMF plays an important role in correcting the mishandling of the Ca2+ signal, and knockdown of SIRT1 expression reverses the beneficial role of DMF PA-incubated AML12 cells. In conclusion, our results suggested DMF's amelioration of hepatic steatosis is related to the activation of SIRT1-mediated Ca2+ signaling.


Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Sirtuin 1/metabolism , Liver/metabolism , Lipids/pharmacology , Lipid Metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
9.
J Neuroinflammation ; 21(1): 55, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383481

BACKGROUND: Neuroinflammation substantially contributes to the pathology of Alzheimer's disease (AD), the most common form of dementia. Studies have reported that nuclear factor erythroid 2-related factor 2 (Nrf2) attenuates neuroinflammation in the mouse models of neurodegenerative diseases, however, the detailed mechanism remains unclear. METHODS: The effects of dimethyl fumarate (DMF), a clinically used drug to activate the Nrf2 pathway, on neuroinflammation were analyzed in primary astrocytes and AppNL-G-F (App-KI) mice. The cognitive function and behavior of DMF-administrated App-KI mice were evaluated. For the gene expression analysis, microglia and astrocytes were directly isolated from the mouse cerebral cortex by magnetic-activated cell sorting, followed by quantitative PCR. RESULTS: DMF treatment activated some Nrf2 target genes and inhibited the expression of proinflammatory markers in primary astrocytes. Moreover, chronic oral administration of DMF attenuated neuroinflammation, particularly in astrocytes, and reversed cognitive dysfunction presumably by activating the Nrf2-dependent pathway in App-KI mice. Furthermore, DMF administration inhibited the expression of STAT3/C3 and C3 receptor in astrocytes and microglia isolated from App-KI mice, respectively, suggesting that the astrocyte-microglia crosstalk is involved in neuroinflammation in mice with AD. CONCLUSION: The activation of astrocytic Nrf2 signaling confers neuroprotection in mice with AD by controlling neuroinflammation, particularly by regulating astrocytic C3-STAT3 signaling. Furthermore, our study has implications for the repositioning of DMF as a drug for AD treatment.


Alzheimer Disease , Cognitive Dysfunction , Mice , Animals , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Mice, Transgenic , Neuroinflammatory Diseases , NF-E2-Related Factor 2/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal
10.
J Biochem Mol Toxicol ; 38(2): e23652, 2024 Feb.
Article En | MEDLINE | ID: mdl-38348708

Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.


Diet, High-Fat , Dimethyl Fumarate , Phenylethyl Alcohol/analogs & derivatives , Mice , Animals , Diet, High-Fat/adverse effects , Dimethyl Fumarate/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Obesity/drug therapy , Obesity/metabolism , Macrophages/metabolism , Mice, Inbred C57BL
11.
Acta Pharmacol Sin ; 45(3): 594-608, 2024 Mar.
Article En | MEDLINE | ID: mdl-37964019

PANoptosis is a new type of cell death featured with pyroptosis, apoptosis and necroptosis, and is implicated in organ injury and mortality in various inflammatory diseases, such as sepsis and hemophagocytic lymphohistiocytosis (HLH). Reverse electron transport (RET)-mediated mitochondrial reactive oxygen species (mtROS) has been shown to contribute to pyroptosis and necroptosis. In this study we investigated the roles of mtROS and RET in PANoptosis induced by TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (Oxo) plus lipopolysaccharide (LPS) as well as the effects of anti-RET reagents on PANoptosis. We showed that pretreatment with anti-RET reagents 1-methoxy PMS (MPMS) or dimethyl fumarate (DMF) dose-dependently inhibited PANoptosis in macrophages BMDMs and J774A.1 cells induced by Oxo/LPS treatment assayed by propidium iodide (PI) staining. The three arms of the PANoptosis signaling pathway, namely pyroptosis, apoptosis and necroptosis signaling, as well as the formation of PANoptosomes were all inhibited by MPMS or DMF. We demonstrated that Oxo/LPS treatment induced RET and mtROS in BMDMs, which were reversed by MPMS or DMF pretreatment. Interestingly, the PANoptosome was co-located with mitochondria, in which the mitochondrial DNA was oxidized. MPMS and DMF fully blocked the mtROS production and the formation of PANoptosome induced by Oxo plus LPS treatment. An HLH mouse model was established by poly(I:C)/LPS challenge. Pretreatment with DMF (50 mg·kg-1·d-1, i.g. for 3 days) or MPMS (10 mg·kg-1·d-1, i.p. for 2 days) (DMF i.g. MPMS i.p.) effectively alleviated HLH lesions accompanied by decreased hallmarks of PANoptosis in the liver and kidney. Collectively, RET and mtDNA play crucial roles in PANoptosis induction and anti-RET reagents represent a novel class of PANoptosis inhibitors by blocking oxidation of mtDNA, highlighting their potential application in treating PANoptosis-related inflammatory diseases. PANoptotic stimulation induces reverse electron transport (RET) and reactive oxygen species (ROS) in mitochondia, while 1-methoxy PMS and dimethyl fumarate can inhibit PANoptosis by suppressing RETmediated oxidation of mitochondrial DNA.


DNA, Mitochondrial , Dimethyl Fumarate , Animals , Mice , Reactive Oxygen Species/metabolism , Electron Transport , Dimethyl Fumarate/metabolism , Dimethyl Fumarate/pharmacology , DNA, Mitochondrial/metabolism , Lipopolysaccharides/pharmacology , Electrons , Mitochondria , Apoptosis
12.
Eur J Med Chem ; 264: 115998, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38043492

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway serves as a crucial regulator against oxidative stress (OS) damage in various cells and organs. It has garnered significant attention as a potential therapeutic target for neurodegenerative diseases (NDD). Although progress has been achieved in strategies to regulate the Keap1-Nrf2 pathway, the availability of Nrf2 activators applicable to NDD is currently limited. Currently, the FDA has approved the Nrf2 activators dimethyl fumarate (DMF) and Omaveloxolone (Omav) as novel first-line oral drugs for the treatment of patients with relapsing forms of multiple sclerosis and Friedreich's ataxia. A promising alternative approach involves the direct inhibition of Keap1-Nrf2 protein-protein interactions (PPI), which offers numerous advantages over the use of electrophilic Nrf2 activators, primarily in avoiding off-target effects. This review examines the compelling evidence supporting the beneficial role of Nrf2 in NDD and explores the potential of Keap1 inhibitors and Keap1-Nrf2 PPI inhibitors as therapeutic agents, with the aim to provide further insights into the development of inhibitors targeting this pathway for the treatment of NDD.


NF-E2-Related Factor 2 , Neurodegenerative Diseases , Humans , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Neurodegenerative Diseases/drug therapy , Oxidative Stress , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use
13.
Geroscience ; 46(1): 795-816, 2024 Feb.
Article En | MEDLINE | ID: mdl-38041783

In genetically heterogeneous (UM-HET3) mice produced by the CByB6F1 × C3D2F1 cross, the Nrf2 activator astaxanthin (Asta) extended the median male lifespan by 12% (p = 0.003, log-rank test), while meclizine (Mec), an mTORC1 inhibitor, extended the male lifespan by 8% (p = 0.03). Asta was fed at 1840 ± 520 (9) ppm and Mec at 544 ± 48 (9) ppm, stated as mean ± SE (n) of independent diet preparations. Both were started at 12 months of age. The 90th percentile lifespan for both treatments was extended in absolute value by 6% in males, but neither was significant by the Wang-Allison test. Five other new agents were also tested as follows: fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate. None of these increased lifespan significantly at the dose and method of administration tested in either sex. Amounts of dimethyl fumarate in the diet averaged 35% of the target dose, which may explain the absence of lifespan effects. Body weight was not significantly affected in males by any of the test agents. Late life weights were lower in females fed Asta and Mec, but lifespan was not significantly affected in these females. The male-specific lifespan benefits from Asta and Mec may provide insights into sex-specific aspects of aging.


Flavonols , Hydrogen Sulfide , Longevity , Phenylbutyrates , Female , Mice , Male , Animals , Meclizine/pharmacology , Hydrogen Sulfide/pharmacology , Dimethyl Fumarate/pharmacology , Mycophenolic Acid/pharmacology , Xanthophylls
14.
Redox Biol ; 68: 102938, 2023 Dec.
Article En | MEDLINE | ID: mdl-37931471

OBJECTIVE: To investigate the therapeutic potential of dimethyl fumarate (DMF) in improving erectile function of bilateral cavernous nerve injury (BCNI) rats, along with elucidating its underlying mechanisms. METHODS: A BCNI rat model was established by clamping bilateral cavernous nerve (CN). DMF was given by gavage at low (20 mg/kg/day) and high (40 mg/kg/day) dosages for a duration of 4 weeks. Erectile function was assessed by electrical stimulation of CN. Penis and CN tissues were collected for subsequent analysis. Additionally, PC-12 cell line was used to verify the mechanism of DMF in vitro. Nfe2l2 or Ho-1 gene knockdown PC-12 cell lines were constructed by lentiviral transfection, respectively. A damaged cell model was induced using H2O2. And then molecular biological methods were employed to analyze cellular molecules and proteins. RESULTS: DMF administration for 4 weeks led to improvements in erectile function, reduced fibrosis of penis corpus cavernosum in BCNI rats. The morphology of CN was improved and the number of nerve fibers increased. Furthermore, the levels of nNOS, NO, and cGMP were increased, while Ca2+ was decreased in penis corpus cavernosum. Notably, the levels of ROS, 3-NT and NLRP3 inflammasomes production were reduced, alongside increased expression of Nrf2 and HO-1 proteins in the dorsal penile nerve (DPN) and CN. In vitro, DMF increased cell viability, reduced ROS level, promoted SOD, diminished 3-NT, MDA and DNA damage markers, and inhibited the activation of NLRP3 inflammasomes in H2O2 induced PC-12 cells. Nfe2l2 knockdown and Ho-1 knockdown significantly attenuated the protective effect of DMF, respectively. Furthermore, inhibition of ROS production by N-acetylcysteine led to a reduction in NLRP3 inflammasome activation in H2O2 induced PC-12 cells. CONCLUSIONS: DMF improved erectile function of BCNI rats by protecting nerves through inhibiting oxidative stress and the activation of NLRP3 inflammasome-mediated pyroptosis via activation of Nrf2/HO-1 pathway.


Erectile Dysfunction , Male , Humans , Rats , Animals , Erectile Dysfunction/drug therapy , Erectile Dysfunction/etiology , Inflammasomes/metabolism , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Hydrogen Peroxide , Reactive Oxygen Species , Rats, Sprague-Dawley , Oxidative Stress , Signal Transduction , Disease Models, Animal
15.
J Transl Med ; 21(1): 796, 2023 11 08.
Article En | MEDLINE | ID: mdl-37940957

BACKGROUND: Epilepsy affects over 65 million people worldwide and significantly burdens patients, caregivers, and society. Drug-resistant epilepsy occurs in approximately 30% of patients and growing evidence indicates that oxidative stress contributes to the development of such epilepsies. Activation of the Nrf2 pathway, which is involved in cellular defense, offers a potential strategy for reducing oxidative stress and epilepsy treatment. Dimethyl fumarate (DMF), an Nrf2 activator, exhibits antioxidant and anti-inflammatory effects and is used to treat multiple sclerosis. METHODS: The expression of Nrf2 and its related genes in vehicle or DMF treated rats were determined via RT-PCR and Western blot analysis. Neuronal cell death was evaluated by immunohistochemical staining. The effects of DMF in preventing the onset of epilepsy and modifying the disease were investigated in the kainic acid-induced status epilepticus model of temporal lobe epilepsy in rats. The open field, elevated plus maze and T-Maze spontaneous alteration tests were used for behavioral assessments. RESULTS: We demonstrate that administration of DMF following status epilepticus increased Nrf2 activity, attenuated status epilepticus-induced neuronal cell death, and decreased seizure frequency and the total number of seizures compared to vehicle-treated animals. Moreover, DMF treatment reversed epilepsy-induced behavioral deficits in the treated rats. Moreover, DMF treatment even when initiated well after the diagnosis of epilepsy, reduced symptomatic seizures long after the drug was eliminated from the body. CONCLUSIONS: Taken together, these findings suggest that DMF, through the activation of Nrf2, has the potential to serve as a therapeutic target for preventing epileptogenesis and modifying epilepsy.


Epilepsy , Status Epilepticus , Humans , Rats , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , NF-E2-Related Factor 2/metabolism , Drug Repositioning , Epilepsy/drug therapy , Epilepsy/prevention & control , Seizures/drug therapy , Status Epilepticus/complications , Status Epilepticus/drug therapy , Disease Models, Animal
16.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article En | MEDLINE | ID: mdl-37958527

Ischemic stroke is associated with exacerbated tissue damage caused by the activation of immune cells and the initiation of other inflammatory processes. Dimethyl fumarate (DMF) is known to modulate the immune response, activate antioxidative pathways, and improve the blood-brain barrier (BBB) after stroke. However, the specific impact of DMF on immune cells after cerebral ischemia remains unclear. In our study, male mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 min and received oral DMF (15 mg/kg) or a vehicle immediately after tMCAO, followed by twice-daily administrations for 7 days. Infarct volume was assessed on T2-weighted magnetic resonance images on days 1 and 7 after tMCAO. Brain-infiltrating immune cells (lymphocytes, monocytes) and microglia were quantified using fluorescence-activated cell sorting. DMF treatment significantly reduced infarct volumes and brain edema. On day 1 after tMCAO, DMF-treated mice showed reduced lymphocyte infiltration compared to controls, which was not observed on day 7. Monocyte and microglial cell counts did not differ between groups on either day. In the acute phase of stroke, DMF administration attenuated lymphocyte infiltration, probably due to its stabilizing effect on the BBB. This highlights the potential of DMF as a therapeutic candidate for mitigating immune cell-driven damage in stroke.


Brain Ischemia , Stroke , Male , Mice , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Stroke/pathology , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/complications , Brain/metabolism , Mice, Inbred C57BL
17.
Mult Scler Relat Disord ; 80: 105126, 2023 Dec.
Article En | MEDLINE | ID: mdl-37952502

BACKGROUND: Dimethyl fumarate (DMF) is a common treatment for multiple sclerosis (MS), but its mechanisms of action are not fully understood. Targeted proteomics offers insights into effects of DMF and biomarkers for treatment responses. OBJECTIVES: To assess influence of DMF on inflammation- and neuro-associated proteins in plasma and cerebrospinal fluid (CSF) in MS and to reveal biomarkers for predicting treatment responses. METHODS: Using the high-sensitivity and high-specificity method of proximity extension assay (PEA), we measured 182 inflammation- and neuro-associated proteins in paired plasma (n = 28) and CSF (n = 12) samples before and after one year of DMF treatment. Disease activity was evaluated through clinical examination and MRI. Statistical tests, network analysis, and regression models were used. RESULTS: Several proteins including T-helper 1 (Th1)-associated proteins (CXCL10, CXCL11, granzyme A, IL-12p70, lymphotoxin-alpha) were consistently decreased in CSF, while IL-7 was increased after one year of treatment. The changes in plasma protein levels did not follow the same pattern as in CSF. Logistic regression models identified potential biomarker candidates (including plexins and neurotrophins) for prediction of treatment response. CONCLUSIONS: DMF treatment induced prominent changes in CSF proteins, consistently reducing Th1-associated pro-inflammatory proteins. Neurodegeneration-related CSF proteins were able to predict treatment response. Protein biomarkers hold promise for personalized medicine.


Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis/drug therapy , Biomarkers , Inflammation/drug therapy , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use
18.
J Pharmacol Exp Ther ; 387(3): 299-305, 2023 12.
Article En | MEDLINE | ID: mdl-37857438

Cardiovascular disease, chronic kidney disease, and anemia are known to adversely affect each other. Inflammation is commonly involved in these diseases. Cardiorenal anemia syndrome (CRAS) is the name given to this mutually harmful condition. Dimethyl fumarate (DMF) is a Food and Drug Administration-approved antioxidant and anti-inflammatory agent. The purpose of this study was to investigate the effects of DMF on Dahl/salt-sensitive (DS) rats as a CRAS model. Six-week-old DS rats were divided into three groups: the control group, the high-salt (HS) group, and the HS+DMF group. The HS and HS+DMF groups were fed a high-salt diet (8% NaCl) from 6 weeks of age. In the HS+DMF group, DMF (90 mg/kg per day) was orally administered from 6 to 15 weeks of age. Systolic blood pressure was measured every 2 weeks. The heart and renal injuries were assessed with histopathological analysis. The heart and renal expression of mRNAs was assessed by reverse-transcription polymerase chain reaction. DMF significantly improved overall survival, which was shortened by HS in DS rats. Systolic blood pressure increased in the HS group compared with the control group, and DMF tended to suppress this change. DMF ameliorated the cardiac and renal abnormalities confirmed in the HS group by histopathological analysis. Furthermore, the changes in mRNA expressions associated with disease exacerbation in the HS group were suppressed by DMF. DMF also improved anemia. This study suggests that DMF improves overall survival in DS rats through organ-protective effects and is effective against cardiorenal anemia syndrome. SIGNIFICANCE STATEMENT: Dimethyl fumarate was found to improve overall survival in Dahl/salt-sensitive rats, associated with its ability to ameliorate anemia and induce cardioprotective and renoprotective effects through anti-inflammatory and antifibrotic effects.


Cardio-Renal Syndrome , Hypertension , Animals , Rats , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Dimethyl Fumarate/metabolism , Rats, Inbred Dahl , Kidney , Blood Pressure , Sodium Chloride, Dietary/metabolism , Cardio-Renal Syndrome/drug therapy
19.
Mediators Inflamm ; 2023: 5133505, 2023.
Article En | MEDLINE | ID: mdl-37840694

Sepsis is one of the most severe complications and causes of mortality in the clinic. It remains a great challenge with no effective treatment for clinicians worldwide. Inhibiting the release of proinflammatory cytokines during sepsis is considered as an important strategy for treating sepsis and improving survival. In the present study, we have observed the effect of dimethyl fumarate (DMF) on lipopolysaccharide- (LPS-) induced sepsis and investigated the possible mechanism. By screening a subset of the Johns Hopkins Drug Library, we identified DMF as a novel inhibitor of nitric oxide synthesis in LPS-stimulated RAW264.7 cells, suggesting that DMF could be a potential drug to treat sepsis. To further characterize the effect of DMF on LPS signaling, TNF-α, MCP-1, G-CMF, and IL-6 expression levels were determined by using cytokine array panels. In addition, an endotoxemia model with C57BL/6 mice was used to assess the in vivo efficacy of DMF on sepsis. The survival rate was assessed, and HE staining was performed to investigate histopathological damage to the organs. DMF was found to increase the survival of septic mice by 50% and attenuate organ damage, consistent with the reduction in IL-10, IL-6, and TNF-α (inflammatory cytokines) in serum. In vitro experiments revealed DMF's inhibitory effect on the phosphorylation of p65, IκB, and IKK, suggesting that the primary inhibitory effects of DMF can be attributed, at least in part, to the inhibition of phosphorylation of IκBα, IKK as well as nuclear factor-κB (NF-κB) upon LPS stimulation. The findings demonstrate that DMF dramatically inhibits NO and proinflammatory cytokine production in response to LPS and improves survival in septic mice, raising the possibility that DMF has the potential to be repurposed as a new treatment of sepsis.


NF-kappa B , Sepsis , Mice , Animals , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Sepsis/chemically induced , Sepsis/drug therapy , Sepsis/metabolism , Cytokines/metabolism
20.
Commun Biol ; 6(1): 1084, 2023 10 25.
Article En | MEDLINE | ID: mdl-37880317

Dimethyl fumarate is an ester from the Krebs cycle intermediate fumarate. This drug is approved and currently used for the treatment of psoriasis and multiple sclerosis, and its anti-angiogenic activity was reported some years ago. Due to the current clinical relevance of this compound and the recently manifested importance of endothelial cell metabolism on the angiogenic switch, we wanted to elucidate whether dimethyl fumarate has an effect on energetic metabolism of endothelial cells. Different experimental approximations were performed in endothelial cells, including proteomics, isotope tracing and metabolomics experimental approaches, in this work we studied the possible role of dimethyl fumarate in endothelial cell energetic metabolism. We demonstrate for the first time that dimethyl fumarate promotes glycolysis and diminishes cell respiration in endothelial cells, which could be a consequence of a down-regulation of serine and glycine synthesis through inhibition of PHGDH activity in these cells. Dimethyl fumarate alters the energetic metabolism of endothelial cells in vitro and in vivo through an unknown mechanism, which could be the cause or the consequence of its pharmacological activity. This new discovery on the targets of this compound could open a new field of study regarding the mechanism of action of dimethyl fumarate.


Dimethyl Fumarate , Multiple Sclerosis , Humans , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Endothelial Cells/metabolism , Fumarates/pharmacology , Fumarates/therapeutic use , Down-Regulation
...