Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63.260
1.
Clin Epigenetics ; 16(1): 68, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773655

BACKGROUND: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS: We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ ß ≤ 0.8) with large intertumor variation and overall low hypermethylation (ß > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (ß < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION: We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.


DNA Methylation , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/mortality , DNA Methylation/genetics , Female , Male , Prognosis , Middle Aged , Aged , Adult , Rituximab/therapeutic use , Aged, 80 and over , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Vincristine/therapeutic use , Prednisone/therapeutic use , Telomere/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Telomere Shortening/genetics , Epigenesis, Genetic/genetics , CpG Islands/genetics
2.
Int J Nanomedicine ; 19: 4339-4356, 2024.
Article En | MEDLINE | ID: mdl-38774026

Background: The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods: In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results: The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion: In summary, Cur-Dox ND might be a promising ND for better cancer therapy.


Curcumin , Doxorubicin , Povidone , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Povidone/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/pharmacokinetics , Cell Line, Tumor , Animals , Mice , Humans , Nanoparticles/chemistry , Particle Size , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Photothermal Therapy/methods , Drug Liberation , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Drug Carriers/chemistry , Cell Survival/drug effects
3.
Med Sci Monit ; 30: e945188, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775003

This publication has been retracted by the Editor due to the identification of non-original figure images and manuscript content that raise concerns regarding the credibility and originality of the study and the manuscript. Reference: Ying-Jun Zhang, He Huang, Yu Liu, Bin Kong, Guangji Wang. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-kappaB) Signaling Pathway. Med Sci Monit, 2019; 25: 7898-7907. DOI: 10.12659/MSM.919861.


Apoptosis , Cardiotoxicity , Doxorubicin , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/deficiency , NF-kappa B/metabolism , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Apoptosis/drug effects , Animals , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Signal Transduction/drug effects , Inflammation/metabolism , Inflammation/pathology , Myocardium/pathology , Myocardium/metabolism , Mice , Lymphocyte Antigen 96/metabolism , Male , Mitogen-Activated Protein Kinases/metabolism
4.
FASEB J ; 38(10): e23677, 2024 May 31.
Article En | MEDLINE | ID: mdl-38775792

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Artemisinins , Autophagy , Cardiotoxicity , Doxorubicin , Ferroptosis , Myocytes, Cardiac , NF-E2-Related Factor 2 , Artemisinins/pharmacology , Animals , NF-E2-Related Factor 2/metabolism , Autophagy/drug effects , Doxorubicin/adverse effects , Doxorubicin/toxicity , Mice , Ferroptosis/drug effects , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Mice, Inbred C57BL , Cell Line , Rats
5.
ACS Appl Bio Mater ; 7(5): 3337-3345, 2024 May 20.
Article En | MEDLINE | ID: mdl-38700956

A stimuli-responsive drug delivery nanocarrier with a core-shell structure combining photothermal therapy and chemotherapy for killing cancer cells was constructed in this study. The multifunctional nanocarrier ReS2@mSiO2-RhB entails an ReS2 hierarchical nanosphere coated with a fluorescent mesoporous silica shell. The three-dimensional hierarchical ReS2 nanostructure is capable of effectively absorbing near-infrared (NIR) light and converting it into heat. These ReS2 nanospheres were generated by a hydrothermal synthesis process leading to the self-assembly of few-layered ReS2 nanosheets. The mesoporous silica shell was further coated on the surface of the ReS2 nanospheres through a surfactant-templating sol-gel approach to provide accessible mesopores for drug uploading. A fluorescent dye (Rhodamine B) was covalently attached to silica precursors and incorporated during synthesis in the mesoporous silica walls toward conferring imaging capability to the nanocarrier. Doxorubicin (DOX), a known cancer drug, was used in a proof-of-concept study to assess the material's ability to function as a drug delivery carrier. While the silica pores are not capped, the drug molecule loading and release take advantage of the pH-governed electrostatic interactions between the drug and silica wall. The ReS2@mSiO2-RhB enabled a drug loading content as high as 19.83 mg/g doxorubicin. The ReS2@mSiO2-RhB-DOX nanocarrier's cumulative drug release rate at pH values that simulate physiological conditions showed significant pH responsiveness, reaching 59.8% at pH 6.8 and 98.5% and pH 5.5. The in vitro testing using HeLa cervical cancer cells proved that ReS2@mSiO2-RhB-DOX has a strong cancer eradication ability upon irradiation with an NIR laser owing to the combined drug delivery and photothermal effect. The results highlight the potential of ReS2@mSiO2-RhB nanoparticles for combined cancer therapy in the future.


Doxorubicin , Drug Liberation , Drug Screening Assays, Antitumor , Materials Testing , Nanoparticles , Particle Size , Photothermal Therapy , Rhenium , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Rhenium/chemistry , Rhenium/pharmacology , Disulfides/chemistry , Porosity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Survival/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , HeLa Cells
6.
Cytokine ; 179: 156632, 2024 Jul.
Article En | MEDLINE | ID: mdl-38701734

The study was planned to evaluate the differences in certain proinflammatory cytokines(IL-6, TNF-α) with CRP and biochemical parameters (E2, D3, LDH, GGT, TSB, Ca, Ph, uric acid), between women with pre- and postmenopausal breast cancer and seemingly healthy women in Iraqi women as controls; at medical city in teaching Oncology hospital,70 breast cancer patients women their ages ranged (47.51 ± 1.18) and 20 healthy women with age (44.45 ± 2.66) begun from September (2020) to February (2021). The aims of this study to investigate the evaluation of chemotherapy effects especially doxorubicin and cyclophosphamide only use in this study in pre and postmenopausal breast cancer women on proinflammatory cytokines(IL-6, TNF-α) with CRP and on biochemical parameters(E2, D3, LDH, GGT, TSB, Ca, Ph, uric acid) in pre and postmenapausal breast cancer women. The patients were divided into five groups and each group contains 14 patients women with breast cancer during pre and postmenopausal periods. The control groups were divided into 10 pre and 10 postmenopausal women(Fig. 1). The results of proinflammatory cytokines of and biochemical parameters in premenopausal groups were as the levels of IL-6 (pg/ml),TNF-α(pg/ml) and CRP (ng/ml) showed significant increase differences (P < 0.01)among breast cancer treated (BCT) groups in comparison with control groups,While the Liver enzymes GGT,LDH and TSB showed highly significant increase (P < 0.01) in BCT groups, Estrogen levels (pg/ml) and D3(ng/ml) increased significantly (P < 0.01)among BCT groups. Blood serum calcium and phosphorus with uric acid levels (mg/dl) showed significant difference (P < 0.01); While the result in postmenopausal of IL-6(pg/ml), TNF-α (pg/ml) and CRP (ng/ml) showed highly significant differences (P < 0.01)among BCT groups.While GGT(IU/L), LDH(IU/L) and TSB (mg/dl) enzymes were increased significantly (p < 0.01), Estrogen (pg/ml) and D3(ng/ml) levels showed significant increase (P < 0.01) among BCT groups.Blood calcium and phosphorus showed significant increase (P < 0.01) while uric acid was non-significant increase (P > 0.05).


Breast Neoplasms , Cytokines , Postmenopause , Humans , Female , Breast Neoplasms/blood , Postmenopause/blood , Middle Aged , Cytokines/blood , Adult , Premenopause/blood , Tumor Necrosis Factor-alpha/blood , Interleukin-6/blood , C-Reactive Protein/metabolism , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use
7.
J Sep Sci ; 47(9-10): e2300867, 2024 May.
Article En | MEDLINE | ID: mdl-38726736

Shengxian decoction, a traditional Chinese medicinal prescription, has been shown to alleviate doxorubicin-induced chronic heart failure. This study established an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method to separate and characterize the complex chemical compositions of Shengxian decoction, and the absorbed compounds in the bio-samples of the cardiotoxicity rats with chronic heart failure after its oral delivery. Note that 116 chemical compounds were identified from Shengxian decoction in vitro, 81 more than previously detected. Based on the three-dimensional data of these compounds, 28 absorbed compounds were confirmed in vivo. Network pharmacology and molecular docking experiments indicated that timosaponin B-II, timosaponin A-III, gitogenin, and 7,8-didehydrocimigenol were recognized as the key effective compounds to exert effects against doxorubicin cardiotoxicity by acting on targets such as caspase 3, cyclin-dependent kinase 1, cyclin-dependent kinase 4, receptor tyrosine-protein kinase erbB-2, and mitogen-activated protein kinase 1 in p53 and phosphatidylinositol 3-kinase-Akt signaling pathways. This study developed the understanding of the composition of Shengxian decoction for the treatment of doxorubicin cardiotoxicity, as well as a feasible strategy to elucidate the effective constituents in traditional Chinese medicines.


Doxorubicin , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , Animals , Rats , Chromatography, High Pressure Liquid , Male , Mass Spectrometry , Cardiotoxicity , Molecular Docking Simulation , Drug Combinations
8.
J Transl Med ; 22(1): 433, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720361

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Cardiotoxicity , Doxorubicin , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Humans , Doxorubicin/adverse effects , Cardiotoxicity/etiology , Animals , Dysbiosis , Fecal Microbiota Transplantation
9.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732210

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Angiotensin II , Chemokine CCL2 , Doxorubicin , Mice, Knockout , Podocytes , Animals , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Podocytes/metabolism , Podocytes/pathology , Podocytes/drug effects , Doxorubicin/adverse effects , Mice , Male , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Gene Deletion , Disease Models, Animal
10.
J Assoc Physicians India ; 72(1): 99-102, 2024 Jan.
Article En | MEDLINE | ID: mdl-38736082

BACKGROUND: Peripheral T cell lymphoma (PTCL), not otherwise specified (NOS) is a heterogenous group of predominantly nodal T cell lymphomas that generally presents with lymphadenopathy with or without extra nodal involvement. Acral vascular syndrome clinically presents as digital ischemia with Raynaud's phenomenon and acral cyanosis. Although, this condition is commonly associated with connective tissue disorder, smoking and vasculitis, its association with lymphoid malignancy is very rare. Here, we present a case report of a patient with digital gangrene of all toes and fingers as a presenting symptom of PTCL-NOS. CASE DESCRIPTION: A 62 year old male presented with digital ischemia associated with pain, low grade fever, loss of appetite and significant weight loss of 6 kilograms over a period of 3 months. On examination, he was found to have bilateral inguinal and axillary lymph nodes with gangrenous changes over toes and fingers but peripheral pulses were palpable. On evaluation he had anemia, elevated ESR and CRP. CT angiogram revealed thinned out digital arteries with multifocal areas of narrowing. Patient was screened for other causes of digital gangrene and was tested negative for ANCA, ANA, cryoglobulins and viral markers. Lymph node biopsy with IHC was suggestive of peripheral T-cell lymphoma-NOS and was started on CHOP regimen. Lymph nodes size decreased and gangrenous changes resolved. CONCLUSION: Though digital ischemia is a rare paraneoplastic presentation of lymphoma, it should be considered if there is a rapid progression of gangrene. Early initiation of chemotherapy may result in the reduction of further progression of digital gangrene and thus prevent permanent disability. In our patient, progression of gangrene was prevented even though it was an aggressive variant of T cell lymphoma.


Fingers , Gangrene , Lymphoma, T-Cell, Peripheral , Paraneoplastic Syndromes , Toes , Humans , Male , Gangrene/etiology , Gangrene/diagnosis , Lymphoma, T-Cell, Peripheral/diagnosis , Lymphoma, T-Cell, Peripheral/complications , Middle Aged , Fingers/pathology , Paraneoplastic Syndromes/diagnosis , Paraneoplastic Syndromes/etiology , Toes/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Vincristine/therapeutic use , Prednisone/therapeutic use
11.
Sci Rep ; 14(1): 10646, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724530

Individual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall Fe3O4 nanoclusters were developed for tumor-targeted dual-mode T1/T2-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy. The self-assembled ultrasmall Fe3O4 nanoclusters synthesized by facilely modifying ultrasmall Fe3O4 nanoparticles with 2,3-dimercaptosuccinic acid (DMSA) molecule possess long-term stability and mass production ability. The proposed ultrasmall Fe3O4 nanoclusters shows excellent dual-mode T1 and T2 MRI capacities as well as favorable CDT ability due to the appropriate size effect and the abundant Fe ion on the surface of ultrasmall Fe3O4 nanoclusters. After conjugation with the tumor targeting ligand Arg-Gly-Asp (RGD) and chemotherapy drug doxorubicin (Dox), the functionalized Fe3O4 nanoclusters achieve enhanced tumor accumulation and retention effects and synergetic CDT and chemotherapy function, which serve as a powerful integrated theranostic platform for cancer treatment.


Magnetic Resonance Imaging , Theranostic Nanomedicine , Magnetic Resonance Imaging/methods , Theranostic Nanomedicine/methods , Animals , Mice , Humans , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Line, Tumor , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/therapy , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Succimer/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
12.
Int J Nanomedicine ; 19: 3827-3846, 2024.
Article En | MEDLINE | ID: mdl-38708180

Background: New treatment modalities for hepatocellular carcinoma (HCC) are desperately critically needed, given the lack of specificity, severe side effects, and drug resistance with single chemotherapy. Engineered bacteria can target and accumulate in tumor tissues, induce an immune response, and act as drug delivery vehicles. However, conventional bacterial therapy has limitations, such as drug loading capacity and difficult cargo release, resulting in inadequate therapeutic outcomes. Synthetic biotechnology can enhance the precision and efficacy of bacteria-based delivery systems. This enables the selective release of therapeutic payloads in vivo. Methods: In this study, we constructed a non-pathogenic Escherichia coli (E. coli) with a synchronized lysis circuit as both a drug/gene delivery vehicle and an in-situ (hepatitis B surface antigen) Ag (ASEc) producer. Polyethylene glycol (CHO-PEG2000-CHO)-poly(ethyleneimine) (PEI25k)-citraconic anhydride (CA)-doxorubicin (DOX) nanoparticles loaded with plasmid encoded human sulfatase 1 (hsulf-1) enzyme (PNPs) were anchored on the surface of ASEc (ASEc@PNPs). The composites were synthesized and characterized. The in vitro and in vivo anti-tumor effect of ASEc@PNPs was tested in HepG2 cell lines and a mouse subcutaneous tumor model. Results: The results demonstrated that upon intravenous injection into tumor-bearing mice, ASEc can actively target and colonise tumor sites. The lytic genes to achieve blast and concentrated release of Ag significantly increased cytokine secretion and the intratumoral infiltration of CD4/CD8+T cells, initiated a specific immune response. Simultaneously, the PNPs system releases hsulf-1 and DOX into the tumor cell resulting in rapid tumor regression and metastasis prevention. Conclusion: The novel drug delivery system significantly suppressed HCC in vivo with reduced side effects, indicating a potential strategy for clinical HCC therapy.


Carcinoma, Hepatocellular , Doxorubicin , Escherichia coli , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Hep G2 Cells , Mice , Escherichia coli/drug effects , Hepatitis B Surface Antigens , Sulfotransferases/genetics , Nanoparticles/chemistry , Mice, Inbred BALB C , Drug Delivery Systems/methods , Xenograft Model Antitumor Assays
13.
Int J Nanomedicine ; 19: 3957-3972, 2024.
Article En | MEDLINE | ID: mdl-38711614

Purpose: Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods: We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results: We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion: The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.


Copper , Doxorubicin , Graphite , Metal-Organic Frameworks , Prostatic Neoplasms , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/chemistry , Animals , Humans , Cell Line, Tumor , Copper/chemistry , Copper/pharmacology , Graphite/chemistry , Graphite/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Drug Liberation , Reactive Oxygen Species/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice, Nude , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Xenograft Model Antitumor Assays
14.
Mol Biol Rep ; 51(1): 603, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698270

BACKGROUND: Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS: The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS: It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION: The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.


Apoptosis , Cell Proliferation , Colorectal Neoplasms , Doxorubicin , Fluorouracil , Spheroids, Cellular , Humans , Fluorouracil/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Doxorubicin/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HT29 Cells , Cell Proliferation/drug effects , Caco-2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
15.
Sci Rep ; 14(1): 9983, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693143

The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.


Doxorubicin , Hydrogels , Metal-Organic Frameworks , Methacrylates , Nanoparticles , Wound Healing , Animals , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Wound Healing/drug effects , Nanoparticles/chemistry , Hydrogels/chemistry , Rats , Humans , Reactive Oxygen Species/metabolism , Gelatin/chemistry , Cerium/chemistry , Cerium/pharmacology , Zeolites/chemistry , Zeolites/pharmacology , Cell Line, Tumor , Male , Imidazoles/chemistry , Imidazoles/administration & dosage , Imidazoles/pharmacology , Rats, Sprague-Dawley
16.
Hepatol Commun ; 8(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38696353

BACKGROUND: Transarterial chemoembolization is the first-line treatment for intermediate-stage HCC. However, the response rate to transarterial chemoembolization varies, and the molecular mechanisms underlying variable responses are poorly understood. Patient-derived hepatocellular carcinoma organoids (HCCOs) offer a novel platform to investigate the molecular mechanisms underlying doxorubicin resistance. METHODS: We evaluated the effects of hypoxia and doxorubicin on cell viability and cell cycle distribution in 20 patient-derived HCCO lines. The determinants of doxorubicin response were identified by comparing the transcriptomes of sensitive to resistant HCCOs. Candidate genes were validated by pharmacological inhibition. RESULTS: Hypoxia reduced the proliferation of HCCOs and increased the number of cells in the G0/G1 phase of the cell cycle, while decreasing the number in the S phase. The IC50s of the doxorubicin response varied widely, from 29nM to >1µM. Doxorubicin and hypoxia did not exhibit synergistic effects but were additive in some HCCOs. Doxorubicin reduced the number of cells in the G0/G1 and S phases and increased the number in the G2 phase under both normoxia and hypoxia. Genes related to drug metabolism and export, most notably ABCB1, were differentially expressed between doxorubicin-resistant and doxorubicin-sensitive HCCOs. Small molecule inhibition of ABCB1 increased intracellular doxorubicin levels and decreased drug tolerance in resistant HCCOs. CONCLUSIONS: The inhibitory effects of doxorubicin treatment and hypoxia on HCCO proliferation are variable, suggesting an important role of tumor-cell intrinsic properties in doxorubicin resistance. ABCB1 is a determinant of doxorubicin response in HCCOs. Combination treatment of doxorubicin and ABCB1 inhibition may increase the response rate to transarterial chemoembolization.


ATP Binding Cassette Transporter, Subfamily B , Carcinoma, Hepatocellular , Doxorubicin , Drug Resistance, Neoplasm , Liver Neoplasms , Organoids , Doxorubicin/pharmacology , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Organoids/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Cell Proliferation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chemoembolization, Therapeutic , Cell Cycle/drug effects
17.
ACS Appl Mater Interfaces ; 16(19): 25101-25112, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691046

The evolution of nano-drug delivery systems addresses the limitations of conventional cancer treatments with stimulus-responsive nanomaterial-based delivery systems presenting temporal and spatial advantages. Among various nanomaterials, boron nitride nanoparticles (BNNs) demonstrate significant potential in drug delivery and cancer treatment, providing a high drug loading capacity, multifunctionality, and low toxicity. However, the challenge lies in augmenting nanomaterial accumulation exclusively within tumors while preserving healthy tissues. To address this, we introduce a novel approach involving cancer cell membrane-functionalized BNNs (CM-BIDdT) for the codelivery of doxorubicin (Dox) and indocyanine green to treat homologous tumor. The cancer cell membrane biomimetic CM-BIDdT nanoparticles possess highly efficient homologous targeting capabilities toward tumor cells. The surface modification with acylated TAT peptides (dTAT) further enhances the nanoparticle intracellular accumulation. Consequently, CM-BIDdT nanoparticles, responsive to the acidic tumor microenvironment, hydrolyze amide bonds, activate the transmembrane penetrating function, and achieve precise targeting with substantial accumulation at the tumor site. Additionally, the photothermal effect of CM-BIDdT under laser irradiation not only kills cells through thermal ablation but also destroys the membrane on the surface of the nanoparticles, facilitating Dox release. Therefore, the fabricated CM-BIDdT nanoparticles orchestrate chemo-photothermal combination therapy and effectively inhibit tumor growth with minimal adverse effects, holding promise as a new modality for synergistic cancer treatment.


Boron Compounds , Doxorubicin , Indocyanine Green , Nanoparticles , Doxorubicin/chemistry , Doxorubicin/pharmacology , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Animals , Humans , Mice , Nanoparticles/chemistry , Cell Line, Tumor , Photothermal Therapy , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , tat Gene Products, Human Immunodeficiency Virus/chemistry , Mice, Inbred BALB C , Drug Carriers/chemistry , Drug Delivery Systems
18.
Sci Rep ; 14(1): 10632, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724585

While some clinics have adopted abbreviated neoadjuvant treatment for HER2-positive breast cancer, there remains a shortage of comprehensive clinical data to support this practice. This is a retrospective, multicenter study. A total of 142 patients were included in the study who are HER2-positive breast cancer, aged ≤ 65 years, with left ventricular ejection fraction ≥ 50%, received neoadjuvant chemotherapy and underwent surgery at 10 different oncology centers in Türkiye between October 2016 and December 2022. The treatment arms were divided into 4-6 cycles of docetaxel/trastuzumab/pertuzumab for arm A, 4 cycles of adriamycin/cyclophosphamide followed by 4 cycles of taxane/TP for arm B. There were 50 patients (35.2%) in arm A and 92 patients (64.8%) in arm B. The median follow-up of all of the patients was 19.9 months (95% CI 17.5-22.3). The 3-year DFS rates for treatment arms A and B were 90.0% and 83.8%, respectively, and the survival outcomes between the groups were similar (p = 0.34). Furthermore, the pathologic complete response rates were similar in both treatment arms, at 50.0% and 51.1%, respectively (p = 0.90). This study supports shortened neoadjuvant treatment of HER2-positive breast cancer, a common practice in some clinics.


Anthracyclines , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms , Neoadjuvant Therapy , Receptor, ErbB-2 , Trastuzumab , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Female , Middle Aged , Neoadjuvant Therapy/methods , Receptor, ErbB-2/metabolism , Anthracyclines/therapeutic use , Anthracyclines/administration & dosage , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies , Trastuzumab/therapeutic use , Cyclophosphamide/therapeutic use , Cyclophosphamide/administration & dosage , Docetaxel/therapeutic use , Docetaxel/administration & dosage , Taxoids/therapeutic use , Taxoids/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/administration & dosage , Bridged-Ring Compounds/therapeutic use , Bridged-Ring Compounds/administration & dosage , Treatment Outcome , Aged , Antibodies, Monoclonal, Humanized
19.
BMJ Case Rep ; 17(5)2024 May 21.
Article En | MEDLINE | ID: mdl-38772873

Vanishing bile duct syndrome is an uncommon condition characterised by the progressive loss and disappearance of bile ducts. It is an acquired form of cholestatic liver disease presenting with hepatic ductopenia (loss of >50% bile ducts in the portal areas). We present a case of vanishing bile duct syndrome as a presentation of Hodgkin's lymphoma who was treated with standard-of-care chemotherapy-doxorubicin, bleomycin, vinblastine and dacarbazine (along with brief administration of rituximab), which led to complete response and normalisation of liver function.


Antineoplastic Combined Chemotherapy Protocols , Bleomycin , Hodgkin Disease , Humans , Hodgkin Disease/complications , Hodgkin Disease/drug therapy , Hodgkin Disease/diagnosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bleomycin/administration & dosage , Bleomycin/therapeutic use , Doxorubicin/therapeutic use , Male , Dacarbazine/therapeutic use , Dacarbazine/administration & dosage , Vinblastine/therapeutic use , Vinblastine/administration & dosage , Bile Duct Diseases/diagnosis , Syndrome , Adult , Rituximab/therapeutic use , Rituximab/administration & dosage , Female
20.
Life Sci ; 348: 122687, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38718856

AIMS: Checkpoint blockade immunotherapy is a promising therapeutic modality that has revolutionized cancer treatment; however, the therapy is only effective on a fraction of patients due to the tumor environment. In tumor immunotherapy, the cGAS-STING pathway is a crucial intracellular immune response pathway. Therefore, this study aimed to develop an immunotherapy strategy based on the cGAS-STING pathway. MATERIALS AND METHODS: The physicochemical properties of the nanoparticles EM@REV@DOX were characterized by TEM, DLS, and WB. Subcutaneous LLC xenograft tumors were used to determine the biodistribution, antitumor efficacy, and immune response. Blood samples and tissues of interest were harvested for hematological analysis and H&E staining. SIGNIFICANCE: Overall, our designed nanovesicles provide a new perspective on tumor immunotherapy by ICD and cGAS-STING pathway, promoting DCs maturation, macrophage polarization, and activating T cells, offering a meaningful strategy for accelerating the clinical development of immunotherapy. KEY FINDINGS: EM@REV@DOX accumulated in the tumor site through EPR and homing targeting effect to release REV and DOX, resulting in DNA damage and finally activating the cGAS-STING pathway, thereby promoting DCs maturation, macrophage polarization, and activating T cells. Additionally, EM@REV@DOX increased the production of pro-inflammatory cytokines (e.g., TNF-α and IFN-ß). As a result, EM@REV@DOX was effective in treating tumor-bearing mice and prolonged their lifespans. When combined with αPD-L1, EM@REV@DOX significantly inhibited distant tumor growth, extended the survival of mice, and prevented long-term postoperative tumor metastasis, exhibiting great potential in antitumor immunotherapy.


Immunotherapy , Membrane Proteins , Nanoparticles , Nucleotidyltransferases , Animals , Nucleotidyltransferases/metabolism , Mice , Membrane Proteins/metabolism , Immunotherapy/methods , Nanoparticles/chemistry , Humans , Signal Transduction , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Cell Line, Tumor , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Female , Xenograft Model Antitumor Assays , Immunogenic Cell Death/drug effects
...