Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.833
1.
Mikrochim Acta ; 191(5): 293, 2024 05 01.
Article En | MEDLINE | ID: mdl-38691169

To address the need for facile, rapid detection of pathogens in water supplies, a fluorescent sensing array platform based on antibiotic-stabilized metal nanoclusters was developed for the multiplex detection of pathogens. Using five common antibiotics, eight different nanoclusters (NCs) were synthesized including ampicillin stabilized copper NCs, cefepime stabilized gold and copper NCs, kanamycin stabilized gold and copper NCs, lysozyme stabilized gold NCs, and vancomycin stabilized gold/silver and copper NCs. Based on the different interaction of each NC with the bacteria strains, unique patterns were generated. Various machine learning algorithms were employed for pattern discernment, among which the artificial neural networks proved to have the highest performance, with an accuracy of 100%. The developed prediction model performed well on an independent test dataset and on real samples gathered from drinking water, tap water and the Anzali Lagoon water, with prediction accuracy of 96.88% and 95.14%, respectively. This work demonstrates how generic antibiotics can be implemented for NC synthesis and used as recognition elements for pathogen detection. Furthermore, it displays how merging machine learning techniques can elevate sensitivity of analytical devices.


Anti-Bacterial Agents , Copper , Gold , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Gold/chemistry , Copper/chemistry , Silver/chemistry , Drinking Water/microbiology , Drinking Water/analysis , Neural Networks, Computer , Spectrometry, Fluorescence/methods , Machine Learning , Bacteria/isolation & purification , Fluorescent Dyes/chemistry , Vancomycin/chemistry , Water Microbiology , Kanamycin/analysis
2.
Environ Monit Assess ; 196(6): 547, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743188

Foodborne illnesses caused by the consumption of contaminated foods have frequent occurrences in developing countries. The incorporation of contaminated water in food processes, preparation, and serving is directly linked to several gastrointestinal infections. Keeping in view, this study was conducted to assess the microbial quality of both drinking water sources and commonly consumed fresh ready-to-eat (RTE) foods in the region. The drinking water samples from water sources and consumer points, as well as food samples from canteens, cafes, hotels, and restaurants, were collected for the microbiological analysis. Fifty-five percent (n = 286) of water samples were found to be positive for total coliforms with MPN counts ranging from 3 to 2600 (100 ml) -1. E. coli was detected in nearly 30% of the total water samples. Overall, 65% tap water samples were found unsatisfactory, followed by submersible (53%), filter (40%), and WTP (30%) sources. Furthermore, the examination of RTE foods (n = 80) found that 60% were of unsatisfactory microbial quality with high aerobic plate counts. The salads were the most contaminated category with highest mean APC 8.3 log CFU/g followed by pani puri, chats, and chutneys. Presence of coliforms and common enteropathogens was observed in both water and food samples. The detected isolates from the samples were identified as Enterobacter spp., Klebsiella spp., Pseudomonas aeruginosa, Salmonella spp., Shigella spp., and Staphylococcus spp. Based on these findings, microbiological quality was found compromised and this may pose hazard to public health. This exploratory study in the Punjab region also suggests that poor microbiological quality of water sources can be an important source of contamination for fresh uncooked RTE foods, thus transferring pathogens to the food chain. Therefore, only safe potable drinking water post-treatment should be used at all stages.


Drinking Water , Fast Foods , Food Microbiology , Water Microbiology , Drinking Water/microbiology , India , Fast Foods/microbiology , Bacteria/isolation & purification , Bacteria/classification , Food Contamination/analysis , Environmental Monitoring , Humans , Escherichia coli/isolation & purification
4.
Mikrochim Acta ; 191(6): 309, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714599

Copper-doped carbon dots and aminated carbon nanotubes (Cu-CDs/NH2-CNTs) nanocomposites were synthesized by a one-step growth method, and the composites were characterized for their performance. An electrochemical sensor for sensitive detection of bisphenol A (BPA) was developed for using Cu-CDs/NH2-CNTs nanocomposites modified with glassy carbon electrodes (GCE). The sensor exhibited an excellent electrochemical response to BPA in 0.2 M PBS (pH 7.0) under optimally selected conditions. The linear range of the sensor for BPA detection was 0.5-160 µM, and the detection limit (S/N = 3) was 0.13 µM. Moreover, the sensor has good interference immunity, stability and reproducibility. In addition, the feasibility of the practical application of the sensor was demonstrated by the detection of BPA in bottled drinking water and Liu Yang River water.


Benzhydryl Compounds , Copper , Electrochemical Techniques , Electrodes , Limit of Detection , Nanotubes, Carbon , Phenols , Water Pollutants, Chemical , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Nanotubes, Carbon/chemistry , Copper/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Quantum Dots/chemistry , Carbon/chemistry , Rivers/chemistry
5.
Environ Geochem Health ; 46(6): 203, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695991

Manganese (Mn) is of particular concern in groundwater, as low-level chronic exposure to aqueous Mn concentrations in drinking water can result in a variety of health and neurodevelopmental effects. Much of the global population relies on drinking water sourced from karst aquifers. Thus, we seek to assess the relative risk of Mn contamination in karst by investigating the Shenandoah Valley, VA region, as it is underlain by both karst and non-karst aquifers and much of the population relies on water wells and spring water. Water and soil samples were collected throughout the Shenandoah Valley, to supplement pre-existing well water and spring data from the National Water Information System and the Virginia Household Water Quality Program, totaling 1815 wells and 119 springs. Soils were analyzed using X-ray fluorescence and Mn K-Edge X-ray absorption near-edge structure spectroscopy. Factors such as soil type, soil geochemistry, and aquifer lithology were linked with each location to determine if correlations exist with aqueous Mn concentrations. Analyzing the distribution of Mn in drinking water sources suggests that water wells and springs within karst aquifers are preferable with respect to chronic Mn exposure, with < 4.9% of wells and springs in dolostone and limestone aquifers exceeding 100 ppb Mn, while sandstone and shale aquifers have a heightened risk, with > 20% of wells exceeding 100 ppb Mn. The geochemistry of associated soils and spatial relationships to various hydrologic and geologic features indicates that water interactions with aquifer lithology and soils contribute to aqueous Mn concentrations. Relationships between aqueous Mn in spring waters and Mn in soils indicate that increasing aqueous Mn is correlated with decreasing soil Mn(IV). These results point to redox conditions exerting a dominant control on Mn in this region.


Groundwater , Manganese , Oxidation-Reduction , Soil , Water Pollutants, Chemical , Water Wells , Manganese/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Soil/chemistry , Natural Springs/chemistry , Environmental Monitoring , Drinking Water/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Spectrometry, X-Ray Emission , Environmental Exposure
6.
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695943

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.


Arsenic , Durapatite , Fluorides , Nanocomposites , Water Pollutants, Chemical , Water Purification , Fluorides/chemistry , Adsorption , Nanocomposites/chemistry , Durapatite/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Biomass , Kinetics , Drinking Water/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Environ Geochem Health ; 46(6): 178, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695953

Bottled mineral and spring water constitute one of the main sources of drinking water. Relevant legal acts in each country individually regulate the highest permitted concentrations of harmful substances in these waters. However, current regulations do not take into account newly emerging contaminants such as BPA. Analysis of the chemical composition of 72 bottled waters from the Polish market showed that undesirable elements occur in quantities that do not exceed the maximum permissible concentrations. Special attention should be paid to bottled therapeutic water, which may contain elevated concentrations of some micronutrients, such as Al, B, Ba, Fe, Mn, or Sr contributing to the pattern of health risk with excessive consumption of this type of water. The presence of BPA was confirmed in 25 tested waters. The calculated hazard index values showed that the most exposed group are children up to 12 years of age. The greatest attention should be paid to waters with high mineralisation, for which the calculated risk values are the highest.


Drinking Water , Water Pollutants, Chemical , Drinking Water/chemistry , Drinking Water/analysis , Risk Assessment , Humans , Water Pollutants, Chemical/analysis , Poland , Child , Benzhydryl Compounds/analysis , Benzhydryl Compounds/toxicity , Phenols/analysis , Child, Preschool , Infant , Mineral Waters/analysis
8.
Environ Geochem Health ; 46(6): 183, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696054

Pollution of water resources with nitrate is currently one of the major challenges at the global level. In order to make macro-policy decisions in water safety plans, it is necessary to carry out nitrate risk assessment in underground water, which has not been done in Fars province for all urban areas. In the current study, 9494 drinking water samples were collected in four seasons in 32 urban areas of Fars province in Iran, between 2017 and 2021 to investigate the non-carcinogenic health risk assessment. Geographical distribution maps of hazard quotient were drawn using geographical information system software. The results showed that the maximum amount of nitrate in water samples in 4% of the samples in 2021, 2.5% of the samples in 2020 and 3% of the samples in 2019 were more than the standard declared by World Health Organization guidelines (50 mg/L). In these cases, the maximum amount of nitrate was reported between 82 and 123 mg/L. The HQ values for infants did not exceed 1 in any year, but for children (44% ± 10.8), teenagers (10.8% ± 8.4), and adults (3.2% ± 1.7) exceeded 1 in cities, years, and seasons, indicating that three age groups in the studied area are at noticeably significant non-carcinogenic risk. The results of the Monte Carlo simulation showed that the average value of non-carcinogenic risk was less than 1 for all age groups. Moreover, the maximum HQ values (95%) were higher than 1 for both children and teenager, indicating a significant non-carcinogenic risk for the two age groups.


Drinking Water , Geographic Information Systems , Monte Carlo Method , Nitrates , Water Pollutants, Chemical , Nitrates/analysis , Risk Assessment , Iran , Drinking Water/chemistry , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Humans , Adolescent , Cities , Infant , Child , Adult , Environmental Monitoring/methods
9.
Anal Chim Acta ; 1308: 342662, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740449

BACKGROUND: The ongoing infusion of pharmaceutical and personal care products (PPCPs) into ecosystems sustains a perpetual life cycle and leads to multi-generational exposures. Limited understanding of their environmental impact and their intrinsic ability to induce physiological effect in humans, even at low doses, pose great risks to human health. Few scholarly works have conducted systematic research into the occurrence of PPCPs within potable water systems. Concurrently, the associated monitoring techniques have not been comprehensively examined with regards to the specific nature of drinking water, namely whether the significant presence of disinfectants may influence the detection of PPCPs. RESULTS: A modified approach in terms of detailed investigation of sample preservation and optimization of an in-lab fabricated solid phase extraction (SPE) cartridge filled with DVB-VP and PS-DVB sorbent was proposed. Favorable methodological parameters were achieved, with correlation coefficients spanning from 0.9866 to 0.9998. The LODs of the PPCPs fluctuated from 0.001 to 2 µg L-1, while the LOQs varied from 0.002 to 5 µg L-1. The analysis of spiked samples disclosed a methodological precision of 2.31-9.86 % and a recovery of 52.4-119 %. We utilized the established method for analyzing 14 water samples of three categories (source water, finished water and tap water) from five centralized water supply plants. A total of 24 categories encompassing 72 PPCPs were detected, with the concentrations of PPCPs manifested a marked decrease from source water to finished water and finally to tap water. SIGNIFICANCE: Our research meticulously examined the enhancement and purification effects of widely used commercial SPE cartridges and suggested the use of in-lab fabricated SPE cartridges packed with DVB-VP and PS-DVB adsorbents. We also conducted a systematic evaluation of the need to incorporate ascorbic acid and sodium thiosulfate as preservatives for PPCP measurement, in consideration of the unique characteristics of drinking water matrices, specifically, the significant concentration levels of disinfectants. Furthermore, the proposed method was effectively employed to study the presence of PPCPs in source water, finished water, and tap water collected from centralized water supply plants.


Solid Phase Extraction , Water Pollutants, Chemical , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Pharmaceutical Preparations/analysis , Water Supply , Drinking Water/analysis , Cosmetics/analysis , Cosmetics/chemistry , Environmental Monitoring/methods
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124349, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38692107

Fluorine (F) is a pivotal element in the formation of human dental and skeletal tissues, and the consumption of water and tea constitutes a significant source of fluoride intake. However, prolonged ingestion of water and tea with excessive fluoride content can lead to fluorosis, which poses a serious health hazard. In this manuscript, a novel turn-on fluorescent probe DCF synthesized by bis-coumarin and tert-butyldiphenylsilane (TBDPS) was introduced for detecting F- in potable water and tea infusions. By leveraging the unique chemical affinity between fluoride and silicon, F- triggers the silicon-oxygen bond cleavage in DCF, culminating in a conspicuous emission of yellow fluorescence. Validated through a succession of optical tests, this probe exhibits remarkable advantages in terms of superior selectivity, a low detection limit, a large Stokes shift, and robust interference resistance when detecting inorganic fluoride. Moreover, it can serve as portable test strips for on-site real-time identification and quantitative analysis of F-. Furthermore, the application of DCF for in-situ monitoring and imaging of F- in zebrafish and soybean root tissues proved its significant value for F- detection in both animal and plant systems. This probe potentially functions as an efficient instrument for delving into the toxic mechanisms of fluoride in physiological processes.


Coumarins , Fluorescent Dyes , Tea , Zebrafish , Fluorescent Dyes/chemistry , Animals , Coumarins/chemistry , Tea/chemistry , Drinking Water/analysis , Spectrometry, Fluorescence/methods , Fluorine/analysis , Fluorine/chemistry , Fluorides/analysis , Glycine max/chemistry , Limit of Detection , Optical Imaging/methods
11.
Chemosphere ; 355: 141872, 2024 May.
Article En | MEDLINE | ID: mdl-38570046

Adsorption of per- and poly-fluoroalkyl substances (PFAS) on activated carbon (AC) is considerably hindered by the surface water constituents, degrading the ability of the AC adsorption process to remove PFAS in drinking water treatment. Herein, we developed ionic-liquid-impregnated AC (IL/AC) as an alternative to AC for PFAS sorption and demonstrated its performance with real surface water for the first time. Ionic liquids (ILs) of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL(C2)) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL(C6)) were selected from among 272 different ILs using the conductor-like screening model for realistic solvents (COSMO-RS) simulation. Impregnation of the ILs in AC was verified using various analytical techniques. Although the synthesized IL/ACs were less effective than pristine AC in treating PFAS in deionized water, their performances were less impacted by the surface water constituents, resulting in comparable or sometimes better performances than pristine AC for treating PFAS in surface water. The removal efficiencies of 10 wt% IL(C6)/AC for six PFAS were 1.40-1.96 times higher than those of pristine AC in a surface water sample containing 2.6 mg/L dissolved organic carbon and millimolar-level divalent cation concentration. PFAS partitioning from the surface water to ILs was not hindered by dissolved organic matter and was enhanced by the divalent cations, indicating the advantages of IL/ACs for treating significant amounts of PFAS in water. The synthesized IL/ACs were effective at treating coexisting pharmaceutical and personal-care products in surface water, showcasing their versatility for treating a broad range of water micropollutants.


Drinking Water , Fluorocarbons , Ionic Liquids , Charcoal , Computer Simulation
12.
Sci Total Environ ; 929: 172539, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38649039

Per- and polyfluoroalkyl substances (PFAS) are a class of man-made contaminants of human health concern due to their resistance to degradation, widespread environmental occurrence, bioaccumulation in living organisms, and potential negative health impacts. Private drinking water supplies may be uniquely vulnerable to PFAS contamination in impacted areas, as these systems are not protected under federal regulations and often include limited treatment or remediation, if contaminated, prior to use. The goal of this study was to determine the incidence of PFAS contamination in private drinking water supplies in two counties in Southwest Virginia, USA (Floyd and Roanoke) that share similar bedrock geologies, are representative of different state Department of Health risk categories, and to examine the potential for reliance on citizen-science based strategies for sample collection in subsequent efforts. Samples for inorganic ions, bacteria, and PFAS analysis were collected on separate occasions by participants and experts at the home drinking water point of use (POU) for comparison. Experts also collected outside tap samples for analysis of 30 PFAS compounds. At least one PFAS was detectable in 95 % of POU samples collected (n = 60), with a mean total PFAS concentration of 23.5 ± 30.8 ppt. PFOA and PFOS, two PFAS compounds which presently have EPA health advisories, were detectable in 13 % and 22 % of POU samples, respectively. On average, each POU sample contained >3 PFAS compounds, and one sample contained as many as 8 compounds, indicating that exposure to a mixture of PFAS in drinking water may be occurring. Although there were significant differences in total PFAS concentrations between expert and participant collected samples (Wilcoxon, alpha = 0.05), collector bias was inconsistent, and may be due to the time of day of sampling (i.e. morning, afternoon) or specific attributes of a given home. Further research is required to resolve sources of intra-sample variability.


Drinking Water , Environmental Monitoring , Fluorocarbons , Water Pollutants, Chemical , Water Supply , Water Pollutants, Chemical/analysis , Drinking Water/chemistry , Fluorocarbons/analysis , Virginia , Water Supply/statistics & numerical data
13.
Sci Total Environ ; 929: 172662, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38649043

Tap water is a main route for human direct exposure to microplastics (MPs). This study recompiled baseline data from 34 countries to assess the current status and drivers of MP contamination in global tap water systems (TWS). It was shown that MPs were detected in 87 % of 1148 samples, suggesting the widespread occurrence of MPs in TWS. The detected concentrations of MPs spanned seven orders of magnitude and followed the linearized log-normal distribution (MSE = 0.035, R2 = 0.965), with cumulative concentrations at 5th, 50th and 95th percentiles of 0.028, 4.491 and 728.105 items/L, respectively. The morphological characteristics were further investigated, indicating that particles smaller than 50 µm dominated in global TWS, with fragment, polyester and transparent as the most common shape, composition and color of MPs, respectively. Subsequently, the SHapley Additive exPlanations (SHAP) algorithm was implemented to quantify the importance of variables affecting the MP abundance in global TWS, showing that the lower particle size limit was the most important variables. Subgroup analysis revealed that the concentration of MPs counted at the size limit of 1 µm was >20 times higher than that above 1 µm. Ultimately, current knowledge gaps and future research needs were elucidated.


Drinking Water , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Drinking Water/chemistry
14.
J Hazard Mater ; 470: 134229, 2024 May 15.
Article En | MEDLINE | ID: mdl-38581875

Total alpha and beta activities and Rn-222 concentrations were determined in water from different sections of seven aqueducts belonging to the water supply system of Campania region (Italy), known worldwide for its volcanism. Statistical analysis was performed on data to account for their variability across the aqueduct sections, and results were discussed considering the geology of reservoirs, the potential mixing processes occurring along the pipe network, the building/constituting materials of the aqueduct sections, and the integrity of the infrastructure. Guidelines proposed by Italian and international regulation entities were considered to determine if total alpha and beta activities and Rn-222 concentrations found at the taps of the different aqueducts should be considered detrimental to public health. Based on a deterministic and a stochastic approach, a health risk assessment was also tested for Rn-222, assuming direct ingestion and showering as potential exposure pathways. Results showed that applying guidelines returned an absence of hazard, whereas risk assessment returned a high probability of exposure to unacceptable Rn-222 doses for some aqueducts. Beyond the usefulness of obtained results to plan actions to improve the safety of drinking water in Campania, our outcomes represent a warning for bodies dealing with public health at any level: the use of guidelines can bring an underestimation of the risks exerted by the exposure to Rn-222 on human health. Further, using a probabilistic approach in risk assessment accounting for uncertainty can favor risk forecasts based on more "realistic" scenarios.


Drinking Water , Water Supply , Italy , Humans , Risk Assessment , Drinking Water/analysis , Water Pollutants, Radioactive/analysis , Volcanic Eruptions
15.
Sci Total Environ ; 927: 172227, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38582104

The sensory quality of drinking water, and particularly its taste and odor (T&O) is a key determinant of consumer acceptability, as consumers evaluate water by their senses. Some of the conventional treatment processes to control compounds which impart unpleasant T&O have limitations because of their low efficiency and/or high costs. Therefore, there is a great need to develop an effective process for removing T&O compounds without secondary concerns. The primary objective of this study was to assess for the first time the effectiveness of spirulina-based carbon materials in removing geosmin (GSM) and 2-methylisoborneol (2-MIB) from water, two commonly occurring natural T&O compounds. The efficiency of the materials to remove environmentally relevant concentrations of GSM and 2-MIB (ng L-1) from ultrapure and raw water was investigated using a sensitive headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC/MS) method. Moreover, the genotoxic and cytotoxic effects of the spirulina-based materials were assessed for the first time to evaluate their safety and their potential in the treatment of water for human consumption. Based on the results, spirulina-based materials were found to be promising for drinking water treatment applications, as they did not exert geno-cytotoxic effects on human cells, while presenting high efficiency in removing GSM and 2-MIB from water.


Drinking Water , Odorants , Spirulina , Taste , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Odorants/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Naphthols , Humans , Camphanes , Adsorption , Solid Phase Microextraction/methods , Carbon , Gas Chromatography-Mass Spectrometry
16.
Environ Int ; 186: 108614, 2024 Apr.
Article En | MEDLINE | ID: mdl-38583295

Recognition of per- and polyfluoroalkyl substances (PFAS) as widespread environmental pollutants and a consequent risk to human health, has recently made the European Union (EU) adopt several regulatory measures for their management. The coherence of these measures is challenged by the diversity and the ubiquitous occurrence of PFAS, which also complicates the EU's endeavor to advance justified, harmonized, and transparent approaches in the regulatory assessment of chemical risks. Our study critically reviews the European approach for the risk assessment of PFAS, by applying a comparative analysis of the current and pending regulatory thresholds issued for these chemicals in water bodies, drinking water, and certain foodstuffs. Our study shows that the level of health protection embedded in the studied thresholds may differ by three orders of magnitude, even in similar exposure settings. This is likely to confuse the common understanding of the toxicity and health risks of PFAS and undermine reasonable decision-making and the equal treatment of different stakeholders. We also indicate that currently, no consensus exists on the appropriate level of required health protection regarding PFAS and that the recently adopted tolerable intake value in the EU is too cautious. Based on our analysis, we propose some simple solutions on how the studied regulations and their implicit PFAS thresholds or their application could be improved. We further conclude that instead of setting EU-wide PFAS thresholds for all the environmental compartments, providing the member states with the flexibility to consider case-specific factors, such as regional background concentrations or food consumption rates, in their national regulatory procedures would likely result in more sustainable management of environmental PFAS without compromising the scientific foundation of risk assessment, the legitimacy of the EU policy framework and public health.


European Union , Fluorocarbons , Risk Assessment , Fluorocarbons/analysis , Humans , Environmental Pollutants/analysis , Environmental Exposure , Drinking Water/chemistry
17.
J Water Health ; 22(4): 673-688, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678421

This study assessed the bacteriological quality of raw, treated, and distributed water from Ede-Erinle and Opa reservoirs in Osun State, Nigeria. This was to determine the potability of water from these waterwork stations. Eighteen sampling points were established across the two reservoir networks for this study. Samples were collected bi-monthly for two annual cycles. Serial dilution and pour plate methods were employed for the enumeration of bacterial load. Total heterotrophic bacteria count (THBC) and total coliform bacteria count (TCBC) were enumerated on nutrient and MacConkey agar at 37 °C, respectively. Bacterial isolates were characterized using biochemical identification methods with reference to Bergey's Manual of Determinative Bacteriology. Bacterial isolates and biofilm formation were further identified molecularly through the PCR method using specific universal primers. Mean values of THBC and TCBC in distributed water from Ede-Erinle (9.61 × 104 ± 1.50 × 104 CFU/mL; 69.56 ± 26.81 CFU/mL) and Opa waterworks (9.58 × 104 ± 2.55 × 104 CFU/mL; 142.94 ± 44.41 CFU/mL) exceeded permissible limits for drinking water. Paenibacillus lautus, Bacillus pseudomycoides, Pseudomonas aeruginosa, and Pseudomonas stutzeri showed biofilm-forming capacity. The study concluded that the presence of coliforms and biofilm-forming bacteria in distributed water implies that the water is unfit for consumption without further treatment.


Biofilms , Drinking Water , Enterobacteriaceae , Water Microbiology , Water Supply , Nigeria , Enterobacteriaceae/isolation & purification , Drinking Water/microbiology , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Water Purification/methods
18.
J Water Health ; 22(4): 757-772, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678428

This study investigates groundwater contamination by arsenic and iron and its health implications within the Sylhet district in Bangladesh. Utilizing geographic information system (GIS) and inverse distance weighting (IDW) methods, hazard maps have been developed to evaluate contamination risk across various upazilas. The findings show significant arsenic and iron pollution, particularly in the northwestern part of the district. In about 50% of the area, especially in Jaintiapur, Zakiganj, Companiganj, and Kanaighat where arsenic levels surpass 0.05 mg/L which is the standard limit of Bangladesh. Iron levels peak at 13.83 mg/L, severely impacting 45% of the region, especially in Gowainghat, northeastern Jaintiapur, Zakigonj, and Golabganj. The study employs USEPA health risk assessment methods to calculate the hazard quotient (HQ) and hazard index (HI) for both elements via oral and dermal exposure. Results indicate that children face greater noncarcinogenic and carcinogenic risks than adults, with oral HI showing significant risk in Balagonj and Bishwanath. Dermal adsorption pathways exhibit comparatively lower risks. Cancer risk assessments demonstrate high carcinogenic risks from oral arsenic intake in all areas. This comprehensive analysis highlights the urgent need for effective groundwater management and policy interventions in the Sylhet district to mitigate these health risks and ensure safe drinking water.


Arsenic , Groundwater , Iron , Water Pollutants, Chemical , Groundwater/analysis , Groundwater/chemistry , Arsenic/analysis , Bangladesh , Water Pollutants, Chemical/analysis , Iron/analysis , Risk Assessment , Humans , Environmental Monitoring/methods , Geographic Information Systems , Drinking Water/analysis , Drinking Water/chemistry
19.
J Environ Manage ; 358: 120932, 2024 May.
Article En | MEDLINE | ID: mdl-38652983

Increasing manganese (Mn) concentrations in source water contribute to aesthetic and health-related concerns in drinking water. The challenges with Mn in drinking water primarily arise from elevated Mn concentrations in the water supply reservoir, with the inefficacy of Mn treatment largely attributed to fluctuating Mn levels in the water source. A three-dimensional Mn cycle model in a temperate monomictic reservoir, Tarago Reservoir, and a decision support system reflecting Mn variations in the local water treatment plant have been established in previous research. This study aimed to examine Mn variations from the reservoir to raw water and treated water under the influence of wind conditions during different stages of thermal structure, and discover valuable recommendations for Mn treatment in the local water supply system. We crafted 12 scenarios to scrutinize the impact of varying intensities of offshore and onshore winds on hydrodynamic processes and Mn transport during strong thermal stratification, weak thermal stratification, and turnover. The scenario analysis revealed that, during the gradual weakening of thermal stratification, offshore wind induced a substantial amount of Mn to the upper layers near the water intake point. Conversely, onshore wind hindered the upward transport of Mn. The simulated Mn in the raw water under the 12 scenarios indicated that the timing of turnover in the Tarago Reservoir is the primary concern for Mn treatment in the water treatment plant. Additionally, close attention should be given to the frequency and intensity of offshore winds during the weakening of thermal stratification.


Manganese , Water Supply , Wind , Water Purification/methods , Water Pollutants, Chemical/analysis , Drinking Water/chemistry
20.
Sci Total Environ ; 929: 172498, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38657805

The drugs and personal care products in water sources are potential threats to the ecological environment and drinking water quality. In recent years, the presence of PPCPs has been detected in multiple drinking water sources in China. PPCPs are usually stable and resistant to degradation in aquatic environments. During chlorination, chloramination, and ozonation disinfection processes, PPCPs can act as precursor substances to generate N-nitrosodimethylamine (NDMA) which is the most widely detected nitrosamine byproduct in drinking water. This review provides a comprehensive overview of the impact of PPCPs in China's water environment on the generation of NDMA during disinfection processes to better understand the correlation between PPCPs and NDMA generation. Chloramine is the most likely to form NDMA with different disinfection methods, so chloramine disinfection may be the main pathway for NDMA generation. Activated carbon adsorption and UV photolysis are widely used in the removal of NDMA and its precursor PPCPs, and biological treatment is found to be a low-cost and high removal rate method for controlling the generation of NDMA. However, there are still certain regional limitations in the investigation and research on PPCPs, and other nitrosamine by-products such as NMEA, NDEA and NDBA should also be studied to investigate the formation mechanism and removal methods.


Dimethylnitrosamine , Disinfection , Water Pollutants, Chemical , Water Purification , China , Disinfection/methods , Water Purification/methods , Water Pollutants, Chemical/analysis , Dimethylnitrosamine/analysis , Drinking Water/chemistry , Disinfectants/analysis
...