Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.202
1.
Fly (Austin) ; 18(1): 2352938, 2024 Dec.
Article En | MEDLINE | ID: mdl-38741287

To identify genes required for brain growth, we took an RNAi knockdown reverse genetic approach in Drosophila. One potential candidate isolated from this effort is the anti-lipogenic gene adipose (adp). Adp has an established role in the negative regulation of lipogenesis in the fat body of the fly and adipose tissue in mammals. While fat is key to proper development in general, adp has not been investigated during brain development. Here, we found that RNAi knockdown of adp in neuronal stem cells and neurons results in reduced brain lobe volume and sought to replicate this with a mutant fly. We generated a novel adp mutant that acts as a loss-of-function mutant based on buoyancy assay results. We found that despite a change in fat content in the body overall and a decrease in the number of larger (>5 µm) brain lipid droplets, there was no change in the brain lobe volume of mutant larvae. Overall, our work describes a novel adp mutant that can functionally replace the long-standing adp60 mutant and shows that the adp gene has no obvious involvement in brain growth.


Brain , Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Brain/growth & development , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Loss of Function Mutation , RNA Interference , Neurons/metabolism , Larva/growth & development , Larva/genetics , Larva/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Drosophila/genetics , Drosophila/metabolism , Drosophila/growth & development , Adipose Tissue/metabolism , Mutation
2.
Commun Biol ; 7(1): 533, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710747

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Drosophila Proteins , Drosophila melanogaster , Membrane Proteins , Protein Serine-Threonine Kinases , Signal Transduction , Tumor Suppressor Proteins , Wings, Animal , Animals , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Apoptosis , Drosophila/genetics , Drosophila/growth & development , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Wings, Animal/growth & development , Wings, Animal/metabolism
3.
Elife ; 122024 Jan 24.
Article En | MEDLINE | ID: mdl-38265865

Dpp/BMP acts as a morphogen to provide positional information in the Drosophila wing disc. Key cell-surface molecules to control Dpp morphogen gradient formation and signaling are heparan sulfate proteoglycans (HSPGs). In the wing disc, two HSPGs, the glypicans Division abnormally delayed (Dally) and Dally-like (Dlp) have been suggested to act redundantly to control these processes through direct interaction of their heparan sulfate (HS) chains with Dpp. Based on this assumption, a number of models on how glypicans control Dpp gradient formation and signaling have been proposed, including facilitating or hindering Dpp spreading, stabilizing Dpp on the cell surface, or recycling Dpp. However, how distinct HSPGs act remains largely unknown. Here, we generate genome-engineering platforms for the two glypicans and find that only Dally is critical for Dpp gradient formation and signaling through interaction of its core protein with Dpp. We also find that this interaction is not sufficient and that the HS chains of Dally are essential for these functions largely without interacting with Dpp. We provide evidence that the HS chains of Dally are not essential for spreading or recycling of Dpp but for stabilizing Dpp on the cell surface by antagonizing receptor-mediated Dpp internalization. These results provide new insights into how distinct HSPGs control morphogen gradient formation and signaling during development.


Drosophila Proteins , Drosophila , Heparan Sulfate Proteoglycans , Membrane Glycoproteins , Proteoglycans , Animals , Cell Membrane , Drosophila/growth & development , Glypicans , Heparitin Sulfate
4.
J Cell Biol ; 222(3)2023 03 06.
Article En | MEDLINE | ID: mdl-36648440

Mechanical forces actively shape cells during development, but little is known about their roles during neuronal morphogenesis. Developmental neurite pruning, a critical circuit specification mechanism, often involves neurite abscission at predetermined sites by unknown mechanisms. Pruning of Drosophila sensory neuron dendrites during metamorphosis is triggered by the hormone ecdysone, which induces local disassembly of the dendritic cytoskeleton. Subsequently, dendrites are severed at positions close to the soma by an unknown mechanism. We found that ecdysone signaling causes the dendrites to become mechanically fragile. Severing occurs during periods of increased pupal morphogenetic tissue movements, which exert mechanical forces on the destabilized dendrites. Tissue movements and dendrite severing peak during pupal ecdysis, a period of strong abdominal contractions, and abolishing ecdysis causes non-cell autonomous dendrite pruning defects. Thus, our data establish mechanical tearing as a novel mechanism during neurite pruning.


Dendrites , Drosophila , Neurites , Animals , Dendrites/physiology , Drosophila/growth & development , Ecdysone/physiology , Neurites/physiology , Sensory Receptor Cells/physiology , Metamorphosis, Biological , Pupa/growth & development
5.
Insect Sci ; 30(3): 588-598, 2023 Jun.
Article En | MEDLINE | ID: mdl-36281570

20-hydroxyecdysone (20E) induced transcription factor E93 is important for larval-adult transition, which functions in programmed cell death of larval obsolete tissues, and the formation of adult new tissues. However, the apoptosis-related genes directly regulated by E93 are still ambiguous. In this study, an E93 mutation fly strain was obtained by clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated long exon deletion to investigate whether and how E93 induces apoptosis during larval tissues metamorphosis. The transcriptional profile of E93 was consistent with 3 RHG (rpr, hid, and grim) genes and the effector caspase gene drice, and all their expressions peaked at the initiation of apoptosis during the degradation of salivary glands. The transcription expression of 3 RHG genes decreased and apoptosis was blocked in E93 mutation salivary gland during metamorphosis. In contrast, E93 overexpression promoted the transcription of 3 RHG genes, and induced advanced apoptosis in the salivary gland. Moreover, E93 not only enhance the promoter activities of the 3 RHG genes in Drosophila Kc cells in vitro, but also in the salivary gland in vivo. Our results demonstrated that 20E induced E93 promotes the transcription of RHG genes to trigger apoptosis during obsolete tissues degradation at metamorphosis in Drosophila.


Drosophila Proteins , Drosophila , Transcription Factors , Animals , Apoptosis/genetics , Drosophila/cytology , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Metamorphosis, Biological , Salivary Glands/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Nucleic Acids Res ; 51(2): 501-516, 2023 01 25.
Article En | MEDLINE | ID: mdl-35929025

Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.


How many cell types are there in nature? How do they change during the life cycle? These are two fundamental questions that researchers have been trying to understand in the area of biology. In this study, single-cell mRNA sequencing data were used to profile over 2.6 million individual cells from mice, zebrafish and Drosophila at different life stages, 1.3 million of which were newly collected. The comprehensive datasets allow investigators to construct a cross-species cell landscape that helps to reveal the conservation and diversity of cell taxonomies at genetic and regulatory levels. The resources in this study are assembled into a publicly available website at http://bis.zju.edu.cn/cellatlas/.


Single-Cell Analysis , Animals , Mice , Sequence Analysis, RNA , Zebrafish/growth & development , Drosophila/growth & development
8.
PLoS One ; 17(8): e0269208, 2022.
Article En | MEDLINE | ID: mdl-35969522

The Ajuba LIM protein Jub mediates regulation of Hippo signaling by cytoskeletal tension through interaction with the kinase Warts and participates in feedback regulation of junctional tension through regulation of the cytohesin Steppke. To investigate how Jub interacts with and regulates its distinct partners, we investigated the ability of Jub proteins missing different combinations of its three LIM domains to rescue jub phenotypes and to interact with α-catenin, Warts and Steppke. Multiple regions of Jub contribute to its ability to bind α-catenin and to localize to adherens junctions in Drosophila wing imaginal discs. Co-immunoprecipitation experiments in cultured cells identified a specific requirement for LIM2 for binding to Warts. However, in vivo, both LIM1 and LIM2, but not LIM3, were required for regulation of wing growth, Yorkie activity, and Warts localization. Conversely, LIM2 and LIM3, but not LIM1, were required for regulation of cell shape and Steppke localization in vivo, and for maximal Steppke binding in co-immunoprecipitation experiments. These observations identify distinct functions for the different LIM domains of Jub.


Drosophila Proteins/physiology , Drosophila/metabolism , LIM Domain Proteins/physiology , Animals , Cytoskeleton/chemistry , Cytoskeleton/physiology , Drosophila/growth & development , Drosophila Proteins/analysis , Drosophila Proteins/genetics , LIM Domain Proteins/analysis , LIM Domain Proteins/genetics , LIM-Homeodomain Proteins/analysis , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/physiology , Signal Transduction , Transcription Factors/metabolism , Wings, Animal/growth & development , alpha Catenin/metabolism
9.
Proc Natl Acad Sci U S A ; 119(11): e2119899119, 2022 03 15.
Article En | MEDLINE | ID: mdl-35254899

SignificanceIn species with internal fertilization, sperm spend an important part of their lives within the female. To examine the life history of the sperm during this time, we used semiquantitative proteomics and sex-specific isotopic labeling in fruit flies to determine the extent of molecular continuity between male and female reproductive tracts and provide a global catalog of sperm-associated proteins. Multiple seminal fluid proteins and female proteins associate with sperm immediately after mating. Few seminal fluid proteins remain after long-term sperm storage, whereas female-derived proteins constitute one-fifth of the postmating sperm proteome by then. Our data reveal a molecular "hand-off" from males to females, which we postulate to be an important component of sperm-female interactions.


Drosophila/physiology , Genitalia , Spermatozoa/metabolism , Animals , Drosophila/growth & development , Female , Life Cycle Stages , Male , Proteome , Proteomics , Reproduction , Seminal Plasma Proteins/metabolism , Sexual Behavior, Animal
10.
Cell Mol Life Sci ; 79(2): 119, 2022 Feb 04.
Article En | MEDLINE | ID: mdl-35119540

During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.


Drosophila/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Animals , Cell Communication , Drosophila/growth & development , Drosophila Proteins/metabolism , Morphogenesis , Pseudopodia/metabolism , Signal Transduction
11.
Development ; 149(4)2022 02 15.
Article En | MEDLINE | ID: mdl-35112131

Stem cells enter and exit quiescence as part of normal developmental programs and to maintain tissue homeostasis in adulthood. Although it is clear that stem cell intrinsic and extrinsic cues, local and systemic, regulate quiescence, it remains unclear whether intrinsic and extrinsic cues coordinate to control quiescence and how cue coordination is achieved. Here, we report that Notch signaling coordinates neuroblast intrinsic temporal programs with extrinsic nutrient cues to regulate quiescence in Drosophila. When Notch activity is reduced, quiescence is delayed or altogether bypassed, with some neuroblasts dividing continuously during the embryonic-to-larval transition. During embryogenesis before quiescence, neuroblasts express Notch and the Notch ligand Delta. After division, Delta is partitioned to adjacent GMC daughters where it transactivates Notch in neuroblasts. Over time, in response to intrinsic temporal cues and increasing numbers of Delta-expressing daughters, neuroblast Notch activity increases, leading to cell cycle exit and consequently, attenuation of Notch pathway activity. Quiescent neuroblasts have low to no active Notch, which is required for exit from quiescence in response to nutrient cues. Thus, Notch signaling coordinates proliferation versus quiescence decisions.


Drosophila Proteins/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , Cell Cycle , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
12.
Dev Biol ; 483: 112-117, 2022 03.
Article En | MEDLINE | ID: mdl-35016908

The microtubule cytoskeleton is critical for maintenance of long and long-lived neurons. The overlapping array of microtubules extends from the major site of synthesis in the cell body to the far reaches of axons and dendrites. New materials are transported from the cell body along these neuronal roads by motor proteins, and building blocks and information about the state of affairs in other parts of the cell are returned by motors moving in the opposite direction. As motor proteins walk only in one direction along microtubules, the combination of correct motor and correctly oriented microtubules is essential for moving cargoes in the right direction. In this review, we focus on how microtubule polarity is established and maintained in neurons. At first thought, it seems that figuring out how microtubules are organized in neurons should be simple. After all, microtubules are essentially sticks with a slow-growing minus end and faster-growing plus end, and arranging sticks within the constrained narrow tubes of axons and dendrites should be straightforward. It is therefore quite surprising how many mechanisms contribute to making sure they are arranged in the correct polarity. Some of these mechanisms operate to generate plus-end-out polarity of axons, and others control mixed or minus-end-out dendrites.


Axons/metabolism , Cell Polarity/physiology , Dendrites/metabolism , Microtubules/metabolism , Signal Transduction/physiology , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Cytoskeleton/metabolism , Drosophila/growth & development , Drosophila/metabolism , Kinesins/metabolism
13.
Development ; 149(3)2022 02 01.
Article En | MEDLINE | ID: mdl-35005772

Aggressive neoplastic growth can be initiated by a limited number of genetic alterations, such as the well-established cooperation between loss of cell architecture and hyperactive signaling pathways. However, our understanding of how these different alterations interact and influence each other remains very incomplete. Using Drosophila paradigms of imaginal wing disc epithelial growth, we have monitored the changes in Notch pathway activity according to the polarity status of cells (scrib mutant). We show that the scrib mutation impacts the direct transcriptional output of the Notch pathway, without altering the global distribution of Su(H), the Notch-dedicated transcription factor. The Notch-dependent neoplasms require, however, the action of a group of transcription factors, similar to those previously identified for Ras/scrib neoplasm (namely AP-1, Stat92E, Ftz-F1 and basic leucine zipper factors), further suggesting the importance of this transcription factor network during neoplastic growth. Finally, our work highlights some Notch/scrib specificities, in particular the role of the PAR domain-containing basic leucine zipper transcription factor and Notch direct target Pdp1 for neoplastic growth.


Drosophila Proteins/metabolism , Drosophila/metabolism , Receptors, Notch/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Carcinogenesis , Drosophila/growth & development , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Larva/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Neoplasms/metabolism , Neoplasms/pathology , RNA Interference , Signal Transduction , Wings, Animal/metabolism
14.
Arch Insect Biochem Physiol ; 109(1): e21849, 2022 Jan.
Article En | MEDLINE | ID: mdl-34779010

Matrix metalloproteinase (MMP), a protease enzyme, participates in proteolytic cleavage of extracellular matrix proteins from Drosophila and mammals. But, recent studies have revealed other physiologically important roles of MMP in Drosophila. MMP contributes to cardioblast movement and distribution of collagen proteins during cardiogenesis in developing Drosophila. Tissue remodeling, especially tracheal development is also maintained by MMP. MMP regulates certain immunological functions in Drosophila such as wound repairing, plasmatocyte assemblage at the injured site of the basement membrane and glial response to axon degeneration in Drosophila nervous system. But, the contribution of MMP to tumor formation and metastasis in Drosophila has made it an interesting topic among researchers. Ovulation and egg laying are also found to be affected positively by MMP in Drosophila.


Drosophila/enzymology , Matrix Metalloproteinases , Animals , Carcinogenesis , Drosophila/growth & development , Drosophila/immunology , Drosophila/physiology , Female , Neoplasm Metastasis , Oviposition , Ovulation/physiology
15.
Genes Cells ; 27(2): 145-151, 2022 Feb.
Article En | MEDLINE | ID: mdl-34918430

Limited oxygen availability impairs normal body growth, although the underlying mechanisms are not fully understood. In Drosophila, hypoxic responses in the larval fat body (FB) disturb the secretion of insulin-like peptides from the brain, inhibiting body growth. However, the cell-autonomous effects of hypoxia on the insulin-signaling pathway in larval FB have been underexplored. In this study, we aimed to examine the effects of overexpression of Sima, a Drosophila hypoxia-inducible factor-1 (HIF-1) α homolog and a key component of HIF-1 transcription factor essential for hypoxic adaptation, on the insulin-signaling pathway in larval FB. Forced expression of Sima in FB reduced the larval body growth with reduced Akt phosphorylation levels in FB cells and increased hemolymph sugar levels. Sima-mediated growth inhibition was reversed by overexpression of TOR or suppression of FOXO. After Sima overexpression, larvae showed higher expression levels of Tribbles, a negative regulator of Akt activity, and a simultaneous knockdown of Tribbles completely abolished the effects of Sima on larval body growth. Furthermore, a reporter analysis revealed Tribbles as a direct target gene of Sima. These results suggest that Sima in FB evokes Tribbles-mediated insulin resistance and consequently protects against aberrant insulin-dependent larval body growth under hypoxia.


Cell Cycle Proteins , DNA-Binding Proteins , Drosophila Proteins , Drosophila , Protein Serine-Threonine Kinases , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fat Body/metabolism , Gene Expression , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Larva/growth & development , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
16.
Biomolecules ; 11(12)2021 12 10.
Article En | MEDLINE | ID: mdl-34944501

The role of extracellular vesicles (EVs) has been completely re-evaluated in the recent decades, and EVs are currently considered to be among the main players in intercellular communication. Beyond their functional aspects, there is strong interest in the development of faster and less expensive isolation protocols that are as reliable for post-isolation characterisations as already-established methods. Therefore, the identification of easy and accessible EV isolation techniques with a low price/performance ratio is of paramount importance. We isolated EVs from a wide spectrum of samples of biological and clinical interest by choosing two isolation techniques, based on their wide use and affordability: ultracentrifugation and salting-out. We collected EVs from human cancer and healthy cell culture media, yeast, bacteria and Drosophila culture media and human fluids (plasma, urine and saliva). The size distribution and concentration of EVs were measured by nanoparticle tracking analysis and dynamic light scattering, and protein depletion was measured by a colorimetric nanoplasmonic assay. Finally, the EVs were characterised by flow cytometry. Our results showed that the salting-out method had a good efficiency in EV separation and was more efficient in protein depletion than ultracentrifugation. Thus, salting-out may represent a good alternative to ultracentrifugation.


Bacteria/growth & development , Culture Media, Conditioned/chemistry , Drosophila/growth & development , Extracellular Vesicles/metabolism , Fungi/growth & development , Neoplasms/metabolism , Animals , Bacteria/chemistry , Caco-2 Cells , Case-Control Studies , Drosophila/chemistry , Dynamic Light Scattering , Flow Cytometry , Fungi/chemistry , Healthy Volunteers , Humans , Nanoparticles , Particle Size , Ultracentrifugation
17.
PLoS Comput Biol ; 17(12): e1008933, 2021 12.
Article En | MEDLINE | ID: mdl-34910730

Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that CCAP neurons modulate the frequency of motoneuron firing. To explore this idea further, we used a probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of motoneurons, both in a simple model and in a conductance-based model capable of simulating many features of the observed neural dynamics. Finally, we developed an algorithm to quantify the motor behavior observed in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded from ex vivo preparations during fictive ecdysis behavior; the analysis of the patterns of movement also allowed us to identify a new post-ecdysis phase.


Drosophila/physiology , Molting/physiology , Motor Neurons/metabolism , Neuropeptides/metabolism , Signal Transduction/physiology , Animals , Drosophila/growth & development , Drosophila/metabolism
18.
Dokl Biol Sci ; 501(1): 197-200, 2021 Nov.
Article En | MEDLINE | ID: mdl-34962606

Proteins with clusters of C2H2 zinc finger domains (C2H2-proteins) constitute the most abundant class of transcription factors in higher eukaryotes. N-terminal ZAD (zinc finger-associated domain) dimerization domain has been identified in a large group of C2H2-proteins mostly in insects. The piragua gene encodes one of these proteins, Fu2. We have generated CRISPR/Cas9-mediated deletion of the piragua gene that has no phenotype. We have used φC31-mediated attP/attB recombination to generate a transgenic line expressing Fu2 protein fused with HA epitope. This line will be useful for analysis of DNA binding profile and functions of Fu2 protein.


Carrier Proteins/genetics , Drosophila Proteins/genetics , Drosophila , Animals , Drosophila/genetics , Drosophila/growth & development , Transcription Factors/genetics , Zinc Fingers/genetics
19.
Cell Rep ; 37(12): 110145, 2021 12 21.
Article En | MEDLINE | ID: mdl-34936868

Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7's preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors.


Brain/growth & development , Brain/metabolism , Drosophila/growth & development , Drosophila/metabolism , Neurons/metabolism , Synapses/metabolism , Temperature , Adaptation, Physiological , Animals , Axons/metabolism , Drosophila Proteins/metabolism , Neurogenesis , Photoreceptor Cells, Invertebrate/metabolism
20.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article En | MEDLINE | ID: mdl-34769468

Mutations in the insulin gene (INS) are frequently associated with human permanent neonatal diabetes mellitus. However, the mechanisms underlying the onset of this genetic disease is not sufficiently decoded. We induced expression of two types of human mutant INSs in Drosophila using its ectopic expression system and investigated the resultant responses in development. Expression of the wild-type preproinsulin in the insulin-producing cells (IPCs) throughout the larval stage led to a stimulation of the overall and wing growth. However, ectopic expression of human mutant preproinsulins, hINSC96Y and hINSLB15YB16delinsH, neither of which secreted from the ß-cells, could not stimulate the Drosophila growth. Furthermore, neither of the mutant polypeptides induced caspase activation leading to apoptosis. Instead, they induced expression of several markers indicating the activation of unfolded protein response, such as ER stress-dependent Xbp1 mRNA splicing and ER chaperone induction. We newly found that the mutant polypeptides induced the expression of Growth arrest and DNA-damage-inducible 45 (Gadd45) in imaginal disc cells. ER stress induced by hINSC96Y also activated the JAK-STAT signaling, involved in inflammatory responses. Collectively, we speculate that the diabetes-like growth defects appeared as a consequence of the human mutant preproinsulin expression was involved in dysfunction of the IPCs, rather than apoptosis.


Growth and Development/genetics , Insulin/genetics , Protein Precursors/genetics , Unfolded Protein Response , Animals , Animals, Genetically Modified , Down-Regulation/genetics , Drosophila/genetics , Drosophila/growth & development , Drosophila/metabolism , Embryo, Nonmammalian , Humans , Insulin/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Precursors/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction/genetics , Unfolded Protein Response/genetics , Up-Regulation/genetics , GADD45 Proteins
...