Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.475
1.
J Biomed Mater Res B Appl Biomater ; 112(5): e35410, 2024 May.
Article En | MEDLINE | ID: mdl-38728112

The dissipative particle dynamics (DPD) simulation was used to study the morphologies and structures of the paclitaxel-loaded PLA-b-PEO-b-PLA polymeric micelle. We focused on the influences of PLA block length, PLA-b-PEO-b-PLA copolymer concentration, paclitaxel drug content on morphologies and structures of the micelle. Our simulations show that: (i) with the PLA block length increase, the self-assemble structure of PLA-b-PEO-b-PLA copolymers with paclitaxel vary between onion-like structure (core-middle layer-shell) to spherical core-shell structure. The PEO shell thins and the size of the PLA core increases. The onionlike structures are comprised of the PEO hydrophilic core, the PLA hydrophobic middle layer, and the PEO hydrophilic shell, the distribution of the paclitaxel drug predominantly occurs within the hydrophobic intermediate layer; (ii) The system forms a spherical core-shell structure when a small amount of the drug is added, and within a certain range, the size of the spherical structure increases as the drug amount increases. When the drug contents (volume fraction) cdrug = 10%, it can be observed that the PLA4-b-PEO19-b-PLA4 spherical structures connect to form rod-shaped structures. With the length of PLA block NPLA = 8, as the paclitaxel drug concentrations cdrug = 4%, PEO has been insufficient to completely encapsulate the PLA and paclitaxel drug beads. To enhance drug loading capacity while maintaining stability of the system in aqueous solution, the optimal composition for loading paclitaxel is PLA4-b-PEO19-b-PLA4; the drug content is not higher than 4%; (iii) The paclitaxel-loaded PLA4-b-PEO19-b-PLA4 micelle undergo the transition from onionlike (core-middle layer-shell) to spherical (core-shell) to rod-shaped and lamellar structure as the PLA4-b-PEO19-b-PLA4 copolymer concentration increases from ccp = 10% to 40%.


Micelles , Paclitaxel , Polyesters , Polyethylene Glycols , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Polyethylene Glycols/chemistry , Polyesters/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Drug Carriers/chemistry
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731815

The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.


Antifungal Agents , Chitosan , Cyclohexane Monoterpenes , Hydrazones , Nanoparticles , Chitosan/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Nanoparticles/chemistry , Cyclohexane Monoterpenes/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Delayed-Action Preparations , Microbial Sensitivity Tests , Drug Carriers/chemistry
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731823

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Drug Carriers , Lamotrigine , Molecularly Imprinted Polymers , Lamotrigine/chemistry , Drug Carriers/chemistry , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Molecular Imprinting/methods , Spectroscopy, Fourier Transform Infrared , Drug Liberation , X-Ray Diffraction , Adsorption , Hydrogen-Ion Concentration
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731884

The rapid development of nanotechnology has offered the possibility of creating nanosystems that can be used as drug carriers. The use of such carriers offers real opportunities for the development of non-invasive drug delivery through skin structures. However, in addition to the ability to create suitable nanocarriers, it is also necessary to know how they move through dermal layers. The human skin consists of layers with different wettability characteristics, which greatly complicates how introduced substances move through it. In this work, an experimental study of the diffusion process of nanoparticles through partitions with different wettability properties was carried out. Conventional diffusion tests using Franz chambers were used for this purpose. We quantified how the wettability of the barrier, the number of layers, and their mutual configuration affect the transport of nanoparticles. Based on the results, an analysis of the phenomena taking place, depending on the wettability of the partition, was carried out. A model relationship was also proposed to determine the effective diffusion coefficient, taking into account the influence of the wettability and porosity of the barrier.


Drug Delivery Systems , Nanoparticles , Skin , Wettability , Nanoparticles/chemistry , Humans , Skin/metabolism , Drug Delivery Systems/methods , Drug Carriers/chemistry , Diffusion
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731964

Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.


Cannabidiol , Cytokines , Inflammation , Nanoparticles , Cannabidiol/chemistry , Cannabidiol/pharmacology , Nanoparticles/chemistry , Cytokines/metabolism , Inflammation/drug therapy , Humans , Animals , Free Radicals , Mice , Drug Carriers/chemistry , Lipids/chemistry , Cell Line , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Liposomes
6.
AAPS PharmSciTech ; 25(5): 108, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730090

Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.


Drug Carriers , Peptides , Wound Healing , Wound Healing/drug effects , Humans , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacology , Drug Carriers/chemistry , Animals , Drug Delivery Systems/methods , Nanostructures/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
7.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745193

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Antineoplastic Agents , Breast Neoplasms , Cell Survival , Mitoxantrone , Organosilicon Compounds , Humans , Breast Neoplasms/drug therapy , Female , Cell Survival/drug effects , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mitoxantrone/pharmacology , Mitoxantrone/chemistry , Mitoxantrone/therapeutic use , Cell Line, Tumor , Drug Carriers/chemistry , Silicon Dioxide/chemistry , Porosity , Drug Liberation , Nanoparticles/chemistry , MCF-7 Cells , Nanomedicine/methods , Reactive Oxygen Species/metabolism
8.
Drug Des Devel Ther ; 18: 1469-1495, 2024.
Article En | MEDLINE | ID: mdl-38707615

This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.


Biological Availability , Nanotechnology , Solubility , Humans , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/administration & dosage , Drug Delivery Systems , Nanoparticles/chemistry , Drug Carriers/chemistry , Animals
9.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724836

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Adenocarcinoma , Antineoplastic Agents , Apoptosis , Drug Carriers , Epithelial-Mesenchymal Transition , Nanoparticles , Prostatic Neoplasms , Pyrans , Rats, Wistar , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Pyrans/pharmacology , Pyrans/administration & dosage , Apoptosis/drug effects , Humans , Rats , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Epithelial-Mesenchymal Transition/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Movement/drug effects , PC-3 Cells , Drug Delivery Systems/methods , Polyether Polyketides
10.
AAPS PharmSciTech ; 25(5): 106, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724834

The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.


Antifungal Agents , Biofilms , Candida albicans , Chitosan , Microbial Sensitivity Tests , Nanoparticles , Phytic Acid , Chitosan/chemistry , Biofilms/drug effects , Nanoparticles/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Animals , Candida albicans/drug effects , Mice , Microbial Sensitivity Tests/methods , Phytic Acid/pharmacology , Phytic Acid/administration & dosage , Phytic Acid/chemistry , Female , Candidiasis/drug therapy , Particle Size , Drug Carriers/chemistry , Cross-Linking Reagents/chemistry , Cytokines/metabolism
11.
J Nanobiotechnology ; 22(1): 227, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711078

BACKGROUND: Elevated interstitial fluid pressure within tumors, resulting from impaired lymphatic drainage, constitutes a critical barrier to effective drug penetration and therapeutic outcomes. RESULTS: In this study, based on the photosynthetic characteristics of algae, an active drug carrier (CP@ICG) derived from Chlorella pyrenoidosa (CP) was designed and constructed. Leveraging the hypoxia tropism and phototropism exhibited by CP, we achieved targeted transport of the carrier to tumor sites. Additionally, dual near-infrared (NIR) irradiation at the tumor site facilitated photosynthesis in CP, enabling the breakdown of excessive intratumoral interstitial fluid by generating oxygen from water decomposition. This process effectively reduced the interstitial pressure, thereby promoting enhanced perfusion of blood into the tumor, significantly improving deep-seated penetration of chemotherapeutic agents, and alleviating tumor hypoxia. CONCLUSIONS: CP@ICG demonstrated a combined effect of photothermal/photodynamic/starvation therapy, exhibiting excellent in vitro/in vivo anti-tumor efficacy and favorable biocompatibility. This work provides a scientific foundation for the application of microbial-enhanced intratumoral drug delivery and tumor therapy.


Chlorella , Drug Carriers , Photosynthesis , Animals , Mice , Cell Line, Tumor , Drug Carriers/chemistry , Humans , Combined Modality Therapy , Photochemotherapy/methods , Neoplasms/therapy , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Drug Delivery Systems/methods , Indocyanine Green/pharmacokinetics , Indocyanine Green/chemistry , Female
12.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747275

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Carbon Dioxide , Chitosan , Cinnamomum zeylanicum , Drug Liberation , Nanoparticles , Silicon Dioxide , Chitosan/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/chemistry , Porosity , Cinnamomum zeylanicum/chemistry , Drug Carriers/chemistry , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Delayed-Action Preparations
13.
Sci Rep ; 14(1): 10964, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744871

Due to vincristine sulfate's (VCR sulfate) toxicity and non-specific targeting, which might adversely damage healthy cells, its clinical application is restricted. In this study, we loaded VCR sulfate on exosomes generated from mesenchymal stem cells (MSCs) to enhance its targeted distribution. Exosomes are able to deliver molecules to specific cells and tissues and have therapeutic potential. In this study, we isolated exosomes from MSCs, and using probe-sonication approach loaded them with VCR sulfate. Using SRB assay, the cytotoxicity of VCR sulfate-Exo was assessed in T47D breast cancer cells, and the results were contrasted with those of free VCR sulfate. Then We labeled markers (CD44+/CD24-) in the cell line to assess the targeting effectiveness of VCR sulfate-Exo using flow cytometry. Our results showed that the cytotoxicity of VCR sulfate-Exo was nearly the same as that of VCR sulfate. Flow cytometry analysis revealed that VRC sulfate-Exo was more effectively targeted to MSCs than free VCR sulfate. Our study shows that loading VCR sulfate to MSCs-derived exosomes can improve their targeted delivery and lessen their side effects. Additional research is required to determine VCR sulfate-Exo's in vivo effectiveness and safety and improve the loading and delivery strategies.


Breast Neoplasms , Exosomes , Mesenchymal Stem Cells , Neoplastic Stem Cells , Vincristine , Exosomes/metabolism , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Vincristine/pharmacology , Drug Carriers/chemistry
14.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Article En | MEDLINE | ID: mdl-38703140

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Colitis, Ulcerative , Curcumin , Metal-Organic Frameworks , Peptides , Curcumin/chemistry , Curcumin/administration & dosage , Metal-Organic Frameworks/chemistry , Animals , Humans , Peptides/chemistry , Peptides/administration & dosage , Colitis, Ulcerative/drug therapy , Mice , Chitosan/chemistry , Egg White/chemistry , Polysaccharides/chemistry , Male , Administration, Oral , Drug Synergism , gamma-Cyclodextrins/chemistry , Drug Carriers/chemistry , Egg Proteins/chemistry
15.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Article En | MEDLINE | ID: mdl-38708178

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Anti-Bacterial Agents , Biofilms , Chitosan , Liposomes , Nanoparticles , Pseudomonas Infections , Pseudomonas aeruginosa , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Humans , Pseudomonas Infections/drug therapy , Nanoparticles/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Drug Carriers/chemistry , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lipids/chemistry , Lipids/pharmacology , Quorum Sensing/drug effects , A549 Cells , Alginates/chemistry
16.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Article En | MEDLINE | ID: mdl-38708182

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Antineoplastic Agents , Artemisinins , Drug Resistance, Neoplasm , Imidazoles , Lung Neoplasms , Metal-Organic Frameworks , Reactive Oxygen Species , Artemisinins/chemistry , Artemisinins/pharmacology , Artemisinins/pharmacokinetics , Animals , Humans , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacokinetics , Metal-Organic Frameworks/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Hydrogen-Ion Concentration , A549 Cells , Drug Liberation , Mice, Nude , Apoptosis/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Hemolysis/drug effects
17.
Carbohydr Polym ; 337: 122145, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710553

Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.


Biocompatible Materials , Drug Delivery Systems , Hyaluronic Acid , Hydrogels , Hyaluronic Acid/chemistry , Humans , Drug Delivery Systems/methods , Biocompatible Materials/chemistry , Hydrogels/chemistry , Animals , Drug Liberation , Drug Carriers/chemistry , Tissue Engineering/methods , Nanoparticles/chemistry
18.
AAPS PharmSciTech ; 25(5): 96, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710855

Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.


Administration, Intranasal , Blood-Brain Barrier , Brain , Drug Delivery Systems , Administration, Intranasal/methods , Humans , Drug Delivery Systems/methods , Brain/metabolism , Blood-Brain Barrier/metabolism , Animals , Drug Carriers/chemistry , Pharmaceutical Preparations/administration & dosage , Nasal Mucosa/metabolism
19.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710898

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Antifungal Agents , Aspergillus niger , Candida albicans , Drug Delivery Systems , Drug Liberation , Imidazoles , Nanofibers , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanofibers/chemistry , Candida albicans/drug effects , Aspergillus niger/drug effects , Drug Delivery Systems/methods , Imidazoles/chemistry , Imidazoles/administration & dosage , Imidazoles/pharmacology , Delayed-Action Preparations , Microbial Sensitivity Tests/methods , Drug Carriers/chemistry , Drug Stability
20.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Article En | MEDLINE | ID: mdl-38720939

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Anti-Bacterial Agents , Chitosan , Hydrogels , Staphylococcus aureus , Vancomycin , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Drug Carriers/chemistry , Collagen/chemistry , Collagen/pharmacology , Particle Size , Drug Liberation , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Microbial Sensitivity Tests , Biofilms/drug effects
...